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Abstract 

Rough set theory gives approximation models of complex knowledge structure. Agents are not present in 
the definition of the rough sets. Now we will show that a set of conflicting agents or active set can be used 
to model inconsistent decision in rough set theory. Agent models give us the logic structure of the rough 
set theory. We think that vagueness in rough sets can be evaluated by a true, false complex structure of 
agents and classes. With the active set the logic evaluation of a rough set is a structured set of classical 
logic values as true and false. We show that many valued logic and lattices modelled by active sets are 
used to create class operations in rough sets.  By active sets, relations in rough sets are modelled by 
matrices of classical logic values. This clarifies the deeper meaning of the decision rules in rough sets. 
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1. Introduction 

This paper begins with a short introduction to active 
set theory. After that we show that it is possible to 
represent evidence theory as a simple case of the 
rough set and active set of agents. Then we extend 
the agent interpretation of evidence theory to rough 
set classes. We also introduce the relation between 
rough set classes and lattice logic theory. In the end 
we show that the dominance – based rough set 
approach (DRSA) can be modelled by agents to give 
a more transparent meaning to rough sets and 
decision rules. 

2. Short introduction to active sets 

In the paper "Belief merging and voting" 13-15 we found 
that in the voting model there are several conflicting 
demands/preferences and we are looking for a collective 
compromise. Voting is concerned with the aggregation 
of individual preferences in order to select a collectively 

preferred alternative. This problem is extensively studied 
by social choice theory 38,39,40. Probably the most famous 
method for the aggregation of preferences is the one 
proposed in the 18th century by the Marquis de 
Condorcet 41. Given a set of individual preferences, we 
compare each of the alternatives in pairs. For each pair 
we determine the winner by majority voting, and the 
final collective ordering is obtained by a combination of 
all partial results. Unfortunately, this method led to the 
first aggregation problem, known as the Condorcet 
paradox:  the pair wise majority rule can lead to cycles in 
the collective ordering. In other words, this ordering 
cannot be used to select an overall preferred candidate. 
 
In  42 given a fuzzy set defined in a space X, let P be a 
representative population of persons. For a given x that 
belongs to X each member of P is asked to accept or 
reject x as satisfying the set condition. A binary decision 
must be made. Now for a group of 10 persons, as in 
Equation 1, the voting pattern could then be 

 
X  a, b, c, d , e, f , g , h, i, j       (1)                                               
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as in Equation 2, 
 

 

1 2 3 4 5 6 7 8 9 10

a a a a a a a a a a

b b b b b b

c c c c

d d

X 

 
 
 
 
  

 (2) 

 
 
resulting in the fuzzy set shown in Equation 3, 
 

 1.0 | 0.7 | 0.5 | 0.2 |f a b c d      (3) 
 
Now in the voting pattern we allow repetitions of the 
elements in X. To agree to the fuzzy set definition, 
we can order the elements so that the highest count 
is to the left and the counts decrease towards the 
right, see Figure 1. 
 

1 2 3 4 5 6 7 8 9 10

a a a a a a a a a a

b b b b b b b

c c c c

d d

 
 
 
 
  

 

Figure 1. Showing the elements ordered. 
 
If the elements are ordered and we grant that any 
voter who votes for b will vote for a then we get a 
unique representation 13,14,15. The new freedom for 
which we can have many voting patterns opens the 
door to introduce not only min/ max logic rules but 
many more logic operations. Now this extension is 
denoted Active set model of agents where we fuse 
the classical vote model with all other types of 
uncertainty and logics. 

 
2.1. Properties and definition of the active set 

 
An active set is a unifying space being able to act as 
a “bridge” for transferring information, ideas and 
results between distinct types of uncertainties and 
different types of applications. An active set is a set 
of agents who independently deliver true or false 
values for a given proposition. An active set is not a 
simple vector of logic values for different 
propositions, the results are a vector but the set is 
not. The difference between an ordinary set and 
active set is that the ordinary set has passive 
elements with values of the attributes defined by an 
external agent, in the active set any element is an 
agent that internally defines the value of a given 

attribute for a passive element. Agents in the active 
set with a special criteria gives the logic value for 
the same attribute. So agents in many cases are in a 
logic conflict and this generate semantic uncertainty 
on the logic evaluation. Criteria and agents are the 
two variables by which we give different logic 
values to the same attribute or proposition. Active 
sets is beyond modal logic. In fact given a 
proposition in modal logic we can evaluate the 
proposition only when we know the worlds where 
the proposition is locate. When we evaluate one 
proposition in one world we cannot evaluate the 
same proposition in another world. Now in 
epistemic logic any world is an agent that know that 
the proposition is true or false. Now the active set is 
a set of agents as in the epistemic logic but the 
difference with modal logic is that all the agents 
(worlds) are not separate but are joined in the 
evaluation of the given proposition. In active set for 
one agent and one criterion we have one logic value 
but for many agents and criteria the evaluation is not 
true and false but is a matrix of true and false. This 
matrix is not only a logic evaluation as in the modal 
logic but give us the conflicting structure of the 
active set evaluation. Matrix agent is the vector 
subspace of the true false agent multi dimension 
space. Operations among active set include 
operations in the traditional set, fuzzy sets and rough 
set as special cases. New logic operations are 
possible as fuzzy gate operations and more complex 
operations as conflicting solving, consensus 
operations, syntactic inconsistency, semantic 
inconsistency and knowledge integration. In the 
space of the agents evaluations active set open new 
possibility and new models for the logic. Formally 
equation 4 shows a structure for Ω. 

( p)  Agent 1 2 3

Logic  value true true true







,

Agent 1 2 3

Logic  value true true false







, ....

......., Agent 1 2 3

Logic  value false false false







             (4)

 

 
In a more formal way we have in Equation 5. 

, ( ) |

( )  = set of agents, (5)

( )  power set 2  of the evaluations 

A p

SS p A

Ap

   
  
 
   

 
Given the proposition p, we denote as Criteria C one 
of the possible evaluations p in the set (p). For 
example with three agents we have eight criteria to 

Co-published by Atlantis Press and Taylor & Francis 
Copyright: the authors 

138



 
 
 

Agents and rough sets 

evaluate the proposition itself so we can write 
equation 6. 
 

1 2 3
( , ) , , ...,

1  value

1 2 3
( , )

8  value
(6)

Agent
p C

Logic true true true

Agent
p C

Logic false false false

 

 

 
 
 

 
 
 

 

 
We remark that the set of Criteria is a lattice.  The 
agent set A is an ordinary set with normal 
intersection union and complementary operator. For 
the logic evaluation we have three different 
operations. 

 
1) Operation among criteria for the same 

proposition. Because we have the same 
proposition with two different criteria, we 
cannot compose the logic values that are 
heterogeneous. So we have the rule in 
Equation 7. 

 

1 2 ...

...1,1 1,2 1,

...2,1 2,2 2,

(7)

Agent n

C C C v v vi ni j
C v v vj n

 

 
 
 
  
 

  

 
So we increase the dimension of the space of the 
evaluation. For example given ten agents and two 
criteria we have in Equation 8. 
 

1 2 3 4 5

( , , ) ,

,

Agents

p C C p C f f t t fii j
p C t t f t fj

 

 
 
 
 
 

  (8) 

 
2) For two different propositions p and q we 

have the composition rule for the active set 
shown in Equation 9 with disjunction 
shown in Equation 10. 

 

( , )

1 2 ...

, , ...1, 1, 2, 2, , ,

1 ... 1 ...

, ... , ...1, , 1, ,

      (9)

p q C

Agents n

p q C v v v v v vp q p q n p n q

Agents n Agents n

p C v v q C v vp n p p n p
   


  

   
      
   

 
  
 

 

 
 

( , )

1 2 ...

, , ...1, 1, 2, 2, , ,

1 ... 1 ...

, ... , ...1, , 1, ,

       (10)

p q C

Agents n

p q C v v v v v vp q p q n p n q

Agents n Agents n

p C v v q C v vp n p p n p
   


  

   
      
   

 
  
 

 

 
The negation operator is shown in Equation 11.  
 

( )

1 ...
(11)

( ) (1 )( ) ... ( ) (1 )( )1 1 1 1

p

Agents n

value v v v vn n n n   

  


     

 
 
 

 

 
3) Aggregation rule for active set 

 
Given an active set we associate to any active set 
evaluation a number by an aggregation function that 
can be linear or non linear. For the linear case the 
aggregation can be simple aggregation or weighted 
aggregation. For example for simple linear 
aggregation rule we have the aggregation rule shown 
in Figure 2. 
 

1 2 3
( , ) ,1  value

1 1 1
( , )1 3 6 3

1 1 1 5
63 6 3

Agent
for p C

Logic true true true

Q p C true true true

 
  
 

 

   

   

 
Figure 2. The simple linear aggregation rule. 
 
Where Q is the linear superposition of the logic 
value for the active set. Resconi 1-8, Hinde 16-24. 
 
2.2. Active set as an extension of epistemic logic 
 
Epistemic logic is the logic, which formalizes 
knowledge of agents. Among many applications it is 
used in game theories and economic behaviour in 
databases and in verifying cryptographic protocols 
Shared knowledge, common knowledge. Epistemic 
logic is also known as the logic of knowledge, it 
deals with modalities, which are not part of 
traditional logic and which modify the meaning of a 
proposition. For instance such a modality is the 
knowledge modality: “agent Alice knows that ...”, 
written KAlice. There is one knowledge modality Ki 
for each agent i, so when there are n agents, there are 
n knowledge modalities. From the Ki’s, one can 
build two new modalities, namely a modality Eg of 
shared knowledge, which modifies a proposition p 
into a proposition Eg(p) which means that “everyone 
in the group g knows p” and a modality Cg of 
common knowledge. Cg(p) would say “p is known 
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to everybody in the group g” in a very strong sense 
since knowledge about p is known at every level of 
knowledge. Slightly more precisely, if g is the group 
of agents and p is a proposition, Eg(p) is the 
conjunction over the i 2 g of the Ki(p) and Cg(p) 
means something like “everybody knows p and 
everybody knows that everybody knows p and ... 
and everybody knows that everybody knows that 
everybody knows ...that everybody knows p...” This 
infinite conjunction is handled by making Cg(p) a 
fix point. A typical example of common knowledge 
is traffic regulation. When, as a car driver, you enter 
an intersection you know that the person on your left 
will let you go, moreover you know that she knows 
that you have the right to go and you are sure (you 
know) that she will not go because she knows that 
you know that she knows that you have the right to 
go etc. Actually you pass an intersection with a car 
on your left, because there is a common knowledge 
between you as a driver and the driver of the other 
car on the rule of priority. But those who travel have 
experienced the variability of the common 
knowledge. Take a stop sign. In Europe it means that 
the person which has a stop sign will let the other to 
pass the intersection. In some countries, the stop 
sign is just a decoration of intersections. In the USA, 
the common knowledge is different since there are 
intersections of two crossing roads with four stop 
signs and this has puzzled more than one European. 
One main goal of epistemic logic is to handle 
properly those concepts of knowledge. Any 
epistemic logic can be represented by active set of 
agents, which shared knowledge as common 
knowledge.  So we have the Epistemic logic 
evaluation by active set formal description 

1 2 3
( )

 value

Agent
K p

Logic true false true
 

  
 

 

Where p is the proposition that we want to evaluate 
and α is the agent for which p is true or false that is 
known. 
 
2.3. Fuzzy set by active set  

 
The probability calculus does not incorporate 
explicitly the concepts of irrationality or agent’s 
state of logic conflict. It misses structural 
information at the level of individual objects, but 

preserves global information at the level of a set of 
objects. Given a dice the probability theory studies 
frequencies of the different faces E={e} as 
independent (elementary) events. This set of 
elementary events E has no structure. It is only 
required that elements of E are mutually exclusive 
and complete, that is no other alternative is possible. 
The order of its elements is irrelevant to 
probabilities of each element of E. No irrationality 
or conflict is allowed in this definition relative to 
mutual exclusion. The classical probability calculus 
does not provide a mechanism for modelling 
uncertainty when agents communicate (collaborates 
or conflict). Below we present the important 
properties of sets of conflicting agents at one 
dimension Let (x) the active set for the proposition 
x and |(x)| be the numbers of agents for which 
proposition x is true we have  

 
Given two propositions  a and b when  

 

If  |(a)| <  |(b)|  then p = a and q = b 

If  |(b)| <  |(a)|  then p = b and q = a 

 

So we order the propositions from the proposition 
with less number of true value to the proposition 
with maximum values of true values. 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 3  Sets of agents and their intersections 

 

1 2 3 4 5 6 7 8
( )

1 2 3 4 5 6 7 8
( )

( ) 4, ( ) 5

Agents
p

values f f t t t t f f

Agents
q

values f t t f t t f t

p q

 
   

 

 
   

 

   

 

 
 
 

Ω(q) 

Ω(p) 
Ω(qp)

Ω(qp)

Ω(pq) 
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We have 
1 2 3 4 5 6 7 8

( )

1 2 3 4 5 6 7 8
( )

,

( ) 3 , ( ) 6

Agents
p q

values f f t f t t f f

Agents
p q

values f t t t t t f t

p q p q

 
    

 

 
    

 

     

 

 
Now we know 

( ) ( ) ( )

( ) ( ) ( )

q p q q p q q q p

p p q p p q p p p q p q

       

             
 
But because when q is false and p is true we adjoin 
at q one logic value true to obtain p or q. So when 
we repeat this process many times for any agent we 
have that at the number of true values for q we must 
adjoin other true values for which q is false but p is 
true. In conclusion we have 

( ) ( ) ( )

max( ( ) , ( ) ( )

p q q q p

q p q p

       

      
 

 
For and operation we have that when q is false and p 
is true we eliminate one element for which p is true. 
In conclusion when we repeat this as necessary 

( ) ( ) ( )p q p q p          
min( ( ) , ( ) ( )q p q p       

 

In conclusion in the active set we can found again 
the Zadeh rule when p and not q is always false 

( ) min( ( ) , ( )p q q p      
( ) max( ( ) , ( )p q q p      

 

So when the agents for which p is true are also the 
agents for which q is true. Figure 4 shows it 
graphically. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Graphic representation of active set of 
agents where one is included in the others. The AND 
rule is the same of the Zadeh min rule. 

3. Evidence theory and agents 

In this section we give a model of the evidence 
theory by rough set theory and agent. In fact given 
the table 
 
Students math Ph Lit Overall 
S1 good bad bad bad 
S2 bad good bad bad 
S3 good bad good bad 
S4 good bad good good 
S5 good good good good 
S6 bad good good bad 
S7 good bad bad good 
S8 bad bad bad bad 

 
where bad and good are classes in rough set theory 
and  bad is negation of good 
 
bad =  good, the rough set evaluation of the student 
S1 can be represented by the active set in Figure 5, 
 
 

 
Figure 5. Graphic representation of agents whose 
value is good (black) or bad (white). 
 

Math
Phys 

Lit

Overall 

( )q  

( )p  

( )p q   
( )p q    
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where black is good and white is bad. Maths, Phys, 
Literature and Overall are four agents in the active 
set theory or criteria in the rough set theory. For the 
student S1 the value of the active set is given by this 
complex structure of true and false, as shown in 
Equation 13. 
 

1
1 ,( ( , )

 set  true
(12)

1

i i jV Student professor good K

active Math Phys Lite Overall number

good true false false false

 

  
  
  

 

S1 good  math}       (13) 

 
 
In S1 good is true only for the maths professor. 
 
The number of possible evaluations is the power set 
of the possible agents. So for four agents the number 
of the evaluations is 24 = 16. 
 
We define the basic assignment probability as 
proportional to the number of true values in the 
active set. Now we have 8 evaluations for the 8 
students. For the student S1 good is true only once, 
for the student S2 good is true only once, for the 
student S3 good is true twice and for the student S8 
good is true zero times. All the other vectors of the 
power set of the 4 agents have basic probability 
equal to zero. Now the total number of true values 
for the students is 
 
T = 1+1+2+3+4+2+2+0=15 
 
So we have the values of the basic assignment 
probability 
 

1 1 2 3
( 1) , ( 2) , ( 3) , ( 4)

15 15 15 15
4 2 2

( 5) , ( 6) , ( 7) , ( 8) 0
15 15 15

m S m S m S m S

m S m S m S m S

for the other 8 possible evaluation m = 0

   

       (14) 

 
With the basic assignment probability we can 
compute the Belief and Plausibility measures to give 
a set of true values for the four agents. 
 
For example given the active set in Equation 15 
 

S4 
active set Math Phys Lit Overall

good true false true true










   (15) 

 
The sets included in S4 are in Equation 16 
 

S7 
active set Math Phys Lit Overall

good true false false true











S1
active set Math Phys Lit Overall

good true false false false











S3 
active set Math Phys Lit Overall

good true false true false











 (16) 

 
The Belief measure is 
 

8
( 4) ( 1) ( 3) ( 4) ( 7)

15
Bel S m S m S m S m S      

 
The Plausibility measure of S4 is 
 

( 4) ( 1) ( 3) ( 4) ( 7)

14
( 6) ( 5)

15

Pl S m S m S m S m S

m S m S

   

  
 

 
Figure 6 shows graphically the way we have the sets 
included in S4 and also the set S4 itself. Any sets 
have four agents with true or false evaluation. 
 

 
 
Figure 6. The agents which value is good are all 
included in S4 for any active set S3, S1, S7. So the 
Believe measure of S4 is the sum of the basic 
assignment of S4, S1, S3, S7. 
 
For the Plausible measure we have the sets S5 and 
S6 that are not included in S4 but have common 
elements can be seen in the Figure 7. 
 
 
 
 

S1

 S3

S7 

S4 
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Figure 7. The agents for which the value is good are 
not all included in S4 for any active set S5, S6. But 
S6 and S5 has “good” valued inside S4 and another 
good value outside. The active set S6, S5 cannot 
included in S4 but has common elements with S4. 
So we can compute the Plausible measure for S4 by 
S5, S6 and S4 itself. 

4. Rough sets and agents 

By agents and active sets is possible to show that 
rough sets 29-31 are natural extension of the evidence 
theory. In fact in Evidence theory we have only two 
possible logical values as True or False. In the 
previous chapter good can be true or false. When 
good is false we have the class bad. So the two 
classes good and bad can be interpreted by a set of 
agents, which evaluate as the classical true and false. 
Now in rough sets we can have a many valued logic 
as good medium bad. The evaluation is given by the 
V(p) matrix of classical logic value true and false. 
 

1,1 1,2 1,

,1 ,2 ,

,

1 2

1 1,1 1,2 1,

.1 .2 ,

...

( ) ... ... ... ..      (17)

...

( ( , )

....

...
(18)

... ... ... ... ...

...

n

m m m n

k
k i j i j

n

n

m m m m n

v v v

V p

v v v

or

V object agent class K

agent agent agent

class v v v

class v v v

 
   
  

 

 
 
 
 
  
 

 

 

,

1 2

1 1,1 1,2 1,

.1 .2 ,

( ( , )

....

...

... ... ... ... ...

...

k
k i j i j

n

n

m m m m n

V object agent class K

agent agent agent

class v v v

class v v v

 

 
 
   
  
 

  (19) 

4.1. Classes as valued in many valued logic 

We can study the classes as symbolic logic values in 
the Lattice valued Logic. Now we can represent any 
class as a special active set of agents. The agents in 
this active set use a set of tests by which we can 
evaluate the class that we want to detect. So we have 
 

1 2

,1 ,2 ,

...

...

p
i

i i i p

test test test
class

value   
 

   
 

    (20) 

 
For example given the table 
 
Students math Ph Lit Overall 
S1 good medium bad bad 
S2 medium medium bad medium 
S3 medium medium medium medium 
S4 medium medium medium good 
S5 good medium good good 
S6 good good good good 
S7 bad bad medium bad 
S8 bad bad medium bad
 
We have three classes. Now given two tests as an 
example we have 
 

1 2

1 2
1

1 2
2

1 2

,

,

test test
good

value true true

test test
medium

value false true

test test
medium

value true false

test test
bad

value false false

 
  
 

 
  
 
 

  
 

 
  
 

 

So we have the lattice 
 

S4

S5 S6
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Figure 8.  Lattice valued Logic for four logic value 
as (good, medium1, medium2, bad). 
 
The OR logic operation for the classes (many 
valued)  g, m1, m2 and b is 
 
 
 
       t t   t f   f t   f f  

 t t   t t   t t   t t   t t  

 t f   t t   t f   t t   t f  

 f t   t t   t t   f t   f t  

 f f   t t   t f   f t   f f  

 
Now the previous table can be written in this way 
 
          g     m1     m2      b 
     g     g     g      g     g 
    m1     g     m1      g     m1

    m2     g      g     m2     m2

      b     g     m1     m2     b 
 
The meaning of the previous classes operations (any 
class is a logic value),  is this : 
 
When one student is good (passes both tests) he will 
win the mark good. We are not interested in the fail 
state but only when he passes the test so if the 
professors wait with patience the important states are 
not the fail states but only when the students pass the 
test. At the reverse we have the “AND” operation 
 
          g     m1     m2      b 
     g     g     m1      m2      b 
    m1     m1     m1      b      b
    m2     m2      b     m2      b
      b     b      b      b      b 

 
In this table the fail state is more important. If the 
student fails the two tests he cannot have a mark 
superior to bad.  
 
With the Kleene’s implication  
 
A  B  = not A or B  
 
we have 
 
        g     m1     m2      b 
     b     g     g      g     g 
    m2     g     m1      g     m1

   m1    g     g     m2     m2

     g    g    m1     m2     b
 
 
Where the negation is  
 

  1 2
1 2

2 1

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

T

g b

m m
g m m b

m m

b g

     
     
       
     
     
     

 

 
The implication rule has this meaning. When the 
student has a good mark and after has medium or 
bad we lose the control of the examination so the 
implication is medium or bad. But at the reverse if 
the mark is bad and after is good or medium then we 
have a good implication because the student 
improves the control of the examination.  
 
In the previous example we have always the 
property shown in Equation 20. 
 
x x x x x                (20) 
 
Now in the lattice theory we can violate the previous 
condition so we have 
 
x x x

x x x

 
 

 

For example for the lattice 
 

good

bad 

 true true  

 false true   true false

 false false  

g 

m2 m1 

b 

medium
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Figure 9. Lattice valued logic, which values b and d 
have two different representations by active set of 
tests. 
 
Where  
 

t t f   t f t   t t t 
f f t   f t f   f t t 

    (21) 

 
So the self logic operation A  A > A and A  A < 
A.  
Now for the Kleene’s implication operation we have 
 
    O a b c d I 
   I  I  I  I  I  I  I 
   c  c  I  b  c  b  I 
  d  d a  I  b  a  I 
  a  a a  I I  a  I 
  b  b I  I b  I     I 
  O  O a  b c  d  I 
 
Where 
 

,b b I d d a                     (22) 
 
For the negation operator 
 

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0
( )

0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

O O

c a

d b
not A

a c

b d

I I

     
     
     
     

      
     
     
     
          

 

 

We have the implication rule 
 
   O a b c d I 
   O  I  I  I  I  I  I 
   a  c  I  b  c  b  I 
   b  d a  I  b  a  I 
  c  a a  I I  a  I 
  d  b I  I b  I     I 
  I  O a  b c  d  I 
 
The rule 
 
x x x

x x x

 
 

              (23) 

 
Means that the professor focuses his attention on the 
result true. If the student result in the test is the same 
at two different times he give a higher and more 
optimistic result because he is happy that the student 
can give the same result many times. So 
 
b b I b               (24) 

4.2. Rough sets by active sets of agents and 
decision rules 

Given one true value for any colon of the classes in 
(19) the number of the possible evaluations or 
configuration (19) are 
 

nW m                   (25) 
 
For example with three classes and four agents we 
have that the number of the possible configurations 
are 
 

43 81W             (26) 
 
Among the 81 possible cases we select the 8 
possible complex evaluations of the student logic 
state in this way 
 

1
( ( , ) ,1

 sets  

1

1

2

V Student professor class Ki j i j

active Math Phys Lit Overall number true

good true false false false

medium false true false false

bad false false true true

 



  
  
  
  
  

 

Logic expressions 
 

 , ,I t t t

 

 

 

 

    or b t t f b t f t 
 a f t t

    or d f f t d f t f 
 c f t t  

 O f f f  
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S1

good  math

medium  phy

bad Overall  Lit










         (27) 

 
Active set image for the student S1 and the four 
agents is shown in Figure 10. black is good, grey is 
medium and white is bad. 
 
 

 
 
Figure 10. Active set for the student S1 
 

2
( ( , ) ,2

 sets

0

3

1

V Student professor class Ki j i j

active Math Phys Lit Overall true

good false false false false

medium true true false true

bad false false true false

 



   
   
   
   
   

 

Logic expressions 
 
 

S2 

good  false

medium  Math PhysOverall

bad  Lit










     (28) 

 
For the student S2 we have the active set structure as 
shown in Figure 11 and Equation 28. 
 
 

 
 
Figure 11. Active set for the student S2 
 
 
For the other students we have the formal active set 
image 
 

3
( ( , ) ,3

 sets

0

4

0

V Student professor class Ki j i j

active Math Phys Lit Overall true

good false false false false

medium true true true true

bad false false false false

 



   
   
   
   
   

 

 
Logic expressions 
 

S3 

good  false

medium  Math Phys Lit Overall

bad  false










  

(29) 
 

4
( ( , ) ,4

 sets

1

3

0

V Student professor class Ki j i j

active Math Phys Lit Overall true

good false false false true

medium true true true false

bad false false false false

 



   
   
   
   
   

 

 
Logic expressions 
 

4 ( )

good Overall

S medium Math Phy Lite

bad false


   
 

   (30) 

 

Math

Phys 

Lit
Overall 

Math 
Phys 

Lit

Overall 

Co-published by Atlantis Press and Taylor & Francis 
Copyright: the authors 

146



 
 
 

Agents and rough sets 

5
( ( , ) ,5

 sets

3

1

0

V Student professor class Ki j i j

active Math Phys Lit Overall true

good true false true true

medium false true false false

bad false false false false

 



   
   
   
   
   

 

 
Logic expressions 
 

S5 

good  Math Lit Overall

medium  Phy

bad  false










         (31) 

 
6

( ( , ) ,6

 sets

4

0

0

V Student professor class Ki j i j

active Math Phys Lit Overall true

good true true true true

medium false false false false

bad false false false false

 



   
   
   
   
   

 

 
Logic expressions 
 

S6 

good  Math Phy  Lit Overall

medium  false

bad  false










(32) 

 
7

( ( , ) ,7

 sets

0

1

3

V Student professor class Ki j i j

active Math Phys Lit Overall true

good false false false false

medium false false true false

bad true true false true

 



   
   
   
   
   

 

 
Logic expression 
 

S7 = 

good  false

medium  Lit
bad  Math PhysOverall










        (33) 

 
8

( ( , ) ,8

 sets

0

1

3

V Student professor class Ki j i j

active Math Phys Lit Overall true

good false false false false

medium false false true false

bad true true false true

 



   
   
   
   
   

 

 

S8 = 

good  false

medium  Lit
bad  Math PhysOverall










  (34) 

 
We remark that the students 7 and 8 have the same 
evaluation so are indiscernible.  
 
Given the class “good” in rough set theory we have 
this approximation for the class “good” 
 

lower  approximation  S6,S5 
upper  approximation = S6,S5,S4,S3 

 

 
Now we will show this rough set property by active 
sets. All the logic systems where good is true for 4 
and three agents are 
 

S6 

good  Math Phys Lit Overall

medium  false

bad  false










 

 

S5 

good  Math Lit Overall

medium  Phys

bad  false










         

 
The active set where overall is good as in S6, S5 is 
 

S4 

good Overall

medium  (Math Phys Lit)

bad  false










    

 
The system where bad is always false and good is 
always false but has common value medium with 
S6, S5, S4 is 
 

3

good false

S medium Math Phy Lite Overall

bad false


    
 

 

 
The active sets are shown in Figure 12. 
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Figure 12. Active sets S6, S5, where good is true in 
the most of the cases is the lower approximation. 
The upper approximation includes S4 that has a non 
empty intersection with S5 and S3 that has a non 
empty intersection with S4. Now we show by active 
sets one example of the decision rule. 
 
premise Literature = good 
 
The premise can be represented in figure 13. 

 
Figure 13. Active sets S6, S5 for the premise 
decision rule Literature = good. 
 
The conclusion of the rule is: 
 
Student is good for almost all the professors so the 
students are certainly good. 
 
Certainty condition is given by the rule: 
 
If the intersection of two active sets associated with 
two classes cover more that 50% of one class the 

student belongs certainly at the class at the 
intersection. 
 
Another example of the decision rule: 
 
Premise of the rule 
 
Literature = medium, Physics = medium  
 
The active set representation of the premise is shown 
in Figure 14. 

 
Figure 14.  Active sets representation of the 
condition Literature = medium, Physics = medium. 
 
The conclusion is 
 
The student is possibly good in S4 but student is 
medium for S3. 
 
Another example of the decision rule by active set of 
agents is shown in Figure 15. 
 
Rule math = good, Lit = bad 
 

S1

good  math

medium  phy

bad Overall  Lit










 

 

Math

Lit
Overall

S6

S5

Phys 

Math

Lit

S4 

S3 
Overall 

Medium 

Good

Phys 

Math 

Lit 
Overall 

S6 

S5 

Phys

Math

Lit

S4

S3

Overall 

Medium

Good 

Phys 

Math 

Lit 
Overall 

S6 

S5 

Phys
Lit

S4

S3

Overall 

Medium

Good 

Phys 

Math
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Figure 15. Active sets representation of the 
condition Math = good, Lit = bad. 
 
S1 is certainly bad because in Figure 15 we have 
two agents with value “bad” 
 
Another example of the decision rule 
 
Premise  Math = medium, Lit = bad 
 
 

S2 

good  false

medium  Math PhysOverall

bad  Lit










 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16. Active sets representation of the 
condition math = medium, Lit = bad. 
 
S2 is certainly medium because in figure 10 we have 
for agent with value medium 
 
Certain decision rules based on indiscernibility are 
inconsistent with respect to the dominance principle 
(monotonicity constraints), we will compute this 

inconsistency by this composition rule (34) between 
active sets 
 

1

2( , ) (( ) ( ))
...

T

i j i j j i

n

c

c
F S S S S S S

c

 
 
    
 
 
 

  (34) 

 
In the expression we have that 
 

i jS S  

 
Is a filter of the logic structure of the student Si . In 
fact in i jS S  we select the values in Si  that are 

different from the other. And reverse for i jS S . 

The vector  
 

1

2

...

n

c

c

c

 
 
 
 
 
 

 

 
Is a numerical vector that has the same order of the 
classes.  
 
For example for 
 

1 0 0 0 0 0 0 0

1 0 1 0 0 , 2 1 1 0 1

0 0 1 1 0 0 1 0

S S

   
       
      

  

 
We have 
 

Math 

Lit 

Overall 

Phys 

S1 

Math 

Lit 

Overall 

Phys 

S2 
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 
 
 
 

1

1 2 3

t t f t f

t f f t fObject

f t t t f

f f f t t

 
 
 
 
 
 
 
 

 

 
The first element of the object1 is located in place 
(f,t), the second element of the object1 is at the 
frontier of (t,t), (t,f), (f,t), (f,f), the last element of 
the object1 is inside the zone (f,f). 
 
In the active set we denote (1, 2, 3) as the elements 
of the object1. We remark that the element two of the 
b object1 is at the frontier of the four parts of the two 
dimensional space. So element two belongs to the 
four classes (parts of the space) at the same time. 
Figure 18 shows this graphically. 
 

 
 
Figure 18.  Active sets representation of the 
dominance in the map of the figure 11 for the object 
one. 
 
Where black is the class (t, t), grey round is the class 
(t,f), grey square is the class (f, t) and white is the 
class (f, f )  
 
For the second object we have four elements in 
Figure 18. The active set is 
 

 
 
 
 

2

1 2 3 4

t t t f f f

t f f t t fObject

f t f f f f

f f f f f t

 
 
 
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 
 
 
 

 

 
The graph is shown in Figure 19. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.  Active sets representation of the 
dominance in the map of figure 11 for object two.  
 
The third object has three elements so we have the 
active set 
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t f f f tObject
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 

 

 
The graph of this object is shown in Figure 20 

 
Figure 20.  Active sets representation of the 
dominance in the map of Figure 21 for object three.  
 
By the active sets we have 
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0 0 0 1 1 0 1 1

4 1 1 1 0 5 0 1 0 0 ,
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1 1 1 1
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0 0 0 0

S S

S

   
       
      
 
   
  

 

 
And with the union operation we have the 
conclusion 

4 5 6

0 0 0 1 1 0 1 1 1 1 1 1

1 1 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1

1 1 1 0

0 0 0 0

S S S  
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           
          
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That formally can write in this way 
 
Then student  = good. 
 
Now given the premise 
 

,mathematics medium

Literature medium




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We can select the students 
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0 0 0 0 0 0 0 0

1 0 1 1 1 1 1 1

5 0 1 0 0 , 6 0 0 0 0

0 0 0 0 0 0 0 0

S S

S S

   
       
      
   
       
      

 

 
And with the union operation we have the 
conclusion 
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That formally can write in this way 
 
Then student  > = medium for overall column 
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We can select the students 
 

1 0 0 0 0 0 0 0

1 0 1 0 0 , 2 1 1 0 1

0 0 1 1 0 0 1 0

S S

   
       
      

 

 
And with the union we have the conclusion 
 
 

1 0 0 0

1 2 1 1 1 1

0 0 1 1

S S

 
    
  

 

 
That formally can write in this way 
 
Then student is bad or medium for overall column 

6. Dominance-based rules by matrix numerical 
computation 

Given the numerical analogy 
 

3

2

1

good

medium

bad

   
      
      

 

 
The table of the student for math, phys, Lit can be 
written by this matrix 
 

3 2 2

2 2 1

2 2 2

2 2 2

3 2 3

3 3 3

1 1 2

A

 
 
 
 
   
 
 
 
  

   

 
and the overall as  
 

1

2

2

3

3

3

1

b

 
 
 
 
   
 
 
 
  

 

 

Now we want to solve the equation  
 
A x  = b 
 
This equation cannot solved because we do not have 
the inverse matrix of A. Now we can change the 
previous equation in a way to have the pseudo 
inverse in this way 
 
AT A x = AT b 
 
So we have 
 
x =  ( AT A )-1 AT b 
Where 
 

40 34 33

34 30 29

33 29 32

TA A

 
   
  

 

 
Is the self and cross relations among the three 
professors math (M), phys (P) and Lit (L) and the 
relations between professor and overall.  
The diagonal part is  
 

40 0 0

0 30 0

0 0 38

M Ph L

M

Ph

L

 
 
 
 
 
 

 

 
Where we have the math has the max variation in 
the marks (good, medium, bad) and Ph has the 
minimum variation. Now for the correlation or 
entanglement or synchronisation of the math 
professor with the others and with the conclusion is 
 

0 34 33

34 0 27

33 27 0

M Ph L

M

Ph

L

 
 
 
 
 
 

 

 
We remark that M the minimum relation is between 
Ph and Literature only 27. The max correlation as is 
intuitive is between math and Physics professor for 
which we have 34. We are not surprised to see that 
we have a relative good relation between 
mathematic professor and the Literature professor 
for which we have 33.  
 
now if 
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b = A x 
 
we have 
 
( AT A )-1 AT A x  = x 
 
Now from the table of the student we have 
 

0.23

0.816

0.529

math

x phy

Lit

 
   
  

 

 
For math we have a negative value and this means 
that math generate a lot of inconsistency because has 
a negative value on the conclusion or overall. 
Physics is the most consistent element and is the 
more important professor that give the final 
conclusion or overall. The Literature professor is not 
so important as physics in the definition of the result 
but does not generate inconsistency because has a 
weight that is positive. Now by the x we can 
compute the vector b’ that is 
 
A x = b1  
 
Where 
 

1.471

1.701

2.23

1 2.23

2.529

3.345

1.644

b

 
 
 
 
   
 
 
 
  

 

 
The lapse between student S1 and S2 is reduced the 
minimum inconsistency. For S2, S3 we have no 
inconsistency so the lapse is near to one. Now for 
the three professors the student S3 and S4 are equal 
so is irrational to have as overall the values medium 
and good. The marks for S5, S6, S7 are in agreement 
with the conclusion overall. Now given a new 
student to be evaluated.  
 
Student Mathematics Physics Literature 
     S9    medium    medium   good 
 
In this case the matrix A is increased by a new 
student so we have a new matrix B given by the 
explicit form 

 
3 2 2

2 2 1

2 2 2

2 2 2

3 2 3

3 3 3

1 1 2

2 2 3

B

 
 
 
 
 
   
 
 
 
 
  

 

 
With the value of x we can compute the result b by 
the expression 
 
B x  = b2 
 
So we have the new b = b2 
 

1.471

1.701

2.23

2.23
2

2.529

3.345

1.644

2.759

b

 
 
 
 
 
   
 
 
 
 
  

 

In agreement with the other students the valuation 
for the new student is 2.759 or with approximation 
we have “good”. In conclusion for the new student 
we have 
student math Physics Literature Overall 
    S9   medium medium     good  good 

7. Conclusion 

With the suggestion of the paper Dominance-based 
Rough Set Approach to Reasoning about Vague 
Data and with the introduction of the agents in the 
active set theory, we give a new image of the rough 
set with a formal logic description of the vague or 
approximate data. Connection with evidence theory 
and many valued logic by lattice evaluation gives us 
a more general image of the rough sets and 
reasoning. Compensation of the inconsistency in 
rough set approximation is used to give reasoning 
for new data in agreement with previous vague data. 
Because active set was used also for fuzzy set model 
we suggest a bridge between fuzzy set, rough set and 
active set. 
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