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Abstract 

Most modern products/processes usually have several quality characteristics that must be optimized simultaneously; 
this is called a multi-response parameter design problem. To overcome shortcomings in the literature, including 
insufficient accuracy of second-order polynomials, subjective determination of relative weights and shape 
coefficients, and non-consideration of manufacturing or material costs, this paper proposes a cost-based procedure 
for resolving multi-response parameter design problems using gene expression programming (GEP), Taguchi 
quality loss, and particle swarm optimization (PSO). A case study with the aim of optimizing the design of a heat 
sink applied to a high-power MR16 LED lamp was used to demonstrate the proposed procedure. The experimental 
results indicated that the proposed procedure can provide highly robust settings for design parameters that can 
maximize the thermal performance and minimize the actual material cost of a heat sink. Furthermore, decision-
makers no longer need to subjectively determine the relative weight of each response. Therefore, the proposed 
approach can be considered to be feasible and effective; it has the potential to be a useful tool for resolving general 
multi-response parameter design problems in the real world. 

Keywords: Heat sink; Gene expression programming; Taguchi quality loss; Particle swarm optimization; Multi-
response parameter design 

1. Introduction 

A heat sink is a passive heat exchanger component that 
cools a device by dissipating heat into the surrounding 
air. Fig. 1 shows a typical heat sink used in a high-
power MR16 LED (light emitting diode) lamp. To 
simultaneously minimize the material cost and 
maximize the thermal performance of a heat sink, the 
material, fin design, surface treatment, etc. must be 
determined conservatively; this is considered to be a 
complicated multi-response parameter design problem. 

The Taguchi method is a well-known traditional 
approach for tackling such a problem; however, it has 
not proved to be fully functional for optimizing multiple 
responses, especially in the case of correlated responses 
[1]. Therefore, some approaches have been incorporated 
with the Taguchi method to determine the discrete 

settings of control factors based on their original 
experimental levels [e.g., 2–9]. 

However, the true optimal parameter settings of 
control factors may exist throughout the entire 
experimental range. Consequently, many recent studies 
have focused on using/integrating techniques from 
various fields to find the continuous settings of control 
factors for a multi-response parameter design problem. 
For example, Kim and Lin [10] applied response surface 
methodology (RSM) and exponential desirability 
functions to maximize the overall minimal value of 
satisfaction with respect to all responses to determine 
the optimal settings of control factors. Kovach and Cho 
[11] utilized a combined array design to incorporate 
noise factors into the robust design model and used 
response surface functions to describe the functional 
dependence of the mean and variance of each quality 
characteristic on the control factors. The system 
specifications and desired target values were then 
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incorporated as constraints and goals, respectively. 
Finally, a nonlinear goal programming technique with 
the first goal of minimizing the variance and second 
goal of attempting to make the mean equal to the 
desired target value was employed to optimize multiple 
responses simultaneously. Ramezani et al. [12] used the 
prediction intervals from the model building stage and 
applied the concepts of the goal programming approach 
with normalization based on negative and positive ideal 
solutions to generate a set of non-dominated and 
efficient solutions. The non-dominated solutions were 
then ranked using the technique for order preference by 
similarity to ideal solution (TOPSIS) to provide some 
suggested settings for control factors. Sibalija et al. [1] 
evaluated the overall performance regarding all 
responses via a synthetic measure generated by using 
Taguchi’s quality losses, principal component analysis 
(PCA), and grey relational analysis (GRA). The genetic 
algorithms (GAs) were then utilized to determine the 
optimal parameter settings of control factors by 
searching the mathematical model that was described 
through neural networks (NNs). Bera and Mukherjee 
[13] proposed an adaptive penalty function-based 
“maximin” desirability index for multiple-response 
optimization problems with close engineering tolerances 
of quality characteristics and determined a near-optimal 
solution using continuous ant colony optimization, ant 
colony optimization in real space, and global best 
particle swarm optimization. Devi et al. [14] proposed a 
Taguchi-based modified epsilon constraint method to 
obtain a non-dominated Pareto solution set for a 
multiobjective design optimization where the objective 
functions to be optimized were described by linear 
regression equations derived from the Taguchi 
experimental design. Goethals and Cho [15] applied 
higher-order estimation techniques instead of traditional 
second-order equations to model the mathematical 
relationship between control factors and responses and 
incorporated the concepts of robust design to the 
desirability function to account for process variability 
and thus determine the optimal settings for the control 
factors. He et al. [16] considered all values in the 
confidence interval rather than a single predicted value 
for each response and applied the worst-case strategy to 
define the robustness measure for the traditional 
desirability function and consider the uncertainty 
associated with the fitted response surface model. A 
hybrid genetic algorithm coupled with pattern search 

was then used to find the robust optimal solution. 
Mukherjee et al. [17] used RSM-based second-order 
equations to model the considered responses and 
applied six popular population-based optimization 
algorithms—genetic algorithms (GAs), particle swarm 
optimization (PSO), sheep flock (SF) algorithm, ant 
colony optimization (ACO), artificial bee colony (ABC), 
and biogeography-based optimization (BBO)—to obtain 
the optimal settings for the input control factors of two 
wire electrical discharge machining (WEDM) processes. 
A comparison of the results revealed that BBO 
outperformed the others. Salmasnia et al. [18] presented 
a three-phased approach that uses principal component 
analysis (PCA), adaptive-network-based fuzzy inference 
systems (ANFIS), desirability function, and genetic 
algorithms (GAs) to simultaneously optimize multiple 
correlated responses where the relationships between 
responses and design variables are highly nonlinear. 

In the above studies, estimation of the functional 
relationship between control factors and responses 
usually relied on the accuracy of second-order 
polynomials, which are not always suitable [15]. 
Decision-makers must specify the relative weight 
(importance) of each response and/or set the coefficient 
that manipulates the shape of a desirability function 
subjectively while transforming multiple responses into 
a single objective. Furthermore, the manufacturing or 
material cost of a product is not considered when the 
optimal settings of design/process parameters are 
determined. To overcome these shortcomings, this study 
attempted to apply gene expression programming (GEP), 
Taguchi quality loss, and particle swarm optimization 
(PSO) to developing a procedure for resolving multi-
response parameter design problems. Specifically, GEP 
that can automatically create computer programs [19] is 
used to construct sophisticated nonlinear models, which 
are not always second-order polynomials, for estimating 
the functional dependence of quality characteristics 
(responses) on the control factors. The overall quality of 
a product is then evaluated through a single objective, 
which is the sum of the actual material cost regarding 
the product and the visualized Taguchi quality loss (cost) 
incurred owing to the deviation of each quality 
characteristic from its target. Notably, the quality loss 
coefficient can be definitely set by considering the 
actual material cost for fabricating the product; 
therefore, decision-makers no longer need to determine 
the relative weight of each response subjectively. 
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Finally, the PSO algorithm, which has successfully 
resolved various optimization problems in various fields 
[e.g., 20–22] is utilized to determine the near optimal 
parameter settings of control factors by exploration of 
well-constructed GEP models. 

The remainder of this paper is organized as follows. 
The fundamental methodologies utilized in this study, 
including the GEP and PSO, are briefly introduced in 
Section 2. Section 3 presents the proposed cost-based 
procedure for resolving multi-response parameter 
design problems; the feasibility and effectiveness are 
illustrated in Section 4 by a case study for improving the 
thermal performance and minimizing the material cost 
of a heat sink used in a high-power MR16 LED lamp. 
Finally, the conclusions and limitations are summarized 
in Section 5. 

2. Fundamental Methodologies 

Three main methodologies for developing the proposed 
procedure to resolve multi-response parameter design 
problems are briefly introduced in this section. 

2.1. Gene expression programming 

Gene expression programming (GEP) [23] is a 
technique for evolving populations of computer 
programs in order to solve a user-defined problem based 
on the principles of Darwinian natural selection and 
biologically inspired operations. Similar to genetic 
algorithms (GAs) and genetic programming (GP), GEP 
utilizes populations of individuals, selects them based 
on their fitness, and introduces genetic variation through 
one or more genetic operators [24]; however, there is a 
major difference residing in the nature of individuals. 
The individuals (chromosomes) in GAs are linear binary 
or real number strings of fixed length, and the evolved 
solutions in GP are usually represented by tree-based 
structures whose sizes and shapes can vary throughout 

the evolving process. However, the individuals in GEP 
are encoded by linear strings of fixed length (genome or 
chromosomes) and consist of one or more genes of 
equal length, which can be translated into nonlinear 
entities of different sizes and shapes (expression trees). 
The GEP gene comprises a head that contains symbols 
for representing both functions (elements from the 
function set F) and terminals (elements from the 
terminal set T) and a tail, which only contains terminals. 
For example, consider a gene composed of [Q, ×, ÷, ,

, a, b] as follows: 

bbaaababbabQababQ
098765432109876543210

 (1) 

where the tail is shown in bold and Q represents the 
square root function. Let  represent the maxima of 
the arguments for the functions considered in a gene. 
Since Q is a function of one argument, and ×, ÷,  and 

 are the functions of two arguments, the 
corresponding to Eq. (1) is 2. In addition, the length of 
head h is 10 (i.e., from positions 0 to 9). Hence, the 
length of tail l can be determined to be 11 based on the 
following equation [23]: 

111)12(101)1(hl . (2) 

The above gene (genotype) can then be decoded and 
represented by an expression tree (phenotype), as shown 
in Fig. 2; this can easily be translated into the following 
algebraic expression: 

][ babab . (3) 

To implement a GEP procedure, some basic genetic 
operators including mutation, transposition, and 
recombination are required to perform genetic variation. 
Mutation can occur anywhere in a chromosome as long 
as the structural organization of chromosomes is intact. 
Hence, any symbol in the heads can change into a 
function or terminal while the terminals in the tails can 
only change into terminals. The transposition operators 
move fragments of the genome, which can be activated, 
to another place in the chromosome. Ferreira [23] 
defines three types of transposition in GEP: (1) insertion 
sequence (IS) transposition, (2) root insertion sequence 
(RIS) transposition, and (3) gene transposition. There 
are three types of recombination: (1) one-point, (2) two-
point, and (3) gene recombination. The general 
execution steps of GEP are briefly summarized as 
follows [23]: 

Fig. 1.  Typical heat sink for a high-power MR16 LED lamp. 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

160



Chih-Ming Hsu 

Step 1: Randomly generate an initial population of 
chromosomes. 

Step 2: Express the chromosomes and evaluate the 
fitness of each individual. 

Step 3: Select chromosomes from the population using a 
probability based on the fitness and replicate the 
selected chromosomes. 

Step 4: Randomly apply genetic operators including 
mutation, IS transposition, RIS transposition, 
gene transposition, one-point recombination, 
two-point recombination, and gene 
recombination to chromosomes that are 
randomly selected from the replicated 
chromosomes in Step 3 to create the next 
generation. 

Step 5: The outcome is designated as the final result of 
the run when the termination criterion is 
satisfied. Otherwise, iterate Steps 2–4. 

As shown in the literature, GEP has produced many 

novel and outstanding results in resolving problems 
from numerous fields [e.g., 25–28]. GEP, its 
applications, and related resources are further discussed 
by [19, 23]. 

2.2. Particle swarm optimization 

Particle swarm optimization (PSO) [29, 30] is a 
population-based stochastic optimization technique that 
is a form of swarm intelligence inspired by the social 
behavior of bird flocks, fish schools, bee swarms, and 
even humans. Similar to GAs, PSO initializes with a 
population of random solutions and searches for the 
optimal solution by updating generations; however, it 
does not have evolutionary operators such as crossover 
and mutation like GAs. To resolve an optimization 
problem, PSO works with a population of solutions 
called particles, whose positions and velocities are 

denoted by ix  and iv  (i is the index of the particle), 
respectively. During the search procedure, each particle 
keeps the best solution (position) it has already achieved, 
denoted by #

ix , and tracks the optimal position found so 
far by the entire swarm, denoted by *x . The fitness 
values corresponding to #

ix  and *x  are called pbest and 
gbest, respectively. Each particle then moves around in 
the search space toward its pbest and gbest positions 
with a new velocity iv , which is randomly updated 
based on iv , ix , #

ix , and *x  in the last search iteration. 
A search iteration is completed when all particles have 
changed their velocities and positions once. The 
particles keep flying until they reach sufficient fitness, 
the pre-determined maximum number of iterations, or 
the pre-determined number of iterations without 
improvement. The general steps of PSO are briefly 
summarized as follows: 
Step 1: A population of particles is given random 

positions ix  and velocities iv .
Step 2: For each particle, evaluate its fitness value and 

update the current local best solution #
ix  and 

corresponding fitness pbest.
Step 3: Compare the fitness values pbests of particles in 

the entire swam, and update the current global 
best solution *x  and corresponding fitness gbest.

Step 4: Move each particle to a new position: 
Step 4-1: Change the velocity of the i-th particle in the j-

th dimension based on 

))()(())(

)(()()1(
*

22

#
11

txtxrctx

txrctwvtv

ijjij

ijijij  (4) 

where t is the search iteration number, )0(w
is the inertia factor, )0(1c  and )0(2c  are 
acceleration constants, and 1r  and 2r  are 
random numbers uniformly distributed in the 
interval [0,1]. 

Step 4-2: Change the position of each particle by 

)1()()1( tvtxtx ijijij  (5) 

Step 5: Repeat Steps 2–4 until the stopping criteria are 
satisfied. 

The parameter w  in Eq. (4), which is employed to 
control the impact of the previous history of velocities 
on the current one, is critical for the convergence 
behavior of PSO. A suitable value of w  can usually 
give a better tradeoff between the global and local 
exploration abilities of the swarm and thus reduce the 
number of iterations required to find the optimum 

Fig. 2.  Example expression tree in GEP. (Q represents the 
square root function.) 
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solution. Abraham et al. [31] suggested that an initial 
value of around 1.2 that is gradually reduced towards 0 
is a good choice for w . Next, the parameters 1c  and 2c ,
which are called the coefficients of self-recognition and 
social components, respectively, are stochastic 
acceleration terms that guide a particle where to move 
next by considering its best past position and position of 
the most successful particle in the entire swarm. 
Although 1c  and 2c  are not critical for the convergence 
of PSO, proper settings may attain faster convergence 
and mitigate the local optimum [31]. Eberhart and Shi 
[32] recommend that settings of 21c  and 22c  are 
appropriate for almost all applications, and Clerc and 
Kennedy [33] reported that it may be better to choose a 
larger 1c  than 2c , but with 421 cc . Finally, the 
velocity (moving distance) during one iteration )1(tvij

must be clamped in the range ],[ maxmax vv  to guide the 
particles effectively in the search space according to 

)|,)1((|))1(()1( maxvtvmintvsigntv ijijij . (6) 

The parameter maxv , which determines the solution 
resolution, must be carefully specified. An excessively 
large maxv  may allow a particle to fly too fast and thus 
cause it to miss the good positions. On the other hand, a 
too small maxv  may trap particles in a local optimum. 

PSO has been widely applied to various 
optimization problems and has obtained successful 
results [e.g., 22, 34–36]. For further discussions on PSO, 
its applications, and related resources, readers can refer 
to [29, 37, 38]. 

3. Proposed Cost-based Solution Procedure 

An integrated procedure is proposed that resolves multi-
response parameter design problems using GEP, 
Taguchi quality loss, and the PSO algorithm to 
overcome shortcomings in the literature: insufficient 
accuracy of second-order polynomials, subjective 
determination of relative weights and shape coefficients, 
and non-consideration of manufacturing or material 
costs. As noted in Section 1, the actual material cost and 
visualized Taguchi quality loss due to deviations in 
quality characteristics from their targets are utilized to 
design the objective function for evaluating the overall 
quality of a product. For the quality characteristic jy ,
the quality loss in the nominal-the-best (NTB), smaller-
the-better (STB), and larger-the-better (LTB) cases are 
defined as 

2)( jjjj mykQL , (7) 

2
jjj ykQL , (8) 

and

2
1

j
jj y

kQL , (9) 

respectively, where jm  is the target value and jk  is the 
quality loss coefficient for the quality characteristic jy .
Therefore, the effects of noise factors on the quality 
characteristic jy  under a certain combination of control 
factor settings can be assessed through an average 
quality loss, which is calculated by 

s

k

k
j

j s
QL

AQL
1

)(

 (10) 

where s is the total number of combinations of noise 
factor evaluation levels and )(k

jQL , which is obtained 
through Eq. (7), (8), or (9), is the quality loss under a 
certain combination of control factor settings and kth

combination of noise factor evaluation levels. For 
example, there are four noise factors, and each noise 
factor has three evaluation levels. The noise effects on 
quality characteristics under a certain combination of 
control factor settings is appraised through 81 (i.e., 

43s ) combinations of noise factor evaluation levels. 
Finally, the overall quality regarding the product under 
a certain combination of control factor settings can then 
be evaluated through a single minimized objective 
function; this is calculated by 

r

j
jAQLMCTQL

1
 (11) 

where MC is the actual manufacturing or material cost 
of a product and r is the total number of quality 
characteristics. The quality loss coefficients in Eqs. (7)–
(9) can be definitively calculated through 

otherwise
)(

if
)(

2

2
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k

 for an NTB case, (12) 
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r

j
jAQLMCTQL

1
 for an STB case, and (13) 

r

j
jAQLMCTQL

1
 for an LTB case, (14) 

where jm , jUSL , and jLSL  are the target value, upper 
specification limit, and lower specification limit, 
respectively, of the quality characteristic jy . Since the 
optimal settings of control factors are determined by 
minimizing the sum of the actual material cost and 
visualized Taguchi quality loss regarding a product, the 
proposed approach for resolving multi-response 
parameter design problems is called the cost-based 
solution procedure. The details of the procedure are as 
follows: 
Step 1: Determine the key quality characteristics 

(responses) of a product and their specification 
limits according to the objectives of a quality 
improvement project. 

Step 2: Identify and arrange control factors. 
Step 2-1: Identify the major design parameters (control 

factors) that might significantly affect the 
selected key quality characteristics and their 
design limits based on engineering principles, 
experience, limitations of the manufacturing 
process, etc. 

Step 2-2: Determine the experimental levels for each 
selected control factor and arrange the control 
factors into an appropriate orthogonal array as 
the inner array. 

Step 3: Identify and arrange noise factors. 
Step 3-1: Identify the critical noise factors to be 

evaluated for their effects on the key quality 
characteristics.

Step 3-2: Determine the evaluation levels for each 
selected noise factor and arrange the noise 
factors into an appropriate orthogonal array as 
the outer array. 

Step 4: Conduct each experimental trial and collect data 
according to the inner and outer arrays. 

Step 5: Build GEP estimation models. 
Step 5-1: Normalize the obtained values of key quality 

characteristics along with the values of the 
major design parameters into ]1,1[  according 
to their corresponding maximum and 
minimum values. 

Step 5-2: Randomly partition the normalized values of 
key quality characteristics and design 
parameters into training and test datasets based 
on a pre-specified proportion. 

Step 5-3: Construct an estimation model for each key 
quality characteristic using GEP. 

Step 6: Optimize settings of control factors. 
Step 6-1: Determine the optimal settings of parameters 

in PSO using the experimental design 
technique.

Step 6-2: Explore the experimental ranges of the major 
design parameters through PSO with the goal 
of minimizing the objective function defined 
in Eq. (11), where the mathematical 
relationships between the key quality 
characteristics and design parameters are 
described by the GEP models constructed in 
Step 5-3. 

Step 6-3: Obtain the (near) optimal settings of major 
design parameters. 

Step 7: Confirmation. 
Step 7-1: Verify the feasibility and effectiveness of the 

optimal settings of major design parameters 
acquired in Step 6-3. 

Step 7-2: Review the results, re-identify the control 
factors, and repeat Steps 2–7 if the 
confirmation result is unsatisfactory. 

4. Case Study 

In order to illustrate the proposed solution procedure for 
tackling multi-response parameter design problems, this 
section presents a case study that aimed to improve the 
design of a heat sink and thus improve its thermal 
performance. 

4.1.  Problem statement 

In electronic systems, a heat sink is a passive heat 
exchanger component that cools a device such as a CPU 
(central processing unit), power transistor, laser, and 
LED by dissipating heat into the surrounding cooling 
medium, such as air, water, or oil. A heat sink is 
requisite for a device whose heat dissipation ability is 
insufficient to control the temperature of the basic 
package. Otherwise, the performance and lifetime of the 
device will be diminished substantially. Fig. 1 illustrates 
a typical heat sink applied to a high-power MR16 LED 
lamp. 
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In order to maximize the thermal performance of a 
heat sink, the geometric appearance requires an 
elaborate design, and the material should be selected 
carefully. In the past, design engineers usually 
employed a traditional experimental design technique 
and the Taguchi method along with heat transfer 
principles and their experience to determine the optimal 
geometric design and select the materials of the heat 
sink. Due to the tradeoffs required to subjectively 
optimize each quality characteristic simultaneously, the 
final design and material selection for a heat sink were 
determined through a repeated trial-and-error and fine-
tuning process. This design approach is costly, time-
consuming, and cannot ensure that the selected design 
and material for the heat sink are truly optimal. 
Furthermore, the geometric design affects the volume of 
the heat sink and thus determines its related material 
cost. Therefore, maximizing the thermal performance 
while minimizing the material cost of the heat sink is a 
crucial issue to the design of a high-power LED lamp. 

4.2. Quality characteristics and control factors 

Based on the quality improvement objectives stated in 
Section 4.1, designers and quality managers of LED 
lamps determine three key quality characteristics for a 
heat sink: 
(1) Maximum temperature (y1)
The maximum temperature is the stable temperature of a 
heat sink, as illustrated in Fig. 3, when an LED lamp is 
lighting. The maximum temperature is an STB-type 
quality characteristic. 
(2) Thermal resistance (y2)
The thermal resistance is the difference between the 
LED junction temperature and case temperature across a 
heat sink when a unit of heat energy flows through the 
heat sink in unit time when the lighted LED lamp has 
reached stable status. The thermal resistance is an STB-
type quality characteristic. 
(3) Material cost (y3)
The material cost is the product of the volume, density, 
and unit cost of the material for fabricating a heat sink. 
It is an STB-type quality characteristic. 

For a heat sink applied in a high-power MR16 LED 
lamp, the typical upper specification limits for the 
maximum temperature (y1) and thermal resistance (y2)
are 85 °C and 3.5 °C/W, respectively, at an ambient air 
temperature of 25 °C. 

Based on the principles of thermal physics and 
experience, a brainstorm with design engineers 
identified two critical material properties and four main 
geometric parameters that might significantly affect the 
three key quality characteristics of a heat sink of 
concern; these control factors are described as follows: 
(1) Coefficient of thermal radiation (x1): coefficient of 

thermal radiation of the material used to fabricate a 
heat sink. 

(2) Coefficient of thermal conductivity (x2): coefficient 
of thermal conductivity of the material used to 
fabricate a heat sink. 

(3) Rotation angle (x3): angle by which each fin rotates. 
(4) Height of a fin (x4): height of a fin in a heat sink. 
(5) Width of a fin (x5): width of a fin in a heat sink. 
(6) Number of fins (x6): total number of fins in a heat 

sink.
The parameters x3, x4, and x5 are illustrated in Fig. 4. 

Notably, three types of materials with different 
coefficients of thermal conductivity were applied in this 
study; their information is summarized in Table 1. In 
addition, two types of coefficients of thermal 
conductivity were considered in the case study. For each 
of the geometric design parameters x3 to x6, three 
experimental levels were set in order to estimate their 
nonlinear effects upon the critical quality characteristics. 
The experimental levels are summarized in Table 2. A 
Taguchi )32( 71

18L  orthogonal array was selected as 
the inner array, where the first control factor (x1) was 
assigned into the first column, while the remaining five 
design parameters (i.e., x2 to x6) were allocated into the 
second to sixth columns for the experiment design. 

Owing to the limitations of machining while making 
a heat sink, the geometric parameters, including the 
height and width of a fin (i.e., x4 and x5) had 
manufacturing tolerances of 05.0  mm. Therefore, two 
noise factors z1 and z2, each of which had three 
experimental settings (i.e. 05.0 , 0, and 05.0 ), were 
considered to assess the effects of manufacturing 

Fig. 3.  Illustration of the maximum temperature. 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

164



Chih-Ming Hsu 

tolerances on the design parameters x4 and x5,
respectively, as shown in Table 2. The noise factors z1

and z2 were allocated in an outer array designed by a 
Taguchi )3( 4

9L  orthogonal array. 

Table 1.  Information about the three types of materials 
considered in this study. 

Metal Coefficient of thermal 
conductivity (W/m·K) 

Density 
(g/cm3) Unit cost

Al alloy 170 2.7 120 NTD/kg
Al alloy 200 2.8 135 NTD/kg

Cu 380 8.9 288 NTD/kg

Table 2.  Experimental settings of control and noise 
factors. 

Control
factors x1

x2
(W/m·K)

x3
(degree) x4 (mm) x5 (mm) x6

Level 1 0.5 170 1.5 18 10.0 20
Level 2 0.9 200 2.5 24 12.5 25
Level 3  380 3.5 30 15.0 30
Noise
factors  z1 (mm) z2 (mm)

Level 1 0.05 0.05
Level 2  0.00 0.00
Level 3  +0.05 +0.05

4.3. Experiments and data collection 

For this case study, 162 (i.e., 918 LL ) experimental 
trials were performed, as partially illustrated in Table 3. 

For the experiments, the SolidWorks 2010 
(http://www.solidworks.com) modeling software was 
first used to construct the geometric model of a heat 
sink based on the settings for the geometric design 
parameters x3 to x6 given in Table 3. Next, the ANSYS 
13 (http://www.ansys.com) software and constructed 
SolidWorks model were utilized to carry out the thermal 
simulation according to the settings for the coefficients 
of thermal conductivity (x1) and thermal radiation (x2), 
where the ambient air temperature was set to 25 °C. The 
LED emitter (heat source) used in this study comprised 
nine chips; each chip was a square with an edge length 
of 0.61 mm and thickness of 0.15 mm. The heat energy 
transferred through the surface of each chip (i.e., heat 
flux) was set to 1.1 W/mm2. The spacing between two 
adjacent chips and diameter of the optical lens were 0.5 
and 4.5 mm, respectively. The thickness of the base 
layer was set to 0.17 mm; the substrate was a 
rectangular solid with a length, width, and height of 6.5, 
5.0, and 0.4 mm, respectively. These geometric 
parameters are illustrated in Fig. 5. Mesh generation is a 
critical aspect in ANSYS simulation. Too many cells 
may result in long solver runs, and too few may lead to 
inaccurate results. Therefore, a preliminary experiment 
on primary sizing parameters in mesh generation, 
including the “relevance center” and “smoothing,” was 
carried out based on the original heat sink design; the 
simulation results are summarized in Table 4. The 
minimum and maximum temperatures in the table are 
the lowest and highest temperatures, respectively, of the 
heat sink; the average temperature is the mean of 
temperatures measured at the four measurement points 
(MPs) located on the edge of the heat sink body, as 
shown in Fig. 6. The error terms (in percentage) in the 
last three columns are the differences between the 
temperatures acquired under a certain total number of 
nodes and their corresponding temperatures obtained 
with the maximum total number of nodes (i.e., 
1,791,138 nodes). As shown in Table 4, the minimum 
temperatures obtained with 418,203, 1,787,000, and 
1,787,888 nodes differed from the minimum 
temperature measured with 1,791,138 nodes by less 
than 0.2%; thus, the stability was considered to be 
sufficient. This was also true for the maximum and 
average temperatures. Therefore, both major sizing 
parameters in mesh generation (relevance center and 
“smoothing) were set to “medium” in this study. Table 3 
presents part of the collected experimental results. 

(A) Design parameters x3 and x5.

(B) Design parameter x4.

Fig. 4.  Illustration of geometric design parameters of a heat 
sink.
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Notably, the thermal resistance (y2) was calculated 
based on the maximum temperature (y1) and average 
temperature. The material cost (y3) was determined 
based on the volume, density and unit cost of the 
material; the density and unit cost of the material 
depended on the coefficient of thermal conductivity (x2), 

as described in Section 4.2. Therefore, the average 
temperatures and volumes, which were treated as 
dependent variables during construction of the GEP 
estimation models presented later, are also given in 
Table 3. 

Table 3.  Partial experimental trials and collected data. 

No. 

Control factors Noise factors Quality characteristics Average 
temperature

(°C)

Volume
(mm3)x1

x2
(W/m·K)

x3
(degree)

x4
(mm)

x5
(mm) x6

z1
(mm)

z2
(mm)

Maximum 
temperature

(y1,°C) 

Thermal 
resistance

(y2,°C/Watt)

Material 
cost 

(y3, NTD) 
1 0.5 170 1.5 18 10.0 20 0.05 0.05 69.27 3.5774 0.6686 55.74 2064
2 0.5 170 1.5 18 10.0 20 0.05 0.00 69.14 3.5804 0.6713 55.60 2072
3 0.5 170 1.5 18 10.0 20 0.05 +0.05 69.01 3.5884 0.6740 55.45 2080
4 0.5 170 1.5 18 10.0 20 0.00 0.05 69.13 3.5857 0.6819 55.58 2105
5 0.5 170 1.5 18 10.0 20 0.00 0.00 69.00 3.5860 0.6848 55.45 2113
6 0.5 170 1.5 18 10.0 20 0.00 +0.05 69.09 3.5940 0.6825 55.50 2107
7 0.5 170 1.5 18 10.0 20 +0.05 0.05 68.99 3.6047 0.6954 55.37 2146
8 0.5 170 1.5 18 10.0 20 +0.05 0.00 69.08 3.5818 0.6931 55.54 2139
9 0.5 170 1.5 18 10.0 20 +0.05 +0.05 68.95 3.6036 0.6960 55.33 2148

.

.

.
154 0.9 380 3.5 24 10.0 25 0.05 0.05 55.19 3.1507 13.9139 43.28 5428
155 0.9 380 3.5 24 10.0 25 0.05 0.00 55.12 3.1478 13.9959 43.22 5460
156 0.9 380 3.5 24 10.0 25 0.05 +0.05 55.04 3.1608 14.0782 43.10 5492
157 0.9 380 3.5 24 10.0 25 0.00 0.05 55.12 3.1575 14.1302 43.19 5513
158 0.9 380 3.5 24 10.0 25 0.00 0.00 55.05 3.1381 14.2135 43.19 5545
159 0.9 380 3.5 24 10.0 25 0.00 +0.05 55.11 3.1380 14.1390 43.24 5516
160 0.9 380 3.5 24 10.0 25 +0.05 0.05 55.05 3.1633 14.3480 43.10 5598
161 0.9 380 3.5 24 10.0 25 +0.05 0.00 55.11 3.1585 14.2726 43.17 5568
162 0.9 380 3.5 24 10.0 25 +0.05 +0.05 55.04 3.1513 14.3571 43.12 5601

Table 4.  Results of a preliminary experiment on primary sizing parameters. 

Relevance 
center Smoothing Nodes 

Minimum
temperature

(°C)

Maximum
temperature

(°C)

Average 
temperature

(°C)

Error of 
minimum

temperature

Error of 
maximum 

temperature 

Error of 
average 

temperature
coarse low 68,359 52.25 38.31 39.71 1.5507% 0.0078% 0.2694% 
coarse high 68,374 52.32 38.31 39.73 1.4207% 0.0078% 0.2009% 
coarse medium 68,565 52.32 38.31 39.71 1.4188% 0.0078% 0.2587% 

medium high 417,945 53.16 38.31 39.76 0.1620% 0.0052% 0.1457% 
medium low 417,949 53.21 38.32 39.76 0.2619% 0.0026% 0.1369% 
medium medium 418,203 53.16 38.31 39.76 0.1620% 0.0052% 0.1425% 

fine high 1,787,000 53.07 38.32 39.82 0.0019% 0.0026% 0.0019% 
fine medium 1,787,888 53.07 38.32 39.81 0.0019% 0.0026% 0.0201% 
fine low 1,791,138 53.07 38.32 39.81 
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4.4. Building GEP estimation models 

The maximum temperature, average temperature, and 
volume along with the six design parameters obtained in 
each experimental trial are partially shown in Table 3; 
they were normalized into the range of 1 to 1 
according to their corresponding maximum and 
minimum values and then randomly partitioned into 
training and test datasets at a proportion of 4:1. The 
GEP algorithm using the GeneXproTools 4.0 
(http://www.gepsoft.com) software was employed on 
the training and test datasets to build the mathematical 
models for estimating the dependence of the maximum 
temperature, average temperature, and volume on the 
design parameters. The fitness of an individual was 

evaluated through root relative squared error (RRSE). In 
addition, the parameters, function set and terminal set in 
GEP were set as their default values. Table 5 
summarizes the settings of the major parameters in GEP. 
For each of the maximum temperature, average 
temperature and volume, the GEP algorithm was 
implemented for 5 runs. The results are summarized in 
Table 6. Based on the principle of minimizing the 
training and test RRSEs simultaneously, the second, 
first, and fifth models in Table 6 (i.e., GEP_Mmt,
GEP_Mat, and GEP_Mvo, respectively) were selected to 
estimate the maximum temperature, average 
temperature, and volume, respectively, for a given 
combination of settings for the six design parameters. 
Appendix A summarizes the execution programs in the 
C++ language for the GEP_Mmt, GEP_Mat, and 
GEP_Mvo models obtained by the GeneXproTools 4.0 
software. Notably, the final expression trees, which are 
encoded by the function and terminal sets in GEP, are 
automatically determined through the evolving 
procedure, as described in Section 2.1. Therefore, the 
functions and terminals included in the final execution 
programs for the GEP_Mmt, GEP_Mat, and GEP_Mvo

models are not necessarily identical. 

Table 5.  Settings of major parameters in GEP. 

Parameter Setting
Number of chromosomes 30 
Head size 8 
Number of genes 3 
Mutation rate 0.044
IS transposition rate 0.1 
RIS transposition rate 0.1 
Gene transposition rate 0.1 
One-point recombination rate 0.3 
Two-point recombination rate 0.3 
Gene recombination rate 0.1 

(A) Top view of the LED emitter. 

(B) Side view of the LED emitter. 

Fig. 5.  Major geometric parameters of the LED emitter used 
in this study. 

Fig. 6.  Measurement points for assessing the average 
temperature. 
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Table 6.  Execution results of the GEP algorithm. 

Dependent
variable 

Trial 
number 

Training 
RRSE

Test
RRSE

Training 
R2

Test 
R2

GEP 
Model 
name

Maximum 
temperature

1 0.1438 0.2554 0.9797 0.9376  
2* 0.1539 0.2187 0.9769 0.9834 GEP_Mmt

3 0.1539 0.2187 0.9769 0.9834  
4 0.1539 0.2187 0.9769 0.9834  
5 0.1695 0.3199 0.9729 0.9028  

Average 
temperature

1* 0.0832 0.0853 0.9932 0.9929 GEP_Mat

2 0.0832 0.0853 0.9932 0.9929  
3 0.1358 0.1327 0.9816 0.9830  
4 0.0833 0.0858 0.9931 0.9928  
5 0.1449 0.1740 0.9790 0.9724  

Volume

1 0.1126 0.1431 0.9875 0.9811  
2 0.1126 0.1431 0.9875 0.9811  
3 0.1126 0.1431 0.9875 0.9811  
4 0.1126 0.1431 0.9875 0.9811  
5* 0.1034 0.1385 0.9904 0.9811 GEP_Mvo

4.5. Optimization of design parameters 

In order to determine the optimal settings of the six 
design parameters for a heat sink, the PSO algorithm 
was applied to explore the experimental ranges of the 
design parameters. The GEP_Mmt, GEP_Mat, and 
GEP_Mvo models presented in Section 4.4 were used to 
describe the mathematical dependence of the maximum 
temperature, average temperature, and volume, 
respectively, on the design parameters. The objective 
function for minimization by PSO was designed using 
Eq. (11). The quality losses for the maximum 
temperature (y1) and thermal resistance (y2) were 
calculated using Eq. (8); the quality loss coefficients 
were derived from Eq. (13). The actual material cost of 
a heat sink (i.e., MC in Eqs. (11) and (13)) was 
calculated based on the volume, density, and unit cost of 
the material, as shown in Table 1, depending on the 
coefficient of thermal conductivity (x2). In addition, the 
upper specification limits (i.e., jUSL  in Eq. (13)) for the 
maximum temperature (y1) and thermal resistance (y2)
were set to 85 °C and 3.5 °C/W, respectively, as noted 
in Section 4.2. In addition, 75 °C and 3.0 °C/W were 
considered to be sufficiently ideal values for the 
maximum temperature (y1) and thermal resistance (y2), 
respectively, based on consultation with design 
engineers. Therefore, the quality loss for a maximum 
temperature (y1) of less than 75 °C or thermal resistance 
(y2) of less than 3.0 °C/W was directly set to 0 in this 
study. 

To determine the optimal settings of major 
parameters in PSO—the inertia factor (w), ratio of 
inertia factor (rw), maximum velocity (vmax), coefficient 

of the self-recognition component (c1), and coefficients 
of the social component (c2)—a 152  fractional factorial 
design was used, as shown in Table 7. This is a good 
choice for controlling the appropriate value of inertia 
factor w by initially setting the factor as a constant and 
gradually reducing it towards 0 [31]. Hence, the inertia 
factor w was designed to decrease progressively through 
multiplication with the ratio of the inertia factor (rw)
after every 10 search cycles in this study. Design-Expert 
6.0 (http://www.statease.com) software was then 
utilized to analyze the collected data shown in Table 7 
and automatically selected the parameter wr,  interaction 

maxvw  and interaction 21 cc  into the ANOVA model, 
which was significant at 05.0  as shown in Table 8. 
According to the effects of parameters, which are 
summarized in Table 9, the optimal settings of wr, w,
vmax, c1, and c2 in PSO were set to 0.99, 0.8, 0.10, 1, and 
1, respectively. The population size was set to 100, and 
the PSO algorithm terminated if the objective value 
could not be further improved after the last 100 search 
cycles. The PSO search procedure was implemented for 
10 runs, which were executed on a personal computer 
with an Intel Core i7-3770 3.40 GHz CPU and 8 GB 
RAM; the optimization results are summarized in Table 
10. In order to minimize the objective function, the 
following combination of design parameter settings, 
was determined to be the optimal solution: x1 = 0.9, x2 = 
200 W/m·K, x3 = 3.5°, x4 = 20.61 mm, x5 = 12.03 mm, 
and x5 = 24. This was the fifth run, as shown in Table 10. 
The coefficient of variation regarding the objective 
function was small at 0.0351; the PSO completed its 
search procedure in less than 1 s of CPU time. Based on 
the above information, the PSO algorithm can be 
considered to be a robust and highly speedy 
optimization method for exploring an experimental 
range to find the (near) optimal settings of control 
factors in a multi-response parameter design problem. 
Furthermore, the coefficient of thermal conductivity of 
the material was determined to be 200 W/m·K from the 
optimal combination of the design parameter settings. 
Notably, the coefficient of thermal conductivity of 200 
W/m·K was not the highest among the three types of 
materials considered in this study. This implies that a 
designer should first attempt to maximize the thermal 
performance of a heat sink through optimizing the 
geometric design, but not through making use of the 
material with a higher coefficient of thermal 
conductivity, which is much more expensive. 
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Table 7.  Experiment on PSO parameters. 

No. w wr vmax c1 c2
Objective function

Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5
1 0.8 0.90 0.05 1 2 2.6542 2.9797 3.3826 3.4018 4.8670
2 1.0 0.90 0.05 1 1 2.9183 2.6108 1.6169 1.6575 3.0617
3 0.8 0.99 0.05 1 1 3.0347 1.9194 3.9395 2.2624 2.6576
4 1.0 0.99 0.05 1 2 2.6494 1.8835 2.2539 2.6497 2.9183
5 0.8 0.90 0.10 1 1 2.9183 2.0460 2.6493 2.6493 1.8838
6 1.0 0.90 0.10 1 2 3.6146 2.6494 2.8191 2.8174 2.9183
7 0.8 0.99 0.10 1 2 2.6498 2.6493 2.8235 1.6351 2.6493
8 1.0 0.99 0.10 1 1 1.6349 1.6348 2.8175 2.7009 2.8174
9 0.8 0.90 0.05 2 1 2.9187 5.9125 2.6918 5.3939 3.4902
10 1.0 0.90 0.05 2 2 2.6536 2.6527 2.6914 4.5382 2.6898
11 0.8 0.99 0.05 2 2 2.6586 2.6493 1.8835 1.5866 2.6666
12 1.0 0.99 0.05 2 1 2.6493 2.6493 2.6493 2.6494 2.6493
13 0.8 0.90 0.10 2 2 2.9183 2.8405 2.8187 2.6493 2.8174
14 1.0 0.90 0.10 2 1 2.9651 1.8835 2.8349 2.9183 3.6146
15 0.8 0.99 0.10 2 1 2.8177 2.8174 2.6493 1.8835 1.6389
16 1.0 0.99 0.10 2 2 2.8181 2.8192 2.9183 2.6493 1.5559

Table 8.  ANOVA for experiment on PSO parameters.

Source Sum of 
squares d.f. Mean 

square 
F

value Significance

Model 9.81 3 9.81 6.98 0.0003
wr 5.29 1 5.29 11.29 0.0012
wr vmax 2.20 1 2.20 4.69 0.0335
c1 c2 2.32 1 2.32 4.96 0.0289

Residual 35.61 76 0.47  
Lack of 
Fit 7.23 12 0.60 1.36 0.2089 

Pure Error 28.38 64 0.44  
Corrected
Total 45.42 79   

Table 9.  Effects of parameters in PSO. 

(A) Effect of the parameter wr

wr = 0.90 wr = 0.99* 
MO = 3.0002 MO = 2.4860 

(B) Effects of the parameters w and vmax

w = 0.8* w = 1.0 
vmax = 0.05 MO = 3.1475 MO = 2.6346 
vmax = 0.10* MO = 2.5202 MO = 2.6701 

(B) Effects of the parameters c1 and c2

c1 = 1* c1 = 2 
c2 = 1* MO = 2.4716 MO = 2.9839 
c2 = 2 MO = 2.8433 MO = 2.6738 

Note: “MO” represents the mean of the objective function’s 
values under a certain parameter’s setting or a certain 
combination of parameter settings; the asterisk denotes the 
optimal setting for a parameter in PSO. 

Table 10.  Optimization results obtained by PSO. 

No. x1
x2

(W/m·K)
x3

(degree)
x4

(mm)
x5

(mm) x6
Objective
function

Search 
cycle 

CPU Time 
(s)

1 0.9 170 3.5 20.41 11.95 23 2.8223 393 0.41 
2 0.9 200 3.5 20.84 12.33 23 2.9183 356 0.36 
3 0.9 170 3.5 20.54 11.87 23 2.8182 433 0.43 
4 0.9 200 3.5 20.84 12.33 23 2.9183 747 0.79 
5 0.9 200 3.5 20.61 12.03 24 2.6492 438 0.44 
6 0.9 200 3.5 20.60 12.03 24 2.6494 425 0.43 
7 0.9 170 3.5 20.30 11.99 23 2.8402 296 0.29 
8 0.9 170 3.5 20.66 11.77 23 2.8358 307 0.31 
9 0.9 200 3.5 20.84 12.33 23 2.9183 934 0.93 

10 0.9 170 3.5 20.33 11.98 23 2.8355 580 0.58 
Mean 2.8206 491 0.50 

Coefficient 
of variation 0.0351 0.4185 0.4226 

4.6. Confirmation experiment 

A confirmation experiment was conducted to verify the 
feasibility and effectiveness of the optimal combination 
of design parameter settings identified in Section 4.5. 
The results are summarized in the first trial given in 

Table 11. As noted in Section 4.2, the height of a fin (x4)
and width of a fin (x5) have a manufacturing tolerance 
of 05.0  mm due to the precision limitations for a 
machined heat sink. Hence, two noise factors z1 and z2,
each with three experimental settings of 05.0 , 0, and 

05.0 , were considered in the case study. The effects 
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of the noise factors on each quality characteristic were 
then assessed through the average quality loss 
calculated by Eq. (10), as described in Section 3, in 
order to find the robust design of a heat sink—i.e., 
design that is insensitive to the noise factors. To 
examine the effectiveness of considering the noise 
factors into the objective function for optimizing the 
control factors, nine extra confirmation trials were 
conducted, as shown by the second to tenth trials in 
Table 11, based on the nine possible combinations of 
noise factors z1 and z2. As noted previously, the material 
cost (y3) depends on the heat sink volume, density and 
unit cost of the material; the density and unit cost of the 
material are determined by the coefficient of thermal 
conductivity (x2). Although Cu metal with a coefficient 
of thermal conductivity of 380 W/m·K, as shown in 
Table 1, possessed the best thermal conductivity, its unit 
cost was also the highest among the three types of 
metals considered in this study. In the confirmation 
experiment based on the optimal settings of design 
parameters acquired in Section 4.5, Al alloy—with a 
coefficient of thermal conductivity of 200 W/m·K and 
about 47% of the unit cost of Cu—was used to fabricate 
a heat sink. Based on the simulation results given in 
Table 11, the maximum temperature (y1) and thermal 
resistance (y2) in all confirmation trials met their 
specification limits of 85 °C and 3.5 °C/W, respectively. 

This implies that the proposed cost-based solution 
procedure, which aims to minimize both the actual 
material cost and visualized Taguchi quality loss of a 
product, indeed provides an optimal design of a heat 
sink that maximizes the critical quality characteristics 
(i.e., maximum temperature (y1) and thermal resistance 
(y2)) and minimizes the actual material cost by selection 
of the optimal material type for a geometric design 
determined by parameters x3 to x6. The coefficients of 
variation for the maximum temperature (y1), thermal 
resistance (y2), average temperature, and volume were 
all smaller than 8×10-3; thus, the design is considered to 
be sufficiently robust. This indicates that assessing the 
noise factor effects on quality characteristics by using 
the average quality loss defined by (10) can indeed 
significantly reduce the sensitivity of a design to noise 
factors—i.e., increase the robustness of a heat sink’s 
design. Based on the above results, the case study on 
improving the thermal performance of a heat sink by 
optimizing the geometric design and selecting the most 
appropriate material was successful. Therefore, the 
proposed systematic approach in this study is a feasible 
and effective way of resolving multi-response parameter 
design problems in terms of simultaneously minimizing 
the actual material cost and visualized Taguchi quality 
loss of a product. 

Table 11.  Summary of confirmation experiment results. 

No. x1
x2

(W/m·K)
x3

(degree)
x4

(mm)
x5

(mm) x6
Maximum 

temperature (y1,°C)
Thermal resistance

(y2,°C /Watt) 
Material cost 

(y3, NTD) 
Average 

temperature (°C) 
Volume
(mm3)

1 0.9 200 3.5 20.61 12.03 24 57.34 3.4923 2.0067 44.14 5309
2 0.9 200 3.5 20.56 11.98 24 57.42 3.4880 1.9952 44.23 5278
3 0.9 200 3.5 20.56 12.03 24 57.37 3.4830 2.0020 44.21 5296
4 0.9 200 3.5 20.56 12.08 24 57.33 3.4896 2.0089 44.14 5315
5 0.9 200 3.5 20.61 11.98 24 57.38 3.4804 1.9998 44.23 5290
6 0.9 200 3.5 20.61 12.03 24 57.34 3.4804 2.0067 44.18 5309
7 0.9 200 3.5 20.61 12.08 24 57.30 3.4913 2.0135 44.10 5327
8 0.9 200 3.5 20.66 11.98 24 57.35 3.4793 2.0044 44.20 5303
9 0.9 200 3.5 20.66 12.03 24 57.30 3.4883 2.0113 44.12 5321
10 0.9 200 3.5 20.66 12.08 24 57.26 3.4664 2.0182 44.16 5339

Max 57.42 3.4923 2.0182 44.23 5339
Min 57.26 3.4664 1.9952 44.10 5278

Mean 57.34 3.4839 2.0067 44.17 5309
Coefficient 
of variation 7.88×10-4 7.79×10-3 6.78×10-3 1.05×10-3 3.38×10-3

4.7. Analysis through Taguchi method 

The full collected experimental data, which are partially 
shown in Table 3, were further analyzed through the 
Taguchi method. Table 12 summarizes the results; the 

S/N ratios were analyzed, where the text with grey 
background denotes that the effect of a factor was 
significant at 05.0 , and the asterisks indicate the 
optimal level settings of significant design parameters 
for solely optimizing (maximizing) the S/N ratio of an 
individual quality characteristic. Based on Table 12, the 
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optimal setting for a quality characteristic may conflict 
with the optimal setting for another quality 
characteristic. For example, a setting of 1.5° for the 
design parameter x3 is optimal for the maximum 
temperature (y1), but this is not the best choice for 
optimizing the material cost (y3). Based on a review of 
the factors’ S/N ratios and the suggestions of heat sink 
designers, the optimal design parameter settings were 
finally determined as shown in the last row in Table 12; 
Table 13 summarizes the simulation results for ten 
experimental trials. The first trial was carried out based 
on the optimal design parameter settings provided in 
Table 12; the remaining trials were implemented 

according to the nine possible combinations of the noise 
factors z1 and z2. According to Table 13, although the 
maximum temperature (y1) can fulfill its specifications, 
the thermal resistance (y2) in all experimental trials 
exceeded its upper specification limit. Furthermore, the 
average material cost (y3) was about 1.9 times the 
average material cost of a heat sink that was designed 
based on the optimal parameter settings obtained by the 
proposed cost-based optimization procedure. This 
proves that manually making tradeoffs to 
simultaneously optimize all quality characteristics is an 
inappropriate method for resolving a multiple-response 
parameter design problem.

Table 12.  Analytical results from the Taguchi method. 

Design
parameter x1 x2 (W/m·K) x3 (degree) x4 (mm) x5 (mm) x6

S/N for y1 35.14* 34.89 35.17* 35.04 34.85 35.18* 34.98 34.89 35.57* 34.94 34.54 35.31* 34.99 34.76 35.44* 34.99 34.63
S/N for y2 10.66* 10.60 11.10* 10.83 9.97 10.64 10.61 10.64 10.61 10.66 10.63 10.63 10.63 10.63 10.61 10.64 10.64
S/N for y3 73.67 73.40 73.65 73.52 73.43 70.62 73.80 76.18* 71.48 73.54 75.57* 72.21 73.50 74.89* 72.20 73.54 74.85*

Level 
setting 0.5 0.9 170 200 380 1.5 2.5 3.5 18 24 30 10.0 12.5 15.0 20 25 30 

Optimal 
setting 0.5 170 3.5 30 15.0 30 

5. Conclusions 

To overcome shortcomings in the literature, including 
insufficient accuracy of second-order polynomials and 
subjective determination of relative weights and shape 
coefficients, this study applied gene expression 
programming (GEP), Taguchi quality loss, and particle 
swarm optimization (PSO) to develop a cost-based 
procedure for resolving a multi-response parameter 
design problem. The overall quality of a product was 
evaluated according to the actual material cost and 
visualized Taguchi quality loss due to deviations in 
quality characteristics from their targets. The feasibility 
and effectiveness of the proposed approach were 
verified through a case study on optimizing the design 
of a heat sink used for a high-power MR16 LED lamp. 
The experimental results indicated that the proposed 
solution procedure can provide highly robust design 
parameter settings for a heat sink that optimize the 
critical quality characteristics of the heat sink and 
minimize the actual material cost. Decision-makers no 
longer need to determine the relative weight of each 
response subjectively. Therefore, the approach proposed 
in this study can become a useful tool for resolving 
general multi-response parameter design problems in 

the real world. Analysis by the Taguchi method 
revealed that manually making tradeoffs to 
simultaneously optimize all quality characteristics is 
inappropriate for resolving a multiple-response 
parameter design problem. 

The proposed procedure has several limitations. 
First, the GEP algorithm must be implemented for 
several runs due to its probabilistic evolutionary process; 
the final selected model for describing the mathematical 
relationship between quality characteristics and control 
factors cannot be proven as optimal. Second, the ideal 
values for each quality characteristic must be set 
subjectively through consultation with design engineers. 
Third, the parameter settings in PSO may influence the 
search efficiency and results; the optimal settings of 
these parameters are determined using an experimental 
design technique and are not guaranteed to be the most 
appropriate. Fourth, the proposed approach requires 
more experiment data in order to construct more 
accurate GEP models; however, the collection cost of 
the experiment data is not considered in the objective 
function. Finally, the optimal settings of design 
parameters provided by the PSO algorithm cannot be 
proven to be a real optimal design for a heat sink; the 
feasibility and effectiveness of the design can only be 
verified empirically. 
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Appendix A.  The C++ Language for GEP Models 

A.1. The C++ language for the GEP_Mmt model 
double gepModel(double d[]) 
{

const double G1C0 = 7.951935; 
const double G1C1 = -4.304382; 
const double G2C0 = 6.166259; 
const double G2C1 = 9.292877; 
const double G3C0 = -9.667359; 
const double G3C1 = 9.673157; 

double dblTemp = 0.0; 
dblTemp = cos(((log((d[2]+G1C0))-
atan(atan(d[5])))+d[5])); 
dblTemp += 
sin((G2C1+pow(atan(log((atan(G2C0)+d[3]))),3))); 
dblTemp += (atan(((d[1]/G3C0)-(d[0]/G3C1)))-(d[4]-
atan(d[4]))); 

return dblTemp; 
}

A.2. The C++ language for the GEP_Mat model 
double gepModel(double d[]) 
{

const double G1C0 = 6.125976; 
const double G1C1 = -1.170593; 
const double G2C0 = -0.497101; 
const double G2C1 = 2.741852; 
const double G3C0 = 3.970887; 
const double G3C1 = 4.349914; 

double dblTemp = 0.0; 

dblTemp = 
((d[5]*((d[0]+d[3])+G1C1))/((d[1]+G1C0)+(d[1]+d[1
]))); 
dblTemp += (cos(((G2C0*d[4])*exp(d[5])))/(d[5]-
G2C1)); 
dblTemp += (atan((cos(d[4])*(d[3]*G3C0)))/(d[5]-
(G3C1+d[1]))); 

return dblTemp; 
}

A.3. The C++ language for the GEP_Mvo model 
double gepModel(double d[]) 
{

const double G1C0 = 1.91565; 
const double G1C1 = 0.827027; 
const double G2C0 = 1.645844; 
const double G2C1 = 0.697113; 
const double G3C0 = -1.534119; 
const double G3C1 = -3.870392; 

double dblTemp = 0.0; 

dblTemp = (sin(G1C0)-atan((exp((G1C1-
d[2]))+(G1C0-d[3])))); 
dblTemp += (d[0]/log(pow((exp((G2C1-
d[2]))+(G2C0-d[3])),3))); 
dblTemp += (d[1]-
(atan(d[1])+exp(((d[3]*G3C0)+G3C1)))); 

return dblTemp; 
}
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