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Abstract

Based on the academic ideas of resolution-based automated reasoning and the previously established research work
on binary a-resolution based automated reasoning schemes in the framework of lattice-valued logic with truth-
values in a lattice algebraic structure-lattice implication algebra (LIA), this paper is focused on investigating o-n(t)-
ary resolution based dynamic automated reasoning system based on lattice-valued logic based in LIA. One of key
issues for a-n(t)-ary resolution dynamic automated reasoning is how to choose generalized literals in each
resolution. In this paper, the definition of a-minimal resolution principle which determines how to choose
generalized literals in LP(X) is introduced firstly, as well as its soundness and completeness being proved. o-
minimal resolution principle is then further established in the corresponding lattice-valued first-order logic LF(X)
along with its soundness theorem, lifting lemma and completeness theorem. These results lay the theoretical
foundation for research of a-n(t)-ary resolution dynamic automated reasoning.

Keywords: Automated reasoning; lattice-valued propositional logic LP(X); lattice-valued first-order logic LF(X); a-

minimal resolution principle; a-minimal resolution group.

1. Introduction

As the classical logic can only deal with certain
information, to deal with fuzziness and incomparability,
Xu et al [1, 2] introduced a lattice-valued logic algebra
called lattice implication algebra (LIA) and proposed
lattice-valued logic systems based on LIA, which can
handle both comparable and incomparable information.
Along with the use of non-classical logics becomes
increasingly important in computer science, Al and
logic programming, the developing efficient automated

* Corresponding author.

theorem proving based on non-classical logic is also an
active area of research (e.g., for fuzzy logic and many-
valued logic, among others). The essential idea in many
of those methods is to transform the resolution
algorithm into fuzzy logic and many-valued logic to that
of classical logic. To the best of our knowledge, proof
theory for lattice-valued logic has so far not been
extensively developed. There has also been
investigations of resolution-based automated reasoning
in lattice-valued logic based on LIA (e.g., among others,
[3,8,9,10,12,29,30]). The aim of dealing with
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incomparability leads to the complexity of logical
formula in LIA based lattice-valued logic.
Correspondingly, the resolution methods in LIA based
lattice-valued logic have new features such as (a)
resolution is based on generalized literals, which contain
constants and implication connectives; (b) resolution is
proceeded at a different truth-valued level o chosen
from the truth-valued field LIA and the number of
resolution generalized literals is fixed at 2 in each
resolution in a resolution deduction. So, the a-resolution
is also called a-2 ary resolution; (c) it is not easy to
judge directly if two generalized literals are a-resolvent
or not, because the structure of generalized literal is
very complex. Due to these new features, it is not
feasible to apply directly the resolution-based automated
reasoning theory and methods in classical logic and in
many chain-type many-valued logics into that of lattice-
valued logic with incomparability. Hence, an a-2 ary
resolution principle for a lattice-valued propositional
logic LP(X) has been proposed in [10], which can be
used to prove whether a lattice-valued logical formula in
LP(X) is false at a truth-value level a(i.e., a-false) or not,
and the theorems of soundness and completeness for the
a-2 ary resolution principle were also proved. In
addition, the work in [8] extends the a-2 ary resolution
principle for LP(X) to the corresponding lattice-valued
first-order logic LF(X).

Xu[4] extended the number of resolution
generalized literal from 2 to n, and proposed the general
form of a-resolution, and the soundness and
completeness are also built. In a-n(t)-ary resolution, the
number n(t) of resolution generalized literals is not fixed
at some number, but it will be different in the each
resolution, where n(t) means the number of resolution
generalized literals in the tth resolution.

In each resolution, the conjunction of participated
resolution literals should be less or equal to o, in order
to achieve this goal, we should make the number of
participated resolution clauses the more the better; But
from the other hand, considering each clause, except
participated resolution literals, all remaining literals are
disjunctive, from this point of view, in order to get
empty clause, it should make the number of participated
resolution clauses the less the better. Based on the Xu
and other co-authors’ research work [4, 11], the a-
minimal resolution principle is proposed in this paper,
this resolution principle is efficient for the above
problem, it gives how to choose the number of

participated resolution clauses in the process of
resolution. It reduces the generation of redundant
clauses and improves the efficiency of resolution. First-
order logic is more expressive and it can better apply
and solve more practical problems, so we extend it to
the first-order logic LF(X).

This paper is organized as follows: Section 2 reviews
some preliminary relevant concepts; In Section 3, a-
minimal resolution principle is given in LP(X), as well
as its soundness and completeness. In Section 4, o-
minimal resolution principle for LP(X) is extended to
the corresponding first-order logic LF(X). The paper
concludes in Section 5.

This paper is an expansion of paper[31], which has
been accepted by Program for International Conference
on 2013 Machine Learning and Cybernetics (ICMLC
2013).

2. Preliminaries

In what follows we provide some elementary concepts
and conclusions of lattice-valued propositional logic
LP(X) and first-order logic LF(X) with truth-value in
lattice implication algebras are introduced. We only
provide elementary concepts and conclusions which are
closely relevant to this study for the convenience of
readers. For further details about the properties and
background of LIA, LP(X), and LF(X), see the papers
[1-2] and [5, 7-10].
Definition 2.1 [1] Let (L, v, A, O, I ) be a bounded
lattice with an order-reversing involution ', 7/ and O the
greatest and the smallest element of L respectively, and
—: L x L — L be a mapping. (L, v, A, ', —>,0, 1) is
called a lattice implication algebra if the following
conditions hold for any x, y, z € L:
)x—>@—2)=y—Kx—2),
(L) x —>x=1,
(L) x —>y=)y—x,
(Iy) x > y=y — x=[implies x =y,
(I5) (x = y) = y=0—x) >,
() (xvy)—z=x—>2) A —2),
(L) (xAy)—z=(x—2)V(y—2).
Example 2.1 [2] (Lukasiewicz implication algebra on
finite chain) Let L,= {a;| i =1,2,....n}, a1 < a»<...< a,.
For any 1 <j, k < n, define
a; NV Qg = Apaxyj, ky»
ai N Qi = Qpingj, k}»
(@) = anjs1,

aj = A = Auin{n-jrk, n}
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Then (L,, v, A, ', =, a1, a, ) is a lattice implication
algebra.

Definition 2.2 [5] Let X be the set of propositional
variables, (L, v, A, ', —, O, I ) be a lattice implication
algebra, T=L U {",—} be a type with ar(") = 1, ar(—) =
2 and ar(a) = 0 for any a € L. The proposition algebra
of the lattice-valued proposition calculus on the set X of
propositional variables is the free T algebra on X and
denoted by LP(X).

Definition 2.3 [2] The set F of formula of LP(X) is the
least set Y satisfying the following conditions:

(Hxcy,

@Lcy,

() ifp,q € Y, then'(p), = (p, q) € Y,

where X is the set of propositional variables, L is the
set of constants.

In the following, we denote '(p) as p’ and — (p, q) as
P—q.

Definition 2.4 [2] A mapping v: LP(X) — L is called a
valuation of LP(X), if it is a 7-homomorphism.

Note that L and LP(X) are the algebras with the same
type T, where T =L U {",—}. For example, for any p,
qeF, v is a T-homomorphism, then we have v(p')=v(p)’
and v(p—q)=v(p)—v(q) hold.

Definition 2.5 [10] Let GeF and aeL. For any
valuation v of LP(X), if v(G)<a, we say G is always less
than a(or G is a-false), denoted by G <o.

Definition 2.6 [10] A lattice-valued propositional
logical formula G in lattice-valued propositional logic
system LP(X) is called an extremely simple form, in
short ESF, if a lattice-valued propositional logical
formula G" obtained by deleting any constant or literal

or implication term occurring in G is not equivalent to G.

Definition 2.7 [10] A lattice-valued propositional
logical formula G in lattice-valued propositional logic
system LP(X) is called an indecomposable extremely
simple form, in short /ESF, if the following two
conditions hold:

(1) G is an ESF containing connective — and ' at most,

(2) For any HeF, if HeGin LP(X), then H is an
ESF containing connectives — and ' at most, where
LP(X)= (LP(X)/_V,,—,0.D is the LIA, LP(X)/_ =
{ | PLP(X}, p ={ g| 9eLP(X), g=p}, for any
p:qeLlP(X)/_, pvg=pva.prqg=prq,(p)'=p'

p—o>4=p—49q.

For example, suppose that x,y, z, p, q are propositional
variables in LP(X), beL. Then, g;=(x—y')v(z—b) is an

a-minimal resolution principle

ESF, g=x—Y, g;=z—b, gi=x—(y—(p—q)) are three
IESFss.

Definition 2.8 [3] All the constants, literals and /ESFs
in lattice-valued propositional logic system LP(X) are
called generalized literals. Here, the definition of literal
is the same as that in classical logic.

For example, the ((x—y) —y) —vy is not a generalized
literal in LP(X), but the (x—y) is a generalized literal in
LP(X), where x, y are propositional variable in LP(X).
Definition 2.9 [3] A lattice-valued propositional logical
formula G in lattice-valued propositional logic system
LP(X) is called a generalized clause if G is a formula of
the form

G=gvV..vg V...V g,

where g; are generalized literals, i = 1,2,....n. A
conjunction(or disjunction) of finite generalized clauses
(phrases) is called a generalized conjunctive(or
disjunction) normal form.

Definition 2.10 [10] (a-Resolution) Let aeL, and G,
and G, be two generalized clauses in LP(X) of the forms

Gy =gv...vgiV...v gn, and

G, =hyv...vhjv...vh,,
If g; A hj <a, then

G=gV...vV g1V g V...V gu Vv h
Vv...vhj; vhj vi.vhy,

is called an a-resolvent of G; and G,, which is denoted
by G=R(G,,G>), and g; and h; form an a-resolution pair,
which is denoted by (g;, hj)-o. Generation of an a-
resolvent from two clauses, which is called a-resolution,
is the sole rule of inference of the a-resolution principle.

In the following, we use the symbol a-® to represent
an o-false generalized clause.

Definition 2.11 [10] In LP(X), suppose that a
generalized conjunctive normal form S= C; A Gy A...A
C,, ael, w={D;, Dy, ..., Dy} is an a-resolution
deduction from S to a generalized clause Dy, if

1) D;e{C,,C,, ..., Cy}; or

2) There exist j, k<i, such that Di= Ry(D;,Dy).

If there exists an a-resolution deduction from S to a-

©, then this a-resolution deduction w is called an a-
refutation.
Definition 2.12 [8] Suppose V and F are the set of
variable symbols and that of functional symbols in
LF(X), respectively, the set of terms of LF(X) is defined
as the smallest set J satisfying the following conditions:

Hrey,

(2) For any n € N, if f e F, then for any 1, 1,,....t,
el [t tr,..0t) €T
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Remark 2.1 1 is specified as a constant symbol.
Definition 2.13 [8] Suppose P is the predicate symbol
set in LF(X). The set of atoms of LF(X) is defined as
the smallest set A,satisfying the following condition:

For any n € N, if P™ e P, then P"(ty, t,....1,) € A,
for any ¢, t1,...,t, € J.

Remark 2.2 P is specified as a certain element in L.
Definition 2.14 [8] The set of formulas of LF(X) is
defined as the smallest set F satisfying the following
conditions:

(1) A cF,

(2)Ifp,q € F, then p — g €F,

(3) If p € F, x is a free variable in p, then (Vx) p, (3x)
p €F.

Remark 2.3 Note thatp'=p > O, pvg=(p—q) —
&-pAq=@'vq).p—q=(p—>9 r(g—p)

Therefore, if p, g €F, then p’,pv g, p A q,p < g €F.
Definition 2.15 [8] Suppose G €F , Fg is the set of all
functional symbols occurring in G, Pg is the set of all
predicate symbols occurring in G, and D (# ¢) is the
domain of interpretation. An interpretation of G over D
is a triple Ip = (D, up, vp), where,
up:Fo—Up=1{f":D"—>D|neN}

O O 9Dy ={ £y € D, D is a non-

empty set

7= [ (e N,
Vp:Pe— Vp={P":D"—L|neN}

P py . Py (D) ={py L

P p(n e N,
Definition 2.16 [29] A formula G in lattice-valued first-
order logic LF(X) is a generalized-literal, if it satisfies
the following conditions:

(1) Gis a literal, or

(2) G is constructed only by some literals and some
implication connectives with the condition that G can
not be represented by connectives “v”’ or “A” and G can
not be decomposed into a simpler form (G is called an
indecomposable implication form).

The disjunction of a finite number of generalized-
literals is a generalized-clause. The conjunction of a
finite number of generalized-clauses is a generalized-
conjunctive normal form.

Definition 2.17 [8] Let G €F, ae L. G is said to be a-
false, if vp(G) <a for any interpretation Ip = (D, yp, vp)
of G.

Definition 2.18 [29] Suppose G is a formula of the form
lel...Q,,an*, where 0,...,0, are the quantifiers, i.c.,
V or 3, and G is a formula without any quantifier. Then

G is said to be a generalized-prenex conjunctive normal
form, if G is a generalized-conjunctive normal form.
Definition 2.19 [29] Suppose a formula G = Qix;...0,x,
M is a generalized-prenex conjunctive normal form. The
formula G~ obtained by the following steps is called a
generalized-Skoélem standard form of G:

(1) If Q, is an existential quantifier and without any
universal quantifier occurring ahead it in the prefix
0Oi,...,0, (from left to right), we choose a new constant
¢ different from other constants occurring in M, replace
all x, occurring in M by ¢, and then delete Q, from the
prefix Qy,...,0,

(2) If Q, is an existential quantifier and Qy,,...,Os, are
all the universal quantifiers occurring ahead O, (m > 1, 1
<k <..<k, <r), we choose a new m-ary function
symbol ™ different from all other function symbols
occurring in M, replace all x, in M by f ™ (xu,. .. Xim)
and then delete Q, from the prefix Q,...,0,.

(3) Repeating (1) and (2) until there is no existential
quantifier occurring in the prefix.

Theorem 2.1 [8] Suppose G is a generalized-Skolem
standard form of a formula G, and |L| < R, G is a-false
if and only if there exists a finite ground instance set G
of G such that G is a-false, where G™ is the
conjunction of all ground instances of G°.

Corollary 2.1[8] Let G = G;" A G, A..A G, a
generalized-Skélem standard form of a formula G,
where G,", G, ,....G,, are generalized-clauses in LF(X),
aeL, and |L| < Ry. Then G~ <a if and only if there exist
21, @ ..., g such that ¢" A @& A...A g, <a, where
gl-* is an ground instance of G i=12,...m.

If generalized literal g is obtained through combining
generalized literals gy,..., g, with implication
connectives, then g is more complex than any element
included in {gi,..., g,}. In the following, generalized
literals of generalized clause C are the most complex
ones occurring in C. For example, if C = (x— y) —
(p— q)) v ((t— s) —I), then generalized literals of C are
(x—y) — (p— ¢q) and (t— s) —/, instead of (x— y), (p
—q), (t—s)orl.

a occurring in the following is always less than /.

3. o-minimal resolution principle based on
lattice-valued propositional logic LP(X)

Definition 3.1 Let C; = p;Vv...v Pn be generalized
clauses of LP(X), H; = {pi1,..., P, } the set of all
generalized literals occurring in C;, x;€H;, i=1,2,...,n.
ael. If there exist generalized literals such that x; A x;
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AN X, < a, but for any je{l, 2,..., n}, X1 AL A XA
Xit1 Avo A Xy £ q, then
Ci1(x1 =a)vCy(xy =0)V...vCy(x, =a) is called a-minimal
resolvent of Cy,C,...,C,, which is denoted by

Ry (Ci(x1),Ca(x2),...,Culx,)), here “p” represents
the “propositional logic”, “m” means “m-ary”’, and
X1, ..., X, are called an a-minimal resolution group.
Remark 3.1 Ci(x; =a) in (3.1) means the generalized
clause that is obtained by replacing x; occurring in C;
with a.
Remark 3.2 The o-minimal resolution principle in
Definition 3.1 is also hold in classical logic and the
binary a-resolution principle based on two generalized
literals in LP(X).
Example 3.1 Let Ci1=(x 2 y)v(s > 1t),Co=(y > 2)Vv
(s—=>0"'v (= q), G=0—2" v (=9, G=(1—g)
Vv (z—g) , be four generalized clauses in lattice-valued
propositional logic LyP(X) with truth-value in (Lo, v, A,
', —, ay, ay ), where (Lo, v, A, ', —, ay, ay ) is the same
Lukasiewicz implication algebra with nine elements,
and x, y, z, s, t, p, ¢ are propositional variables, o= as.
Thenx - y,y >z, (x > 2),z— gand (s > ?), (s > 1),
s — g are a-resolution groups. But (x — y) A(y — 2) A
(x — 2)' £ 0, and the conjunction of any two of them is
not less than or equal to a; (s > H) A (s > £)' <a, s > ¢
and (s — £)' are all not less than or equal to a. sox — y,
y >z (x > 2) and (s — ¢), (s — ¢)' are o-minimal
resolution groups.
Theorem 3.1 Every a-resolution group has at least one
a-minimal resolution group.
Proof Known xi, x5, ..., X, is an a-resolution group, so
we have x; A x; A...A X, < a, if for any je {1, 2,..., n},
we have x; A.LA X A X ALA x, % o, then x;, x5, ...,
X,1s an a-minimal resolution group, if there exist i, € {1,
2,..., n}, here we assume that i; is equal to 1, if not, we
can adjust the letter serial number to become 1, such
that x, A x3 A...A x, < 0 if for any je{2,..., n}, x A...A
Xjl A Xjr1 AvA x, £ a, then x,, x3,..., x, is an a-
minimal resolution group, Otherwise, there exists i,
€{2,..., n}, here we assume that i, is equal to 2, if not,
we can adjust the letter serial number to become 2, such
that x3A...A x, < 0, if for any je{3,..., n}, x3 AL A XA
Xit1 Ao A Xy £ «, then x; ,..., x, is an o-minimal
resolution group; Otherwise, take turns to do it
according to the above method, we can get an -
minimal resolution group finally. So conclusion holds.
Remark 3.3 By the proof of the theorem 3.1, we know
every o-minimal resolution group is an a-resolution

a-minimal resolution principle

group; every a-resolution group is not only has one a-
minimal resolution group. But why we still study the
special case of multiary a-resolution principle? Multiary
a-resolution principle is the extension the binary o-
resolution principle, it is the important and meaningful
conclusion. But in the process of resolution, it will
allow more clauses participate in the resolution and
produce more redundant clauses, then reduces the
efficiency of resolution. By the Definition 3.1, the a-
minimal resolution principle can limit the participated
literals, and then determine the number of participated
resolution clauses in the process of resolution. This
reduces the generation of redundant clauses and
improves the efficiency of resolution.

Example 3.2 In the example 3.1, obviously, x —» y,y —
z, (x > z), (s > 1), (s — )’ is an a-resolution group, x
-y, y—>z,(x >z and (s = ), (s — )
minimal resolution groups.

Example 3.3 Let Ci1=(x -5 ), Go;=(y —2)v(s—>1)'
vV (p— q), G=(x— g)' Vv (s—¢q) , C4=(z—g) , be four
generalized clauses in lattice-valued propositional logic
LoP(X) with truth-value in (Lo, v, A, ', —, a1, a9 ), Where
(Lo, v, A, ', —, a, a9y ) is the same Lukasiewicz
implication algebra with nine elements, and x, y, z, s, ¢,
P, q , g are propositional variables, o= ag.

Obviously, x >y, y > z,z > g, (x —> g)’ is an a-
minimal resolution group. The o-minimal resolvent of
C1,G,, G, Cy, denoted by

Rygay (C1,Ca, Gs, Co)= (s = 1) 'V (p— @)V (s—q) va.
Theorem 3.2 Let C; = pyv...v D, be generalized
clauses of LP(X), H; ={pi1,..., Pw, } the set of all
generalized literals occurring in C;, i=1,2,...,n, aeL. If
there exist generalized literals x; € H;, i = 1,2,...,n, such
that x;, ..., x, is an o-minimal resolution group, then
CIACA...ACh £ Ry (C1(x1),Ca(x2),. ., Co(x)).

Proof In [4] Theorem 3.1, has proved CiAGA...AC, £
Rye-o0)(Ci1(x1),Co(x2),...,Co(x,)), Due to  a-minimal
resolution group is special case of a-resolution group, so
we have

CIACA...ACh SR gy (C1(x1),Ca(x2),- . ., Colx)).
So the conclusion holds.
Definition 3.2 Suppose S = C; A C; A...A C,, where C,
C,,..., C, are generalized clauses in LP(X), acL. {®,
@,,..., @} is called an a-minimal resolution deduction
from S to generalized clause @ (or S can be a-minimal
resolved into @), H; is the set of all generalized literals
occurring in ®; (i =1, 2, ..., f), if

(1) ®; € S, or

arc o-
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(2) There exist r, r2,..., ¥, < i,and x, € H, (d =1,
2, ..., k;), such that I

R pgay ( djr, (x, )’djrz (x, ),...,@rki (xkl )) =,
Theorem 3.3 (Soundness) Suppose S =C; A G A...A
C,, where Ci, G,,..., C, are generalized clauses in
LP(X), aeL. {®}, D,,..., D} is an a-minimal resolution
deduction from S to generalized clause ®@,. If @, is 0-©,
then S <o, i.e., if O <q, then S <o.
Proof We set @; is the a-minimal resolvent of C; ,..., Cy,
according to Definition 3.2 and Theorem 3.2, we have
CIA...ACELD;, so S=CIAGA. . .AC=CIACA. . . ACAD;,
we get the promotion:
S=CiAn oA .ACECIANCy Ao A CoA DA Do o AN Dy
<D A Dy A ... A D<Lo. The conclusion holds.
Theorem 3.4 (Completeness) Suppose S = C; A G,
A...A C,, where Cy, Cy,..., C, are generalized clauses in
LP(X), aeL. If S <o, then there exist an a-minimal
resolution deduction from S'to a-®.
Proof (1) S only contains one generalized clause C. By
S <o, the conclusion holds.

(2) S contains more than one generalized clause. For
any i=1, 2,...,n.

Let H; be the set of all generalized literals occurring
in C;, denote |H ,-| =i,

Let K(S) be disjunction term number and general
clauses in the number of difference, i.e.,

K(S)=>"@-n . Induction of S, the following
i=1

conditions exist:

1) If K(S)=0, then S only consist of unit generalized
literals, i.e., every generalized clause contains only one
generalized literal in S. Because S <o, so all generalized
literals form an a-resolution group. By Theorem 3.1,
there exist an o-minimal resolution group, the
conclusion holds.

2) Assume K(S)<m(m>0) conclusion hold, following
we prove K(S)=m conclusion hold.

Let K(S)=m, then S has one non unit generalized
clause, let g is a disjunction term of non unit generalized
clause in S. Set C=C vg, and Ci* is not empty. Let
S$1=C; A..ACip A Ci* ACi1 A...A C,, absolutely, Si<a
and K(S))<m. By induction method, there exists an a-
minimal resolution deduction Dl* from S; to a-©.
Change all Ci* in Dl* to C;, get a deduction D, From
above know, D; is an a-minimal resolution deduction
from S, and this deduction get a-© or avg.

If D, is the former, the conclusion holds.

If Dy is the later, let S;=C; A...A Ciy A gA Cip ALLA

C,, absolutely, S,<o and K(S;)<m. By induction assume,
there exist an o-minimal resolution deduction D, from
S, to a-@, and change all g in D, to avg, get deduction
D, Now D, is an a-minimal resolution deduction from S,
and D, deduct to a-©® directly. Connect D; and D,, we
get an a-minimal resolution deduction from Sto a-©.
This completes the proof.
Example 3.4 Let Ci=x >y, G, =(x > 2) v (s — 0),
G=p—vi—oa)vias—q),C=6—10,C=
(p — q)' be five generalized clauses in lattice-valued
propositional logic LyP(X), where a,, as €Ly, x, y, z, s, t,
p, q are propositional variables, written as S = C; A C A
Cs A Cy A Cs. If 0=ag, then S <a and there exists an a-
minimal resolution deduction from S to 0-®.

In fact, there are four a-minimal resolution groups
occurring in S, i.e.,

Dx—y x—2),y—>z;
Dx—y (x—2),y—>a;
Ns—ot(s—1);
4)as—q,(p—q).

Since each a-minimal resolution group satisfies
Theorem 3.4, we can obtain an o-minimal resolution
deduction from S to a-© as follows:

(Dx—y

Q) x—2)Vvs—0

G —2v—a)vias—q)

@) (=0

G)p—q)

(6) (x = 2)" va by (2), (4)

N —=2vy—a)ve by@3),05)

@) (v = a) va by (1), (6), (7)
©) a by (1), (6), (8)

Example 3.5[4]Let C,=y —> b, C=(x—>y)VvyV
Pp—q9),CG=(x—>2)Vv(i—ot),C=E—ot),Cs=
(g— w)" be five generalized clauses in lattice-valued
propositional logic L¢P(X), where b €Ly, x, v, z, s, t, p, q,
w are propositional variables, written as S = C; A C; A
C3 A Cy A Cs. If a=b, then S <a and there exists an o-
minimal resolution deduction from S to a-O.

In fact, there are four a-minimal resolution groups
occurring in S, i.e.,

Dy—-bx—y &x—z2); 2)y—by;

Np—q.(g—ow; Hs—t(s—1).

Since each a-minimal resolution group satisfies
Theorem 3.4, so we can obtain an a-minimal resolution
deduction from S to a-© as follows:

(Dy—b
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@ @x—=»vyvip—9q)
B)x—2)v(s—1)

@) (s—1)
) (g = wy
©)&x—=y)vp—q va by(l),(2)
(7) (x = 2)" va by (3), (4)
@) x—y)va by (5), (6)

9 a by (1), (7), (8)

From the example 3.5, there exists an o-minimal
resolution deduction from S to a-©. But according to
the binary a-resolution principle, the generalized clause
(8) occurring in deduction does not have a binary a-
resolution pair, we will stop at (8). Because this
example is simple, so we can find there does not exist a
binary a-resolution deduction from S to 0-© easily.
Binary a-resolution principle does not have the
completeness and inefficiency. Therefore, we need to
break through the limitations of binary a-resolution
automated reasoning and research a-n(t) resolution
dynamic automated reasoning based on lattice-valued
logic. This paper is the theoretical guidance of research
of a-n(t)-ary resolution dynamic automated reasoning, it
not only breaks through the limitations of binary a-
resolution, but reduces the generation of redundant
clauses also.

The determination of o-minimal resolution of
generalized literals is very important in o-minimal
resolution automated reasoning, so corresponding o-
minimal resolution method research is important and
meaning.

4. o-minimal resolution principle based on
lattice-valued first-order logic LF(X)

Generalized-clauses and generalized-literals occurring
in this section always belong to a generalized-Skoélem
standard form, i.e., for any generalized-clause C and
generalized-literal g, all variables of C and g are bound
variables with the quantifier V. For any generalized-
clauses Gy,Ga,...,G, (n=3), there always exists a
renamed substitution such that G,,G,,...,G, have no
common variables. Therefore, generalized-clauses
C1,G,,...,C(n23) occurring in the following have no
common variables. In addition, the definitions of
substitution, the most general unifier, ground
substitution, instance, ground instance occurring in the
following are the same as those in classical logic.

Definition 4.1 Let G, = pyv...v p, (i=1,2,...n) be
generalized-clauses without common variables in LF(X),

a-minimal resolution principle

H; = {pa,..., P, } is the set of all generalized-literals
occurring in G, acl. If there exist
generalized-literals x; € H; and a substitution o such that
x1° A %°AA x,° <o, but for any je{l, 2,..., n},
X1 A X1 A X OA LA x,° £ o, then

C’(x1°=a) v G =a) v...v C,(x,"=a) (4.1)
is called an a-minimal resolvent of Cy, C,,...,C,, which
is denoted by Rjgq) (Ci(x1), Ca(x2),..., Cu(x,)). Where
“f” means “first-order logic”, “m” represents “m-ary”,
and x;, x,,..., x, are called an a-minimal resolution
group.

Let C;=C v vpav..vp, ,i=12,.., n,satisfy
{Xis Dits--» D, } = 1qi] g 18 @ generalized-literal in C;, ¢,
=x7}.

and xy, xp,..., X, is an o-minimal resolution group.
So

Rig-0) (Ci(x1), Co(x2),....Colx)) = 177V G 7v.v
C, v
Theorem 4.1 Let C; = pyv...v p, be generalized-
clauses without common variables in LF(X), H; =
{pits--., p,, } the set of all generalized-literals occurring
in C, i =1,2,...,n, acL. If there exist a substitution o
and generalized-literals x;eH;, i= 1,2,...,n, such that
X1, ..., X, 18 an o-minimal resolution group, then

Ci A CyAc A Gy Rgay (Ci(x1), Ca(x2)s- -, Col(X))s
ie, CLAGCALAC<C%(x%=0) v G (x,°=0) V...V
C,° (x,°=a).

Proof Similar to Theorem 3.2, we can get the following
conclusion:

Cl° A G Anon G < C° (=) v G (x° =)

v...v C,° (x,°=a).
Since ois a substitution, so we can obtain
CiANCANANC,SCPACA...ANCS.

Hence the conclusion holds.

Definition 4.2 Suppose S=C\ACyA...AC,, where C,
C,,...,C, are generalized-clauses in LF(X), ael. {®,
D,,...,d, } is called an o-minimal resolution deduction
from S to generalized-clause @, H; is the set of all
generalized-literals occurring in @;(i=1,2, ..., ¢), if

(1) @; € S, or

(2) There exist r, r, seees Ty < and x; € H, (d=1,
2, ..., k;), such that

Rig)( P (x,) , DL (x,) ... (D; (x,)) = @, where
dig is @, or an instance of @, .

Theorem 4.2 (Soundness) Suppose S = C; A G A...A
C,, where Cy, G,,...,C, are generalized-clauses in LF(X),
acl. {®D), D,,...,.&,} is an o-minimal resolution

i=1,2,...,n,
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deduction from S to generalized-clause @,. If @, is 0-©,
then S <o, i.e., if @,<a, then S <a.
Proof According to Definition 4.2 and Theorem 4.1,
we can obtain

S< Dy A Don...A D, La casily.
Theorem 4.3 (Lifting Lemma) Let C,, C,,...,C, be
generalized-clauses without common variables in LF(X),
C an instance of C;, i = 1,2,....n. If Q is an a-minimal
resolvent of C\°, G.°,....C,°, then there exists an a-
minimal resolvent Q of C,, C,,..., C, such that ) is an
instance of Q, i.e., Fig.4.1 holds.

C] Cz coe Cn
\ Rf(g'a)m
\/g\
Bi B B
B
&0 &0 C‘f)
Rye-
%
Fig.4.1

Proof Since C is an instance of generalized-clause C;,
i=1,2,....n, so there exists a substitution & such that C;°
=C7 . Let H be the set of all generalized-literals
occurring in C° i=12,...n. Since Q is an a-minimal
resolvent of C;°, G,°,....C,°, so there exist a substitution
o and generalized-literals x,’e H;" such that x,°° A x,°°
AvoA X7 <00 and Qy = C%(x" =) v G (x,"7 =a)
v..v G, =a).
Let C;=C " vxivgiv..vg

@ x=x7

@ {xi, gi,-n 8y} = {gi | & is a generalized-literal
occurring in C;, g7° =x" }. Sete=gUgU...Usg,.
So

Q=C" v C*7 v..v C7 va

=C" v C; v..v C) va.

Let A; be the most general unifier of x;, gi1,..., g Vi
= {Vity Vidse s Vi } the set of all variables occurring in C; ,
ie{l,2,...,n}. Since C;, G,..., C, are generalized-
clauses without common variables, so V1N V> N...N YV,
= . In the following, vy, v,,...,v;, occurring in the

4o 1=1,2,...,n, satisfy

substitution {#;/vi, &/va,..., t/vs} are called the
denominator part of substitution {#,/vi, t2/Va,...,ts/Vs}.

Suppose the denominator part of substitution o only
have variables Vilseees Vigy seees Vilsewns Vi sevvs Valsewns Yy -
Let

(€0); = {u | u € &o, the denominator of u occurs in
{yl-l,yl-z,...,yisi bi=12,...,n

Hence we can obtain (go); =A; -8, where & is a
substitution. Since the denominator of (go); only have
variables yi1, yi,..., Vi » SO the denominator of &; also
only have variables y;1, yi,..., Vi, - We set A={t /vy -
t, /| Vs }- Hence we have

(AMULU...UL) (§USU...US)
— {t”(bl UaRu...u bn)/y”’ tlz(bl Uau...u én)/yu,..-,

(6,U6,U...Us,)
ts, ] /yls,

SIURU...US SIURU...Ub
1,1V Un)/yilatiz( Ho Un)/yiz,

(6U0,U...U6,)
tis,»] /yis,»

ceey

SlUS2U...Ub SIURU...Ub
tnlv( U v Lfn)/ynlal‘tﬂ( wos Un)/J/nz,~~~
Lo 2 [y UGB LU

= {tlléil/,)/ll, tlgél/y12a~~-at1j'/Y1s, EIRE)
tilbi/yila fz'zbi/%'z, ~~~J,f"/y,-s,. EEERE
l‘nlén/ynl, tnzén/ynb“'atnf: /yns,, b 51 U 52U U 5”}
= {tnfgl/ylla tl?él/y”""’tlj]/yls, s Ol
tilbi/yila lizbi/yiz,~~~,fibfi/yisi s Oy
tnlbn/ym, thbn/ynZa“'atnf: /yns,, > 5”}
=(A4:6) U(Ay®) U... U (4,6).
Denote A=A, UALU...UA, 6=56U&U...US,
so we have
eo=(M-8) U (X&) U... U(A,s8,)= A8

Since x1°7 A %A A x0T <0, den X157 A 0 ALLA X,
<a, SO
A5 A8 28
XA X ALA X, <0. Hence

C'(x* =a) v Gt =a) v...v CA(x, " =0) is an
a-minimal resolvent of Ci,C,,...,C,. Because only
generalized-literals gj,..., g, are equal to x; under
substitution o and gjy,..., g, are also equal to x; under
substitution 4;, so all the generalized-literals that are
equal to x; under substitution A are g;q,..., 8 - Therefore,
we have

Qo=C""v G, v...v C, " va.
=(C"VvG v.vC va)®
=(C"v G v..v G va)?
= (/" v G v v G va)’
=Q°

This completes the proof.
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Theorem 4.4 (Completeness) Suppose S = C; A G,
A...A C,, where Cy, C,...,C, are generalized-clauses in
LF(X), aeL, and |L| < N,. If S<o. then there exists an a-
minimal resolution deduction from S to o-@©.

Proof In fact, if S<o, then there at least exists a ground
instance S° of S such that S° is a-false by Corollary 2.1.
According to Theorem 3.3, there exists an o-minimal
resolution deduction D, from S° to a-©@. Moreover, we
can lift D, to a deduction D from S to a-@ by Theorem
4.3. So the conclusion holds.

Example 4.1 Let C, = P(f(x)) — QO(x), C;, = (P(y;) —
R(»))' v (S(u) — T(g (), C; = (O(a) =R(2)) v (OK)
—N(®b)) v (Qx)— M2))', Cs = (S(w) — T(g ()" v
Sw) — Twy)), Cs = (M(c) — N(v)) be five
generalized-clauses in lattice-valued first-order logic
LoF(X), where x, y1, v, z, u, v, wi, w, are variables and q,
b, ¢ are constants, written as S = C; A C, A C3 A Cy A Cs.
If a=as, then S<o and there exists an o-minimal
resolution deduction from S'to a-®.

In fact, there exists a ground substitution o= {a/x,
f(@)/», ¢/ys, c/z, bju, a/v, b/wi, g (b)/wy} such that
Ci? = P(f(a)) = Qa), &° = (P(f(a)) = R(c))' v (S(b)
— T(g (b)), G5 = (Q(a) —R(c)) v (O(a) — N(Ob))v
(Q(a) — M(c))', Cs% = (S(b) — T(g (b)), Cs7 = (M(c)
— N(a))' and §7 = C\° A G° A C3° A Cy° A C57 <a.

Furthermore, there are four a-minimal resolution
groups occurring in S i.e.,

D) P(f(a)) = O(a), (P(f(a)) = R(c))', Q(a) —R(c) ;
2) P(f(a)) = O(a), (P(f(a)) = R(c))', Qa) =N(b) ;
3) 8(b) — T(g (b)), (S(b) — T(g (b)))';

4) (Q(a)— M(c))', (M(c) — N(a))'.

According to Theorem 4.2 and 4.4, we only need to
prove there exists an a-minimal resolution deduction
from S° to 0-©. We have the following o-minimal
resolution deduction m*:

(1) P(f(a)) — O(a)

(2) (P(f(a)) = R(c))' v (S(b) — T(g (b))

(3) (Q(a) —R(c)) v (Q(a) — N(b))v (Q(a) — M(c))’

(4) (S(b) = T(g (D))

(5) (M(c) — N(a))

(6) (P(f(a)) = R(c)) va by (2), (4)

(7) (Q(a) —R(c)) v (Q(a) = N(b))v . by (3), (5)

(8) (Q(a) — N(b)) va by (1), (6), (7)

) a by (1), (6), (8)

Since ®* is an a-minimal resolution deduction from S°
to a-@. We have an a-minimal resolution deduction ®
from Sto a-© as follows:

(1) P(f(x)) = O(x)

a-minimal resolution principle

(2) (POr1) = RO v (S(u) — T(g ()

(3) (Q(a) =R(2)) v (Q(x) =N(b)) v (O(x)— M(z))’

(4) (Stw1) = T(g (b)) v (S(wr) — T(wy))'

(5) (M(c) = N(v))'

(6) (PO1) — R(»))' v by (2), (4)

(7) (Q(a) —=R(c)) v (Q(a) — N(b)) va. by (3), (5)

(8) (Q(a) — N(b)) va by (1), (6), (7)

9 a by (1), (6), (8)

In fact, according to the binary a-resolution principle,
from the above example, the generalized clauses (6) and
(7) occurring in the deduction do not have any o-
resolution pair. So there does not exist a binary a-
resolution deduction from S to a-@. So we select the
number of generalized literals based on the Definition
4.1 in each resolution. This not only avoids the
limitations of binary o-resolution principle, but also
reduces the generation of redundant clauses. Thus it
improves the resolution efficiency.

5. Conclusions

In this paper, o-minimal resolution principle based on
lattice-valued propositional logic system LP(X) was
established firstly, as well as its soundness and
completeness being proved. o-minimal resolution
principle is then further established in the corresponding
lattice-valued first-order logic LF(X) along with its
soundness theorem, lifting lemma and completeness
theorem. Based on this a-minimal resolution principle,
we know how to choose the generalized literals in each
resolution, it is the theoretical guidance for o-n(t)-ary
resolution dynamic automated reasoning. It not only
jumps out of the limitation of binary a-resolution
principle, but reduces the generation of redundant
clauses also. This can reduce many unnecessary
resolution, thus improves resolution efficiency. All
these works will place a theoretical support for
establishing  o-n(t)-ary resolution-based dynamic
automated reasoning method, algorithm and its
implementation with further applications.
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