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Abstract

We study maintenance of a complex dynamic system consisting of ageing and unobservable components
under a predetermined threshold reliability level. Our aim is to construct an optimum replacement policy
for the components of the system by minimizing total number of replacements or total replacement cost.
We represent the problem with dynamic Bayesian networks (DBNs). We prove that under the existence of
a predetermined threshold reliability, performing replacements at periods when the system reliability just
falls below the threshold assures optimum replacement times. Four component selection approaches and
their cost focused versions are proposed to choose the component to replace and are tested on a complex
dynamic problem. Their performances are analyzed under various threshold and cost levels.
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1. Introduction

Maintenance is becoming an increasingly difficult
task with the increasing complexity of the systems.
One can be either proactive or reactive in maintain-
ing a complex system. If the system breaks down
and then the maintenance (repair) is performed, this
is reactive. On the other hand, proactive mainte-
nance can either be performed on a fixed sched-
ule or it can be adaptively applied.! We consider
the reliability-centered preventive maintenance ac-
tivities of a complex dynamic system comprised of
ageing components. It is not possible to directly ob-
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serve the states of components and that of the system
(possibly because the system is far away). However
system reliability can be estimated from the inter-
actions of its components. The aim is to optimize
component replacement schedules in a given plan-
ning horizon such that the (estimated) system reli-
ability is always kept over a predetermined thresh-
old value. The complex nature of the problem does
not allow us to show that a threshold policy is opti-
mal for this problem. But we argue that a constant
threshold policy is an effective heuristic for complex
systems with unobservable components.

We propose a methodology to effectively pre-
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pare a proactive maintenance plan using dynamic
Bayesian networks (DBNs). A DBN is an extended
Bayesian network (BN) which includes a temporal
dimension. DBN representation allows monitoring
the system reliability in a given planning horizon
and predicting the system state under different re-
placement plans. We propose to use DBNs to rep-
resent the problem and to do fast inference. We
presume that the reliability of the system should be
kept over a predetermined threshold value in all pe-
riods. This is a reasonable policy in mission criti-
cal systems where the failure of the system is a very
low probability event due to built in redundancy and
other structural properties.

Our approach to maintenance is close to
the decision-theoretic troubleshooting problems
(DTTP)? in handling complex system structures.
DTTPs study a broken system and the aim is to
identify and eliminate the underlying fault(s) in the
least costly manner. DTTPs are extended to the
context of Bayesian networks to handle the com-
plex system structure.® Although DTTPs are char-
acterized by their complex system structures, they
have always been studied as a static problem.*>%78
Naturally, there are some problems for which a
static troubleshooting can not be applied. These
can be working systems which are under continu-
ous or discrete time monitoring and produce unde-
sirable faulty messages while they are working or
systems which are not even observable. For such
systems, it may be better to perform troubleshoot-
ing/maintenance actions while the system is in pro-
cess. Furthermore, the system components may be
subject to ageing in time which requires a dynamic
version of DTTP. This is one of the main motivations
for this study.

Recently BNs and DBNs have been applied in
the literature frequently to reliability, dependabil-
ity, risk analysis and maintenance due to their ca-
pability to model complex systems.’ Although there
are some challenges while using BNs,!? such as the
quantification of the network and inference in hy-
brid BNs, they are still very convenient in complex
real life system domains. BNs and DBNs allow ad-
ditional power in representing, modelling and an-
alyzing complex dependable systems'!'13 which

are difficult with conventional analysis techniques
such as fault trees, Markov chains and stochastic
petri networks.!# Moreover BNs can handle param-
eter uncertainty, coverage factors, multi state nodes
and sensitivity analysis.!?

Previous studies related to reliability analysis us-
ing DBNs are generally descriptive.'®!” The dy-
namic problem is represented with DBNs and the
outcome of the analysis is how system or compo-
nent reliability behaves in time.'®!® The impact of
maintenance of an element at a specific time on this
behavior is also reported in some of them.?%2! How-
ever optimization of maintenance activities (i.e.,
finding a minimum cost plan)?> using DBNs is
rarely considered which is another main motivation
for this study.

In the maintenance problem we tackle, we as-
sume that there exists a predetermined threshold re-
liability strategy. If such a strategy (control pol-
icy) was not set beforehand, the problem could
be modelled with dynamic decision networks such
as partially observable Markov decision processes
(POMDP). A POMDP?>*?* is a generalization of a
Markov decision process (MDP) which permits un-
certainty regarding the state of a Markov process.
However the generalization of MDPs to POMDPs
results in additional computational difficulties.?>»>
Furthermore, it is very hard to obtain the optimal
policy in this setting.

The proposed proactive maintenance methodol-
ogy described in this paper is an extension of the
methodology presented in a previous study.”’ The
major difference of the current paper is on the com-
putational study section where we extend it com-
prehensively analyzing the performances of the pro-
posed methodologies with two different objectives
under various threshold and cost levels. Another
major difference is that, in this paper, we give the
proof of the proposition in Section 3.2 in details.
We propose and test several maintenance policies to
maintain the reliability of a system over time above a
threshold. In all of the proposals, DBNs are used as
the main representation and computational model to
predict system reliability. DBNs can be considered
to be a generalization of Markov decision models
that allow fast inference. Although both exact and
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approximate inference in (static) belief networks are
computationally hard problems,?®?° we insist on ex-
act inference to predict system reliability.

We first show that it is unnecessary to do a
replacement if the system reliability is above the
threshold and then using this result we propose a se-
ries of procedures that differ in their orientation (cost
vs. number of repairs) and information use (myopic
vs look ahead?? or fault vs reliability effect). We
analyze performance of these procedures under var-
ious threshold and cost levels. Since we do not have
any other algorithms from the literature to compare
our results to, we test our procedures against a ran-
dom policy and make available our test problem and
procedures for other researchers to work on.°

The rest of the paper is organized as follows: We
define the maintenance problem in Section 2. The
proposed solution is presented in Section 3 where
we represent the problem with DBNs and develop an
algorithm within the DBN framework. Numerical il-
lustrations are given in Section 4. Finally Section 5
concludes the study.

2. Problem definition

The problem we take up can be described as follows:
There is a system which consists of several compo-
nents that are subject to failure. It is not possible
to observe the states of components and the system
due to the following reasons: The system may be far
away or strictly hidden to the decision maker, i.e.
it may be in space or inside a nuclear tank. Ob-
serving the system may be very expensive or time
costly which may be the case in machines having
long setup times. The system itself has a very low
probability of failure most probably due to built in
redundancy. However system reliability can be esti-
mated from the interactions of its components. This
is the only way to have an idea about the system
which evolves in a discrete-time planning horizon.
We presume that the estimated reliability of the sys-
tem should be kept over a predetermined threshold
value in all periods. By this, the system is in an ac-
ceptable working situation in all periods. This is rea-
sonable in mission critical systems where the failure
of the system is a very low probability event due to
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built in redundancy and other structural properties.
Components age with a constant transition probabil-
ity of failure. It is possible to replace components in
any period even if they are far away from the deci-
sion maker, i.e. by changing software configuration
of components. Once replaced, the components will
work at their full capacity. Our aim is to determine a
replacement policy for the components of a system
minimizing either the total number of replacements
or the total maintenance cost in a discrete time plan-
ning horizon such that reliability of the system never
falls below the threshold. Furthermore the following
assumptions are made:

(i) All conditional probability distributions are
discrete. (ii) All components and the system have
two states (“w”’: working, “nw”: failure). (iii) Com-
ponents can only fail at the beginning of a time pe-
riod. Once they fail they will be in state “nw” unless
they are repaired. (iv) Components can only be re-
placed at the beginning of each period. Once they
are replaced, their working state probability (i.e.,
their reliability) becomes 1 in that period. (v) If all
components are replaced in a period, system relia-
bility becomes 1 in that period. The first two as-
sumptions are required for computational purposes.
The third and fourth assumptions are standard in re-
liability.

3. Proposed solution

In this section, we propose dynamic Bayesian Net-
works (DBNs)3! to represent the problem. A DBN is
an extended Bayesian network (BN) which includes
a temporal dimension. BNs are a widely used for-
malism for representing uncertain knowledge. The
main features of the formalism are a graphical en-
coding of a set of conditional independence relations
and a compact way of representing a joint proba-
bility distribution between random variables.>* BNs
have the power to represent causal relations between
components and the system using conditional prob-
ability distributions.*3

The problem can be formally modelled using dy-
namic decision networks. However, even with lim-
ited information, evaluating such networks are com-
putationally intensive.’* Furthermore, it is very dif-
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ficult to show the structure of the optimal policy in
this setting. Hence we presuppose the existence of
a (constant) threshold policy and use DBNs to com-
pute system reliability. This computation is exact
under the given assumptions on component ageing
and dependency.

We give the details of DBN formulation in Sec-
tion 3.1. We decouple the decisions of when and
what to replace under the existence of a prede-
termined threshold reliability and perform replace-
ments at periods when the system reliability just
falls below the threshold value in Section 3.2. This
policy assures optimum replacement times when the
objective is either to minimize total number of re-
placements or to minimize total cost when replace-
ment costs are stationary along the planning horizon.
We, then propose component selection approaches
in Section 3.3 to select the component to be replaced
at a planned replacement time.

3.1. DBN formulation

In DBNs there are no formally defined action nodes
as in influence diagrams or decision networks.??
Nevertheless, replacing or not replacing decisions of
each component can be handled with DBNs by mod-
elling actions as chance nodes. For this purpose, an
action node for each replaceable component at each
period is introduced in the DBN representation of
the problem. Such a system is shown in Figure 1.

t=1 t=2

Fig. 1. DBN representation with action nodes.

In Figure 1, there are three components A, B

and C; and the state of B depends on the state
of A. Let s, denote the system state in period ¢
and c; denote the state of component i in period
t where i € {A,B,C}. Solid arcs represent the
causal relations among the components and the sys-
tem node. They constitute the conditional probabil-
ities P(cp|ca;) and P(s;|cps,ccr) forall 1 = 1.7 Tt
is assumed that this probability is the same for all
t = 1..T. The dashed arcs represent temporal re-
lations of the components between two consecutive
time periods. They constitute the conditional prob-
abilities P(cj¢|cis—1,a;). Temporal relations are the
transition probabilities of components due to ageing.

Let a;; be the action node of component i at time
t. All a;’s have two states which are “dn” standing
for doing nothing and “rc¢” standing for replacing the
related component. Initially all a;’s are given hard
evidence of “dn”. Replacement of a component i
at ¢ is executed by entering hard evidence to its ac-
tion node ay, i.e., {a; < rc}. This evidence does
not affect the working probability of any other con-
ditionally independent components at any periods.
Because a;;’s are independent of each other. So ev-
ery kind of system, especially when there are depen-
dent components as in Figure 1, can be formulated
with these action nodes.

Since actions are explicitly represented as proba-
bilistic nodes in the DBN, the transition probability
table for an independent component i (in the exam-
ple given in Figure 1, i € {A,C}) will have values of
conditional probabilities P(cj|c;;—1,a;) and is pre-
sented in Table 1.

Table 1. Transition probability table for an independent compo-
nent i.

Cit
cig—1 ap || W] nw
w dn | pi|1-pi
nw dn || 0 1
W rc 1 0
nw rc 1 0

When the decision maker decides not to replace
component i in decision epoch ¢ and component i is
working in period 1 — 1, P(cy = w|ci;—1 = w,ay =
dn) = p; where 0 < p; < 1 and 1 — p; is the sta-
tionary transition probability of failure for a working
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component i. When a; = dn and component i is non-
working in period ¢ — 1, it will still be non-working
in the subsequent period 7. So P(ci = nwlci—1 =
nw,a; = dn) = 1. When a component is decided to
be replaced at ¢, i.e, a; = rc, P(ciy = w|cis—1, air =
rc) = 1 no matter whether the component is working
ornotats—1.

The transition probability table for the condition-
ally dependent component B will have values for
P(cp|car,cpi—1,ap:). These conditional probabil-
ities will be constituted by also its parent compo-
nents, in this case component A, in addition to age-
ing of the component itself and the replacement de-
cision at ¢.

DBN representation allows inferring the reliabil-
ity of the system and components in a given plan-
ning horizon and predicting the state of the system
and components under different replacement sched-
ules. In principle, our procedures can also work
with other (possibly approximate) means of estimat-
ing the system reliability. However, since the com-
puted system reliability is compared against a pre-
determined threshold, this needs to be performed
with extra care. We insist on DBNs for exact in-
ference on the system reliability. Furthermore, since
all components and the system in the problem have
discrete probability distributions, exact inference is
possible.?!

In the DBN formulation, replacements are per-
formed by entering evidence to the actions. Let € de-
note the evidence list which is initially empty. Then
all a;’s are given hard evidence of “dn”. When a
component i is chosen to be replaced in period ¢, this
decision is executed by entering hard evidence to its
action node and this information is added to the evi-
dence list, i.e., € <— €U {ay «+ rc}.

Reliability,? in general, is defined as the prob-
ability that an item will perform its purpose ade-
quately under given conditions for a given time in-
terval. Let R;; be the estimated reliability of compo-
nent / in period ¢, so R; = P(c; = w|€) and let Ry,
be the estimated reliability of system in period ¢, so
Ry = P(siy = wle).

There exists an ageing function g;(.) for each
component i at each period given that the component
is not replaced at that period. This function is con-
structed by the transition probability function of the
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component. For the independent components given

in Figure 1, Ri; = g;(R;;—1) and is computed as

Ry = Plcy =wle)

Z P(Cit = W|Ci,t—17ait = d”78)P(Ci,t—1|8)

Cit—1

= Plci =wlcig—1 =w,a; =dn,€)R; ;-1 +
P(ciy =wlcis—1 =nw,ay =dn,€)(1 —Ris—1)

ey
which is further simplified according to Table 1 as

Rit = piRis—1. )
Furthermore, there exists a function f(.) mapping
component reliabilities R;; to system reliability Ryy.
This function expresses the causal relations between
the components and the system. For the example
given in Figure 1, system reliability can be expressed
directly by the reliability of components C and B,
and indirectly by the reliability of component A.
So Ry, = f(Rcy,Rp:) and this function can be con-
structed by the direct causal relations as follows:

Ry = P(s; =wle)
= Y Y P(si = wlccr,cai €)P(ccile)P(cag)
CBt CCt

= P(s; =w|ccr = w,cp = w,€)ReRp +
P(s; = wlcc; = nw,cg = w,€)(1 —Rc;)Rp; +
P(s; = wlce, = w,cp = nw, €)Re; (1 — Rpy) +
(

P(s; = wlcc; = nw,cg = nw, €)(1 — Rey ) (1 — Rpy).

As the number of components in the system in-
creases and the causal relations between the com-
ponents and the system become more complex, the
functions g;(.) and f(.) become more difficult even
to represent. That is why we use DBNs to formulate
these transition probabilities and causal relations in
the problem.

3.2. Threshold algorithm

In the maintenance problem, two important deci-
sions are to be made: One is the time of replace-
ment. The other is the decision of which compo-
nent(s) to be replaced in that period. These two de-
cisions should be made such that system reliability is
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always guaranteed to be over a threshold value and
the total number of replacements or total replace-
ment cost is minimized. Our methodology is based
on decoupling these decisions under the assumption
of a predetermined threshold reliability. The deci-
sion of the replacement times is made sequentially
by monitoring the next period when the estimated
system reliability just falls below the given thresh-
old. In other words, we defer a replacement deci-
sion as far as the threshold permits. This method
leads to optimum replacement times for the main-
tenance problem of minimizing the total number of
replacements under the following conditions:

(i) Estimated system reliability is an increasing
function f(.) of the reliability of all components.
That is, as R; increases Ro; = f(Rys,Rory -+ ,Ri, - +)
also increases.This is valid in all coherent systems.

(i) Components age with a decaying function
gir(.) unless they are replaced where g; is the tran-
sition probability function of component i at period
t which may be stationary or nonstationary. That is
Ry = gi,tfl(Ri,tfl) and R;; < R,'J,l foralll <r<T.

Furthermore, this method also leads to optimum
replacement times for the maintenance problem of
minimizing the total replacement cost in a given
planning horizon provided that replacement costs of
components are stationary.

The following proposition states that given a
component replacement schedule, by keeping to the
component sequence and realizing the replacements
when the estimated system reliability just falls be-
low the given threshold, one finds at least the same
number of replacements. The proposition is valid
in all systems whether there are conditionally de-
pendent components or not, provided that the above
conditions are satisfied. The proof is given subse-
quently.

Proposition 1. For a given finite horizon T, as-
sume there exists an optimal replacement schedule
RS such that it makes at least one replacement when
the estimated system reliability is above the thresh-
old. Let RS’ be another replacement schedule which
is constructed from RS such that all replacements
are performed when the estimated system reliabil-
ity just falls below the threshold and it has the same
replacement sequence of components with RS. Both

schedules are feasible with respect to the threshold
constraint. Under the above conditions, RS’ is at
least as good as RS in minimizing total number of
replacements or total replacement cost when costs
are stationary.

Proof. It is required to show that in the worst case
RS’ will have the same number of replacements as
with RS in a given planning horizon. In the best case
it will have less number of replacements by discard-
ing the last one(s). In this way total cost can also be
improved by reducing the number of replacements.

System Reliability
RS
——.— RS

Time

Fig. 2. An example for RS and RS’.

Figure 2 shows an example of RS and RS’ where,
in the graph, L is the predetermined threshold relia-
bility that the system should never fall below and
T is the planning horizon. The peak points in the
graph are the epochs where replacement decisions
are made. When a component is replaced, its ef-
fect on the system reliability is seen immediately
at that period because of assumption (iv) stated in
Section 2. Let’s assume only one replacement of
RS, m'" replacement, is performed when the esti-
mated system reliability is above the threshold value
L whereas others are made exactly at periods when
the estimated system reliability falls just below the
threshold.

Let [ € {1,---,Z} denote the replacement se-
quence index where Z is the number of total replace-
ments of RS. # and #] are the periods of the /' re-
placement of RS and RS’ respectively. Eq. (4) shows
how replacement periods of RS’ are derived consec-
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utively given the evidence €:

A

1 min {r:P(s, =wl|e) <L}.

t_ <t<T

4

Given a planning horizon 7, the last replacement
epoch of RS is #z and t; < T. However, t’Z of RS’
may be outside of T, as in this example, because
tz < t,. In this case, there is no need to do the re-
placements / such that #; > T. Hence total replace-
ment number of RS’ reduces. Let Z’ be the replace-
ment number of RS’, it can be computed as follows:

Z'=max {l:1/<T}. (5)

1<I<Z

Eq. (5) reveals that Z’' < Z. So when the objective
is to minimize total number of replacements or to-
tal replacement cost when costs are stationary along
the planning horizon, given any replacement sched-
ule, the objective function can always be improved
or at least remains the same by deferring all the re-
placements to the periods computed as in Eq. (4).
U

The result of Proposition 1 motivates the follow-
ing “Threshold Algorithm” within the framework of
DBN formulation described in Section 3.1. In the
algorithm, efj is an efficiency measure of compo-
nent i in period ¢ used to determine the most ef-
fective component to replace when a replacement is
planned.

(i) Initializer =1

(i) Infer system reliability P(sy = wle) 1 <t' < T

(iii) If P(sy = w|€) > L Vr', then stop.

(iv) Else find the replacement period,
k=min,yop{t": P(sy =wle) <L}
Do replacement(s) for period k
(a)
(b)
(©)

)

Calculate efy Vie I'

Select the component to replace,

i* = argmax{efy,i:i€l'}

Update evidence list, € <— €U {a; < rc}

Update remaining components list,

'+ I'\{i*}
(f) If P(sy = w|e) < L then continue with (v.b)
(g) Elseupdatet =k+1

(vi) Ift > T, then stop.

(vii) Else continue with step (ii)

In step (v.b) of the Threshold Algorithm, one of
the component selection approaches to be described

(d)
(e)

Initialize remaining components list, I’ < I

Replacement policies using DBNs

in Section 3.3 is performed to calculate ef;. Each
approach uses a different way to compute efficiency
scores of components.

3.3. Component selection approaches

In Section 3.2, by Proposition 1, we prove that the
decisions of when and what to replace can be decou-
pled under the existence of a predetermined thresh-
old reliability and that performing replacements at
periods when the system reliability just falls below
the threshold value assures optimum replacement
times when the objective is to minimize total number
of replacements. Furthermore, this policy minimizes
total replacement cost if components have stationary
replacement costs along the planning horizon.

So the next step is to decide what to replace at
a replacement epoch. At the time of replacement,
the decision of which component(s) to be replaced
is an important issue since it affects future system
reliability and consequently the next time to do a re-
placement. After a component is replaced, if this is
not enough to increase the system reliability above
the threshold, another component is selected, among
the remaining components, to be replaced at that pe-
riod. This process continues until the threshold con-
straint is satisfied at that period. We assume that
in the worst case all components are replaced at a
replacement epoch to keep the estimated system re-
liability above the threshold at that period. Hence
if one determines the component(s) to replace opti-
mally at a replacement epoch, then the whole prob-
lem can be solved optimally.

We propose four efficient heuristic approaches
to select the component to be replaced to minimize
the total number of replacements in a given plan-
ning horizon. The first two of them are based on
fault diagnosis techniques whereas the next two fo-
cus on the improvement of system reliability. We,
then propose the cost focused versions of these four
approaches to minimize the total cost of replace-
ments in a given planning horizon.

3.3.1. Fault effect myopic approach (FEM)

Criticality of the system components with respect to
current possible system failure is analyzed. Like in
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decision-theoretic troubleshooting,” posterior prob-
abilities of components given the system state are
used as efficiency measures of components in each
period when a replacement is planned. Efficiency
measure is calculated as in Eq. (6). It is the probabil-
ity of the component being faulty given the system
is faulty in a period. This posterior probability is
calculated by entering evidence that the system has
failed and employing an inference algorithm only
once. Note that it is not known whether the system
is really faulty in that period. All we know that its
reliability has fallen under the threshold value. So
we assume as if it has failed and use this informa-
tion to determine the component which explains this
failure best.

effEM — p(c; = nwleU{s; =nw}).  (6)

3.3.2. Fault effect look-ahead approach (FEL)

Criticality of the system components with respect to
future possible system failures is analyzed. Hence it
is similar to FEM, but FEL takes into account future
information which can be transmitted by the transi-
tion probabilities of components. This is done by
entering evidence to the system node from # + 1 to
T as s;y1.7 = nw. In other words, we assume the
system will fail in all periods after the period 7.

efi "t = Plcy =nwleU{seirr =nw}) (D)

where s,41.7 denotes ;4 1,...,ST.

3.3.3. Replacement effect myopic approach (REM)

The effect of single component replacement to sys-
tem reliability is analyzed for each component. At
a replacement time, the component whose replace-
ment increases system reliability most is chosen to
be replaced. For each component selection pro-
cess, this approach employs inference as much as the
number of remaining components (those that have
not been replaced at that period).

efREM — p(s, = w|e U{ay + rc}) — P(s; = wle).

(8)

3.3.4. Replacement effect look-ahead approach
(REL)

The effect of single component replacement to the
next replacement time is analyzed for each com-
ponent. At a replacement time, the component
whose replacement holds system reliability above
the threshold most is chosen to be replaced. By this
way, the next replacement time is deferred as much
as possible. In case of tie, the component whose
replacement makes the system reliability highest in
the next replacement time is chosen. Like in REM,
for each component selection process, this approach
also employs inference as much as the number of re-
maining components. Let ¢’ be the periods where the
system reliability is less than the threshold.

REL _

efy”" = min {t': P(sy =wleU{a; < rc}) <L}.

1<t'<T
)]

3.3.5. Cost focused versions of the approaches

The previous proposed component selection meth-
ods consider minimizing the total number of re-
placements in a given planning horizon. To account
for minimizing the total replacement cost in a given
horizon, slight modifications of the methods are pro-
posed. Let FEMc, FELc, REMc and RELc be the
cost included versions of the component selection
approaches FEM, FEL, REM and REL respectively.
Let &; denote the replacement cost of component i.
Efficiency of FEMc, FELc and REMc are computed
as in Eq. (10-12) respectively.

FEMc _ P(ciy = nwle U{s; = nw})

efy _ , (10)
1
rere  Plci =nwleU{s, 1.7 = nw})
ef; = o
1
. P(s; =wjeU{ciy < —P(s; =wle
ef‘leML: (st = wleU{ci n.w}) (s =wl ).(12)
1

RELc uses the same efficiency measure as with
REL which is given in Eq. (9). However, in case
of tie, the component with the smallest replacement
cost is chosen. By this slight modification, we im-
prove the REL method to account for also the re-
placement costs of components while preserving the
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effort to keep the total number of replacements as
small as possible.

4. Computational study

The example given in Figure 1 is of a simple sys-
tem consisting of three components. A more com-
plex dynamic test problem is generated from the
well known static auto diagnosis problem? in deci-
sion theoretic troubleshooting environment. We call
this test problem “Dynamic Auto Problem”.

The Threshold Algorithm is coded in Matlab and
uses the Bayes Net Toolbox (BNT)3%37 to represent
the causal and temporal relations, and to perform in-
ference. There are a few exact DBN inference al-
gorithms available in the literature.' In this study,
we use dynamic junction tree inference algorithm?’
which applies the static junction tree algorithm?? to
pairs of neighbouring slices at a time.

We compare the performances of the four com-
ponent selection approaches and their cost focused
versions on the Dynamic Auto Problem (DAP). All
procedures and the test problem are available on-
line.’" Statistical analysis are performed in Minitab.

4.1. DBN representation of DAP

In the BN representation of the static auto di-
agnosis problem, Engine-St is the problem defin-
ing node meaning Engine Start. In DAP how-
ever we make this node more generic and denote
it with s representing the system node. The auto
diagnosis problem is made dynamic by making
the components ageing in time under the follow-
ing assumptions: The automobile is assumed to
be never out of gas. That is why Gas and Gas
Gauge are excluded in the dynamic model. It is
presumed that the decision maker cannot get any
observations. So Radio and Lights are also ex-
cluded. Since the model is dynamic, battery age
is already handled by the temporal variable Bat-
tery which is subject to ageing like the other com-
ponents. So Battery age is also excluded. Starter,
Fan Belt, Alternator, Battery, Distributor, Spark
Plugs, Fuel Pump and Fuel Line are taken as the
ageing components that are assumed to have con-
stant transition probabilities. The resulting DBN is

Replacement policies using DBNs

shown in Figure 3 for two time slices  and # + 1.

t t+1

Fig. 3. DBN representation of DAP.

The constant transition probabilities of working
(p;) and replacement cost values (7;) of the compo-
nents are consulted to an authorized service of an
automobile company for a moderate car type and are
given in Table 2. Planning horizon and threshold re-
liability are taken as 100 months and 0.50 respec-
tively.

Table 2. DAP data.

] Component \ Di \ 7;(units) ‘
Battery Ba | 0.979 3
Fan Belt FB | 0.979 5
Alternator Al | 0.979 10
Starter St | 0.996 20
Distributor  Di | 0.979 15
Spark Plugs SP | 0.959 1
Fuel Pump FP | 0.979 5
Fuel Line FL | 0.996 5

DAP is solved for two cases: to minimize total
number of replacements (DAP-TR) and to minimize
total cost of replacements (DAP-TC). The Thresh-
old Algorithm described in Section 3.2 is used to
solve both cases with the component selection ap-
proaches proposed in Section 3.3. Performances of
the approaches are analyzed regardless of the value
of the threshold reliability and the replacement cost
of Spark Plugs for both cases.
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Table 3. DAP-TR results when threshold is 0.50.

Method TCost TRep St FB Al Ba Di SP FP FL  T(sec)
FEM 346 56 2 8 8 9 7 14 7 1 670
FEL 380 56 5 7 7 13 6 11 6 1 677
REM 345 55 2 8 8 9 7 13 7 1 2098
REL 354 54 3 8 7 9 7 12 7 1 2264

Random 723 91.7 109 115 112 11.6 11.8 124 12.0 103 583
(std) (83) (7.5)

Table 4. DAP-TR results when threshold is 0.75.

Method TCost TRep St FB Al Ba Di SP FP FL
FEM 822 128 6 19 18 19 16 30 17 3
FEL 1049 141 18 19 18 34 14 22 13 3
REM 835 129 6 18 18 20 17 30 17 3
REL 819 127 6 19 18 20 16 29 16 3

Random 1570 201.6 229 254 255 257 254 275 259 233
(std) (128) (10.6)

4.2. Solution of DAP-TR

We solve DAP-TR using the Threshold Algorithm
proposed in Section 3.2 with FEM, FEL, REM and
REL component selection approaches one by one.
In order to compare the performances of the ap-
proaches with a baseline method, we also solve the
problem again with the Threshold Algorithm, but se-
lect the component to replace randomly and call this
method “Random” approach.

Table 3 shows the results of DAP-TR with FEM,
FEL, REM, REL and random component selection
methods. “TCost” and “TRep” stand for total cost
and total number of replacements of the solution.
“T(sec)” shows the solution time in seconds. The re-
maining columns belong to the components of DAP-
TR and show the number of replacements of each.
Although this table belongs to the results of DAP
where the objective is to minimize total number of
replacements, we also report the total replacement
cost calculated according to the replacement plans
of components and their costs given in Table 2 to
compare with the results of DAP-TC in Section 4.3.

As its name implies, the random method selects
the component to be replaced randomly at a replace-
ment time. 50 replications are performed for the ran-
dom method and the average solution with its stan-
dard deviation and the average solution time are re-
ported in the table. Since the objective is to min-
imize total number of replacements, REL finds the

best solution although its solution time is the high-
est. This is because REM and REL perform more
inferences than FEM and FEL to determine the com-
ponent to be replaced. FEM and REM results are
nearly the same except the number of replacements
of Spark Plug. Replacement decisions of FEM and
REM are similar to the results of REL. Although the
total number of replacements found by FEL is not
so different than the ones found by FEM, REM and
REL, its distribution among components is signifi-
cantly different. The solution of the random method
is the worst and its total number of replacements is
significantly very far from the solution of others. In
addition to this, computation time of FEM and FEL
is very close to the average computation time of the
random method.

We analyze the sensitivity of the results of DAP-
TR to the threshold reliability. In Section 4.1,
threshold is decided to be taken as 0.50 whereas now
it is increased to 0.75 arbitrarily. Table 4 shows the
results of DAP-TR when the threshold is increased
to 0.75 for the four component selection approaches
and the random method. To keep the estimated sys-
tem reliability above a higher threshold, total num-
ber of replacements in all approaches increase as ex-
pected. Note that TRep values are all greater than
100, because there are some replacement epochs
where more than one component are selected to re-
place to satisfy the threshold constraint. Among all
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methods, REL finds the minimum total number of
replacements. Again random method is the worst
with respect to total number of replacements and
its solution is significantly far from the solution of
FEM, FEL, REM and REL.

In order to see whether there exists significant
difference among the performance of the methods
proposed for DAP-TR or not, we perform complete
block design to eliminate the effect of threshold on
the statistical comparisons among the performance
of the methods. The response variable is TRep and
different levels of threshold are the blocks in the ex-
periment. The block experimental design is given
in Table 5 and the resulting analysis of variance
(ANOVA) is presented in Table 6. Since P-Value
of the methods is 0.102, at the 0.05 level of signif-
icance, there exists no strong evidence that the per-
formance of the methods differ on minimizing the
total number of replacements.

Table 5. Block design for DAP-TR (threshold is block).

Threshold value
Method L=0.50 L=0.60 L=0.70 L=0.80 L=0.90
FEM 56 78 107 161 277
FEL 56 78 113 178 336
REM 55 76 104 159 278
REL 54 77 105 159 278

Table 6. ANOVA for DAP-TR (threshold is block).

Source of  Sum of Mean

Variation  Squares DF  Square Fy P-Value
Method 1124 3 375 2.59 0.102
Threshold 143832 4 35958 248.27 0.000
Error 1738 12 145

Total 146694 19

4.3. Solution of DAP-TC

We solve DAP-TC using the Threshold Algorithm
proposed in Section 3.2 with FEMc, FELc, REMc
and RELc component selection approaches one by
one. In order to compare the performances of the ap-
proaches with a baseline method, we use the results
of the Random method introduced in Section 4.2
which selects the component to replace randomly at
periods where replacements are decided to be per-
formed.

Table 7 shows the results of DAP-TC with
FEMc, FELc, REMc, RELc and random compo-

Replacement policies using DBNs

nent selection methods. When total cost is tried to
be minimized, there is a significant increase in the
number of replacements of Spark Plug since it is the
cheapest component and it has the smallest p; value.
FELc, REMc and RELc improve total cost while
FEMCc does not when compared with the total cost of
their corresponding results of DAP-TR given in Ta-
ble 3. Although FELc and REMc improve total cost,
they cause a significant increase in the total number
of replacements. RELc finds the best result with re-
spect to total cost and in addition this result has the
least total number of replacements. In fact, RELc is
a slight modification of REL improving the compo-
nent selection procedure to account for also compo-
nent replacement costs. That is why the total num-
ber of replacements it finds is still reasonable. Like
in the DAP-TR, the solution of the random method
is the worst and its total cost is significantly very far
from the solution of others.

4.3.1.  Sensitivity of DAP-TC to threshold

We analyze the sensitivity of the results of DAP-TC
to the threshold reliability. In Section 4.1, threshold
is decided to be taken as 0.50 whereas now it is in-
creased to 0.75 arbitrarily as in Section 4.2. Table 8
shows the results of DAP-TC when the threshold is
increased to 0.75 for the four component selection
approaches and the random method. To keep the
estimated system reliability above a higher thresh-
old, total cost of replacements also increase as ex-
pected. All methods find less cost when compared
with the results of their respective efficiency mea-
sures in DAP-TR given in Table 4. RELc is the
best approach when component costs are concerned
and in addition it has the least number of replace-
ments. All cost included methods plan to replace
Spark Plug more frequently than the other compo-
nents as in the case when the threshold is 0.50. Fur-
thermore, the solution of the random method is again
the worst with respect to total cost of replacements
and its total cost is significantly far from the solution
of FEMc, FELc, REMc and RELc.

In order to see whether the performance of the
methods proposed for DAP-TC significantly differ
or not, we perform complete block design to elim-
inate the effect of threshold on the statistical com-
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Table 7. DAP-TC results when threshold is 0.50.

Method TCost TRep St FB Al Ba Di SP FP FL  T(sec)
FEMc 386 119 1 11 6 21 4 63 11 2 1194
FELc 348 106 1 10 5 26 3 50 9 2 1079
REMc 322 90 1 10 5 16 4 44 8 2 3301
RELc 320 58 2 8 6 11 6 17 7 1 2518
Random 723 91.7 109 115 112 11.6 11.8 124 12.0 103 583
(std) (83) (7.5)
Table 8. DAP-TC results when threshold is 0.75.

Method TCost TRep St FB Al Ba Di SP FP FL
FEMc 813 216 2 25 13 43 10 94 24 5
FELc 854 223 6 24 13 64 6 87 19 4
REMc 787 204 3 22 14 41 9 89 21 5
RELc 729 140 4 17 15 28 13 45 15 3

Random 1570 201.6 229 254 255 257 254 275 259 233

(std) (128) (10.6)

parisons among the performance of the methods.
The response variable is TCost and different levels
of threshold are the blocks in the experiment. The
block experimental design is given in Table 9 and
the resulting ANOVA output is shown in Table 10.
Since P-Value of the methods is 0.000, at the 0.05
level of significance, there is strong evidence that
the performance of the methods differ on minimiz-
ing the total cost.

Table 9. Block design for DAP-TC (threshold is block).

Threshold value
Method L=0.50 L=0.60 L=0.70 L=0.80 L=0.90
FEMc 386 490 704 1006 1786
FELc 348 492 713 1071 1831
REMc 322 466 654 998 1787
RELc 320 416 613 907 1677

Table 10. ANOVA for DAP-TC (threshold is block).

Source of Sum of Mean

Variation Squares DF Square Fy P-Value
Method 31577 3 10526 15.62 0.000
Threshold 5214245 4 1303561 1934.83 0.000
Error 8085 12 674

Total 5253907 19

Since we reject the null hypothesis that the per-
formance of the methods are indifferent by the
ANOVA result given in Table 10, the next step is
to determine the methods which really differ with
a post-hoc analysis. Tukey’s test®® is used to test
all pairwise mean comparisons. The Tukey proce-

dure controls the overall family error rate (of all pair-
wise mean comparisons) at the selected significance
level.

Results of Tukey simultaneous tests for com-
paring pairwise means of method performances on
DAP-TC are given in Table 11. The first column
illustrates the direction of the pairwise test. The sec-
ond column gives the difference of the means of the
methods that are tested in the direction stated in the
first column. Finally the last column gives the ad-
justed P-value of the tests. At the 0.05 level of over-
all significance, tests having adjusted P-value<0.05
are rejected concluding that there exists significant
difference between pairs. In this case, if the dif-
ference of means has positive sign, then the method
stated first in the test, has significantly greater cost
than the second method that is subtracted in the pair-
wise test.

Table 11. Tukey Test Results for DAP-TC (threshold is block).

Difference  Adjusted
Pairwise test of means  P-value
FEMc-FELc -16.6 0.7462
FEMc-REMc 29.0 0.3346
FEMc-RELc 87.8 0.0009%*
FELc-REMc 45.6 0.0694
FELc-RELc 104.4 0.0002%*
REMc-RELc 58.8 0.0172*

Hence, according to Table 11, performance of
FEMc, FELc and REMCc are indifferent whereas per-
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Table 12. Results of DAP when 7gp increases to 5.

Method TCost TRep St FB Al Ba Di SP FP FL
FEM 402 56 2 8 8 9 7 14 7 1
FEL 424 56 5 7 7 13 6 11 6 1
REM 397 55 2 8 8 9 7 13 7 1
REL 402 54 38 7 9 7 12 7 1

FEMc 436 79 1 12 6 22 4 21 11 2
FELc 425 82 1 12 6 30 3 18 10 2
REMCc 405 71 1 11 7 20 4 17 9 2
RELc 380 58 2 8 6 15 6 13 7 1

formance of RELc is significantly different from the
performance of others. As a result, we can conclude
that whatever the threshold value is, RELc gives sig-
nificantly less total replacement cost than the other
methods under the current replacement cost struc-
ture of components at a 0.05 level of overall signifi-
cance.

4.3.2. Sensitivity of DAP-TC to cost

Replacement costs of components are also other fac-
tors that may affect the performance of the compo-
nent selection methods. According to Table 2, Spark
Plug is the cheapest component and it has the min-
imum p; among all components. That is why, in
Table 7 all methods except the random one plan to
replace Spark Plug more frequently than the other
components. In order to see the sensitivity of the
approaches to the costs of components, we increase
7tsp from 1 to 5.

Table 12 shows the results of DAP when 7gp in-
creases to 5 and threshold is kept at 0.50 for the four
component selection approaches and their cost in-
cluded versions. Results of FEM, FEL, REM and
REL are the same as in Table 3 except TCost value.
In the solutions of FEMc, FELc, REMc and RELc,
number of replacements of Spark Plug decreases
sharply when compared with the results in Table 7,
and all methods prefer to replace Battery instead.
This is because Battery becomes the cheapest com-
ponent with a small p; after increasing 7sp to 5.
RELc is the only method which improves the total
cost of DAP-TC when 7gp = 5.

To eliminate the effect of the cost of Spark Plug
on the statistical comparisons among the perfor-
mance of the methods on DAP-TC, we perform

complete block design experiment where different
values of costs that Spark Plug can take are con-
sidered as blocks. The response variable is TCost
and the block experimental design with the observed
TCost values is given in Table 13. The resulting
ANOVA output is shown in Table 14. P-Value of
the methods is 0.000. So, at the 0.05 level of signifi-
cance, there is strong evidence that the performance
of the methods differ on minimizing the total cost.

Table 13. Block design for DAP-TC (7sp is block).

Cost of Spark Plug
Method 7=1 7n=3 =7w=5 =7=10 =m=15 7=20
FEMc 386 398 436 467 512 550
FELc 348 392 425 465 516 539
REMc 322 361 405 443 491 517
RELc 320 354 380 439 477 527

Table 14. ANOVA for DAP-TC (7sp is block).

Source of  Sum of Mean

Variation  Squares DF  Square Fy P-Value
Method 7089 3 2363 27.80 0.000
Tsp 105467 5 21093 248.16 0.000
Error 1275 15 85

Total 113830 23

Since we reject the null hypothesis that the per-
formance of the methods are indifferent by the
ANOVA result given in Table 14, we perform
Tukey’s test as a post-hoc procedure to test all pair-
wise mean comparisons so that we determine the
methods which really differ. Results of Tukey si-
multaneous tests for comparing pairwise means of
method performances on DAP-TC are given in Ta-
ble 15 which has a similar structure with Table 11.
At the 0.05 level of overall significance, tests having
adjusted P-value<0.05 are rejected concluding that
there exists significant difference between pairs.
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According to Table 15, when the threshold is
0.50, whatever the replacement cost of Spark Plug
is, performance of REMc and RELc are indifferent,
and they are significantly better than performances
of FEMc and FELc which are pairwise indifferent at
a 0.05 level of overall significance.

Table 15. Tukey Test Results for DAP-TC (7gp is block).

Difference = Adjusted

Pairwise test of means  P-value
FEMc-FELc 10.67 0.2300

FEMc-REMc 35.00 0.0001%*
FEMc-RELc 42.00 0.0000*
FELc-REMc 24.33 0.0019%*
FELc-RELc 31.33 0.0002*
REMCc-RELc 7.00 0.5679

5. Conclusion

We develop an algorithm for determining replace-
ment policies of a complex dynamic system with
unobservable components within the framework of
DBN representation. First, the next replacement
period is determined and then the components to
be replaced at that period are determined sequen-
tially. We propose to perform replacements at pe-
riods when the system reliability just falls below the
threshold. We prove that under the existence of a
predetermined threshold, this method assures opti-
mum replacement times in minimizing total number
of replacements. Furthermore, this policy minimizes
total replacement costs if components have station-
ary replacement costs along the planning horizon.

Using this policy, we propose four alternative
procedures that differ in their orientation and infor-
mation use to select the components to be replaced
at a replacement epoch to minimize total number of
replacements. When the objective is to minimize to-
tal replacement cost, these approaches are slightly
modified by taking into account also the replacement
costs of components.

All component selection methods are tested on
a relatively complex problem which is generated
from the auto diagnosis problem in the literature.
The results of proposed algorithms are also com-
pared against the solution of a random method. All
four component selection measures and their cost fo-

cused versions perform significantly better than the
random method both in terms of total number of re-
placements and total cost. This is some evidence
that the proposed methods perform reasonably well.
However, since a comparison against an optimal re-
placement policy or other heuristic approaches are
not available, we provide our example problem and
algorithms on-line for other researchers to perform
tests on them.

Performance of the methods under various
threshold and cost levels are also analyzed. Results
show that whatever the threshold value is, there ex-
ists no significant difference among the four meth-
ods in minimizing total number of replacements.
However when the objective is to minimize total re-
placement cost, the cost focused versions of the four
methods do differ. Under the given threshold value,
whatever the cost of the most sensitive component
is, the reliability based efficiency measures RELc
and REMc perform significantly better than the fail-
ure based ones FELc and FEMc in minimizing to-
tal replacement cost. Furthermore, under the given
cost structure whatever the threshold value is, RELc
performs significantly better than the others in min-
imizing total replacement cost.

References

1. R. Kothamasu, S. H. Huang, and W. H. VerDuin, “Sys-
tem health monitoring and prognostics - a review of
current paradigms and practices,” Int J Adv Manuf
Technol, 28, 1012-1024 (2006).

2. J. Kalagnam and M. Henrion, “A comparison of deci-
sion analysis and expert rules for sequential analysis,”
Proc. 4th Conference on Uncertainty in Artificial In-
telligence, 271-281 (1988).

3. D. Heckerman, J. S. Breese, and K. Rommelse,
“Decision-theoretic troubleshooting,” Communica-
tions of the ACM, 38(3), 49-57, 1995.

4. C. Skaanning, F. V. Jensen, and U. Kjarulff, “Printer
troubleshooting using Bayesian networks,” Proceed-
ings of 13th International Conference on Industrial
and Engineering Applications of Artificial Intelli-
gence and Expert Systems, 367-379 (2000).

5. F V.lJensen, U. Kjerulff, B. Kristiansen, H. Langseth,
C. Skaanning, J. Vomlel, and M. Vomlelovaa, “The
SACSO methodology for troubleshooting complex
systems,” Artificial Intelligence for Engineering, De-
sign, Analysis and Manufacturing, 15(4), 321-333
(2001).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

81



[*)}

10.

11.

12.

13.

14.

15.

16.

17.

18.

19

H. Langseth and F. V. Jensen, “Heuristics for two ex-
tensions of basic troubleshooting,” Proceedings of 7th
Scandinavian Conference on Artificial Intelligence,
Frontiers in Artificial Intelligence and Applications,
80-891 (2001).

. H. Langseth and F. V. Jensen, “Decision theoretic

troubleshooting of coherent systems,” Reliability En-
gineering and System Safety, 80(1) 49-62 (2003).

E. Koca and T. Bilgig, “Troubleshooting with depen-
dent actions, conditional costs, and questions,” Tech-
nical Report FBE-IE-13/2004-18, Bogazici Univer-
sity, Istanbul, Turkey (2004).

P. Weber, G. Medina-Oliva, C. Simon, and B. Tung,
“Overview on Bayesian networks applications for
dependability, risk analysis and maintenance areas,”’
Engineering Applications of Artificial Intelligence,
25(4), 671-682, (June 2012).

H. Langseth, “Bayesian networks in reliability: The
Good, the Bad, and the Ugly,”, in Advances in Mathe-
matical Modeling for Reliability, I0S Press, (Amster-
dam, Netherland, 2008).

J. G. Torres-Toledano and L. E. Sucar, “Bayesian net-
works for reliability analysis of complex systems,”
Proceedings of 6th Ibero-American Conference on Al:
Progress in Artificial Intelligence, 195-206 (1998).
A. Bobbio, L. Portinale, M. Minichino, and E. Cian-
camerla, “Improving the analysis of dependable sys-
tems by mapping fault trees into Bayesian networks,”
Reliability Engineering and System Safety, 71, 249—
260 (2001).

L. Portinale, D. C. Raiteri, and S. Montani, “Support-
ing reliability engineers in exploiting the power of Dy-
namic Bayesian Networks,” International Journal of
Approximate Reasoning, 51(2) 179-195 (2010).

Y. Dutuit, E. Chtelet, J. P. Signoret, and P. Thomas,
“Dependability modelling and evaluation by using
stochastic Petri nets: application to two test cases,” Re-
liability Engineering and System Safety, 55(2), 117-
124 (1997).

H. Langseth and L. Portinale, “Bayesian networks in
reliability,” Reliability Engineering and System Safety,
92, 92—-108 (2006).

R. L. Welch and T. V. Thelen, “Dynamic reliability
analysis in an operational context: the Bayesian net-
work perspective,” Proceedings of Dynamic Reliabil-
ity: Future Directions, 277-307 (2000).

P. Weber and L. Jouffe, “Reliability modeling with dy-
namic Bayesian networks,” Proceedings of 5th IFAC
Symposium SAFEPROCESS’03, 57-62 (2003).

A. Muller, P. Weber, and A. B. Salem, “Process
model-based dynamic Bayesian networks for prog-
nostic,” Proceedings of 4th International Confer-
ence on Intelligent Systems Design and Applications,
(2004).

J. Hu, L. Zhang, L. Ma, and W. Liang, “An integrated

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

Replacement policies using DBNs

safety prognosis model for complex system based on
dynamic Bayesian network and ant colony algorithm,”
Expert Syst. Appl., 38(3), 1431-1446 (March 2011).
P. Weber, P. Munteanu, and L. Jouffe, “Dynamic
Bayesian networks modeling the dependability of sys-
tems with degradations and exogenous constraints,”
Proceedings of 11th IFAC Symposium on Infor-
mational Control Problems in Manufacturing (IN-
COM’04), (2004).

A. B. Salem, A. Muller, and P. Weber, “Dynamic
Bayesian networks in system reliability analysis,”
Proceedings of 6th IFAC Symposium on Fault Detec-
tion, Supervision and Safety of technical processes,
481-486 (2006).

D. Ozgiir-Unliiakin and T. Bilgic, “Predictive main-
tenance using dynamic probabilistic networks,” Pro-
ceedings of the Third European Workshop on Proba-
bilistic Graphical Models, 239-246 (2006).

G. E. Monahan, “A survey of partially observable
markov decision processes: theory, models, and algo-
rithms,” Management Science, 28(1), 1-16 (1982).
M. Hauskrecht, “Value function approximations for
partially observable markov decision processes,’
Journal of Artificial Intelligence Research, 13, 33-94
(2000).

E. J. Sondik, The optimal control of partially observ-
able Markov Processes, Ph.D. thesis, Stanford Univer-
sity, (Stanford, California, 1971).

R. D. Smallwood and E. J. Sondik, “The optimal con-
trol of partially observable Markov processes over a
finite horizon,” Operations Research, 21, 1071-1088
(1973).

D. Ozgiir-Unliiakin and T. Bilgi¢, “Replacement deci-
sions for reliability centered maintenance,” Proceed-
ings of the Tenth International FLINS Conference on
Uncertainty Modeling in Knowledge Engineering and
Decision Making, (Istanbul, Turkey, 2012).

G. F. Cooper, “The computational complexity of prob-
abilistic inference using Bayesian belief networks,”
Artificial Intelligence, 42(23), 393 — 405 (1990).

P. Dagum and M. Luby, “Approximating probabilis-
tic inference in Bayesian belief networks is NP-hard,”
Artificial Intelligence, 60(1), 141 — 153 (1993).
http://staff.eng.bahcesehir.edu.tr/~dozgur/software.
K. P. Murphy, Dynamic Bayesian networks: represen-
tation, inference and learning, Ph.D. thesis, Univer-
sity of California, (Berkeley, 2002).

J. Pearl, Probabilistic Reasoning in Intelligent Sys-
tems: Networks of Plausible Inference, Morgan-
Kaufman, (San Mateo, CA, USA, 1988).

F. V. Jensen, Bayesian Networks and Decision
Graphs, Springer Verlag, (New York, USA, 2001).

S. L. Lauritzen and D. Nilsson, ‘“Representing and
solving decision problems with limited information,”
Management Science, 47(9), 1235-1251 (2001).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

82



D. Ozgl;ir-Unlu'akm, T. Bilgi¢

35. D. B. Kegecioglu, Reliability engineering handbook,
DEStech Publications, (Pennsylvania, USA, 2002).

36. K. P. Murphy, “The Bayes Net Toolbox for Matlab,”
Computing Science and Statistics: Proceedings of the
Interface, (2001).

37. https://code.google.com/p/bnt/.

38. J. W. Tukey, The problem of multiple comparisons,
Unpublished Notes, Princeton University, (1953).

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

83





