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Abstract

Emergency management is a highly relevant area of interest in operations research. Currently the area is
undergoing widespread development. Furthermore, recent disasters have highlighted the importance of
disaster management, in order to alleviate the suffering of vulnerable people and save lives. In this context,
the problem of designing plans for the distribution of humanitarian aid according to the preferences of the
decision maker is crucial. In this paper, a lexicographical dynamic flow model to solve this problem is
presented, extending a previously introduced static flow model. The new model is validated in a realistic
case study and a computational study is performed to compare both models, showing how they can be

coordinated to improve their overall performance.
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1. Introduction

Emergency management is nowadays a high rele-
vance area of interest that is currently being notably
developed. Furthermore, recent disasters such as
the January 2010 Haiti earthquake, the March 2011
disaster concatenation in Japan or the August 2012
floods in Philippines have highlighted the impor-
tance of disaster management, in order to alleviate
the suffering of vulnerable people and save lives. In
this direction, growing efforts are being made in the
scientific community toward the development of de-
cision aid systems and models for humanitarian lo-
gistics. Van Wassenhove and Pedraza-Martinez 2* is
a recent example on the use of operations research
in humanitarian operations. An up-to-date review
of decision aid models for disaster management and
emergencies can be found in Ortufio et al. '® and

Liberatore et al. 13.

One of the main problems of interest in disas-
ter management deals with the distribution of hu-
manitarian aid. The planning of this distribution is
done along the different phases of the process (pre
and post disaster). In this work we will focus on
the last mile distribution, related to operating deci-
sions on the field. This means that the transporta-
tion network, the resources allocation and demand
are already defined for the operation to be devel-
oped. In this context, the aim of the problem con-
sists of designing a set of itineraries for the vehicles
to distribute the aid, meeting the conditions related
to load and vehicle availability and taking into ac-
count some performance criteria.

Several versions of this problem have already
been approached in the literature. The distribu-
tion problem with a single objective function has
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been approached using different kinds of models.
A multi-commodity and multi-modal network flow
problem considering time windows was presented
by Haghani and Oh '© where the objective is min-
imizing costs. This model was extended by Bar-
barosoglu and Arda 3 by considering a two-stage
stochastic optimization problem. Ozdamar et al. '3
developed a multi-period and multi-commodity net-
work flow model minimizing the total unsatified de-
mand. Angelis et al. ! addressed an integer linear
optimization model maximizing the total demand
satisfied for the World Food Programme in Angola.
A mixed integer optimization model in which re-
source allocation and vehicle routing are taken into

account together is studied in Balcik and Beamon .

As it can be seen, there are several criteria (cost,
time, unsatisfied demand, etc.) that are relevant in
this context. To deal with them jointly some multi-
criteria models have been studied. For instance, in
Viswanath and Peeta 2> a multi-commodity model
minimizing the total travel time and maximizing
the total population covered is addressed. Tzeng
et al. 23 use a fuzzy multiple-objective model con-
sidering three different criteria: operation cost, total
travel time and demand satisfaction. Nolz et al. '*
also propose a multi-objective model including fa-
cility location with three different criteria: covering,
length of tours and maximum travel time.

Attending to the dynamic nature of the prob-
lem, dynamic network flow models (which have
been studied in many fields, see Cai et al. > for
a survey), have been also applied in humanitar-
ian logistics. Fiedrich et al. 7 address a dynamic
model for resource allocation in case of strong earth-
quakes, minimizing the total number of fatalities re-
lated to different facts. Yi and Kumar 2’ present
an ant colony optimization in two phases, one fo-
cused on the routes generation and the other one
on the assignment of vehicles and commodities.
Yi and Ozdamar ?® develop an integrated location-
distribution model for coordinating logistics support
and evacuation operations in case of disaster. In both
models, the objective function includes the weighted
sum of the unsatisfied demand and the wounded
people waiting for help. Sheu 2! addresses an hybrid
fuzzy clustering-optimization approach considering

dynamic demand, and including a multi-objective
function in which the time-varying relief demand fill
rate is maximized and the time-varying distribution
cost is minimized. Gongalves ? illustrates how dy-
namic systems can help the humanitarian managers
learn and understand the complex dynamic involved
when a disaster occurs. Hamacher et al. '! present
two modelling tools to predict and evaluate evacua-
tion plans by considering a dynamic network, where
the flow is maximized in a single objective function.
Ben-Tal et al. 4 propose a methodology based on ro-
bust optimization for risk mitigation in humanitarian
relief supply chains, assigning emergency response
and evacuation traffic flow in a dynamic way and
considering uncertain demand.

In Ortufio et al. 7 a static flow model to ob-
tain a planning of the humanitarian aid distribution
is presented, managing up to six conflicting criteria
through a lexicographic goal programming model.
In this paper, a dynamic flow model that builds upon
that static model is presented, allowing to obtain an
operation scheduling through a time horizon. The
proposed model manages explicitly the movement
of vehicles in the different periods of time (allow-
ing visiting a node in several times, in opposition
to the static model). Four criteria are considered
in the decision process: global quantity distributed,
time of operation, equity of the aid distribution, and
cost. The first criterion, related to the effective-
ness of the operation, is considered to be incompa-
rably more important than the others, and thus the
model is formed by two priority levels considered
in a lexicographic order. Besides, several hard con-
straints, such as budget or resources availability, are
also taken into account. A preliminary version of
this model was introduced in Tirado et al. 2.

From the previous review it follows that, on the
one hand, the static models of the literature provide a
planning for the operation but not necessarily a real-
istic scheduling, and on the other hand, the dynamic
models of the literature do not focus on the multi-
criteria nature of the problem. The main gap of the
state of the art filled by this paper is the proposal of a
dynamic model that does provide a suitable schedul-
ing for the operation and considers jointly attributes
such as quantity, cost, time and equity of distribution
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to help the decision maker obtain solutions accord-
ing to his/her preferences.

In Vitoriano et al. 2%, that proposes a static flow
model with some additional performance measures
used to better evaluate the considered criteria, the
resulting static model was validated on a case study
based on the 2010 Haiti earthquake. This case study
will be used in the computational experience of this
paper to evaluate the performance of the proposed
dynamic model and compare it with its static ver-
sion.

The organization of the rest of the paper is as fol-
lows. Section 2 describes the problem addressed in
this work. Section 3 presents the main elements of
the dynamic model. Section 4 is devoted to the dif-
ferent criteria to better distribute the humanitarian
aid. In Section 5 a realistic case, based on the Haiti
catastrophic earthquake, is studied, and the perfor-
mance of the two proposed models is evaluated. Fi-
nally, Section 6 concludes and presents the main
lines of future research.

2. Problem description

The problem addressed in this work concerns last-
mile distribution in disaster relief operations. Nor-
mally, once a disaster occurs, the goods to be dis-
tributed are located in certain places (warehouses
previously built on airports, ports, etc. to receive hu-
manitarian aid coming from outside). Also, the aid
is usually distributed to the population in some tem-
poral shelters or distribution points where people go
looking for help. The aim of the problem consists
in designing routes for vehicles among depots and
demand nodes, choosing the types of vehicles more
adequate for distribution and determining the flow
of the aid. The following elements compose the dis-
tribution problem:

1. Transportation Network. It is constituted by
nodes, representing the places of pick-up, de-
livery or connection, and the main links that
are characterized by distance and average ve-
locity.

2. Goods. The information about the quantity of
humanitarian aid, available or required at each

A lexicographical dynamic flow model for relief operations

node, is provided.

3. Vehicles. Several types are considered and
they are characterized by capacity, average ve-
locity, variable and fixed costs and availability
in each node of the network.

4. Operation elements. The global quantity to
be distributed in the operation and the budget
available.

Then, the problem consists of distributing the
planned amount of humanitarian aid using the avail-
able resources and infrastructures without exceed-
ing the given budget. For this purpose, we present
in this paper a dynamic flow model, building upon
the one presented in Ortufio et al. '7 by consider-
ing a time horizon divided in periods of time. That
model was able to provide solutions based on load
and vehicle flows that could be used as indications
of how to proceed, but as all the static flow models,
they do not provide a realistic scheduling. However,
the dynamic model proposed in this paper is able to
provide the decision maker with an implementable
plan, by giving information about the routes of each
vehicle and the time instants when each event hap-
pens.

The proposed approach is composed by two pri-
ority levels. At the first level, the goal is to distribute
the amount of humanitarian aid initially planned, or
if this cannot be done with the available resources, to
distribute as much as possible. At the second level,
once the total amount to be transported is fixed, an
itinerary is designed to meet a set of goals related to
other performance criteria aggregated in a weighted
goal programming model. This second level can be
guided by different criteria. However, the traditional
logistic attributes such as cost or profit are not the
most relevant in humanitarian operations. On the
contrary, the time of operation or equity in the dis-
tribution, for example, take a prominent role, as it
will be considered in our approach.

It is important to remark that the two phases of
the model are considered in a lexicographic order,
since delivering all aid, in order to reach the max-
imum amount of people in need, is incomparably
preferred as meeting any other goals related to cost,
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time or equity and no trade-off is possible when
dealing with the amount of aid delivered. Besides, it
must be taken into account that all hard constraints,
as for example the ones related to the maximum bud-
get or resource availability, must be met by any fea-
sible solution in any case, so there is not possible
trade-off when dealing with them.

3. Dynamic Flow Model

The dynamic distribution model presented in this pa-
per is based on two dynamic network flow models,
one for the load of humanitarian aid and another one
for the vehicles, that are closely related. A complete
description of these models, together with the con-
straints related to the resources available to perform
the operation, are presented in the following. A pre-
liminary version of these models was presented in
Tirado et al. 2.

3.1. Sets and parameters

A) Main sets and indices.

(N,A) : transport network, where N and A denote
the set of nodes and arcs, respectively.

T : planning horizon; the mission can be developed
through periods {1,...,T}.

i,i’ : indices to refer nodes i,i’ € N.
t,¢' : indices to refer time periods ¢, € {1,...,T}.

V . set of vehicle types, defined by their character-
istics.

Jj,j': indices to refer vehicle types, j, j/ € V.
B) Parameters related to the network.

dist;y = length of arc (i,i’) € A.

dem; : demand at node i € N, in units of load.

qav; : supply at node i € N, in units of load.

C) Parameters related to vehicles. (Several types are
considered).

cap;: capacity of vehicle type j € V, in units of
load.

vav; : number of available vehicles of type j € V at
node i € N.

cfij: fixed cost of travelling through arc (i,i’) € A
with a vehicle of type j € V, per unit of length.

cviyj: cost of travelling through arc (i,i') € A with
a vehicle of type j € V, per unit of length and
load.

tripj . periods of time needed to travel from i € N to
i’ € N with a vehicle of type j € V.

D) Parameters related to the operation.

g : amount of aid desired to be distributed in the op-
eration.

b : budget available to perform the operation.

For simplicity, in the following it will be
assumed that, unless otherwise stated, indices
i,i’,j,j,t,t' take values in the sets where they are
defined, so that only existing arcs and vehicle types
compatible with them are considered in the defini-
tion of the constraints.

3.2. Variables

OL;y j; : load carried from i to i’ using vehicle type j
and starting in period ¢.

Qi : load staying (stored or received) at node i in
period t.

NL;yj; - number of vehicles of type j which start
travelling from i to /’ in period 7.

N;j; - number of vehicles of type j that are at node i
at the beginning of period ¢.

Note that the load and vehicles that are at each
node at the end of the operation are given by the vari-
ables Q;7 and N;;r, that represent, respectively, the
amount of humanitarian aid and the number of vehi-
cles of type j that stay at node i when all itineraries
have been completed.
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3.3. Structural Model
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QLii’jta Qil =0 VZv il? j7t (9)

NLiyjs,Nij > 0 and integer Vi,i', j,t (10)

Conditions (1) are the dynamic load flow balance
equations at each node and time period. Constraint
(2) ensures that the total load staying at the nodes at
the end of the operation is the available load. Con-
ditions (3) are, analogously, the dynamic flow bal-
ance equations for the vehicles, while conditions (4)
ensure that only the vehicles that are available are
used for transportation. Constraints (5) impose that
the maximum capacity of vehicles is not exceeded.
Expression for cost is introduced in condition (6)
and the maximum available budget in condition (7).
Constraint (8) ensures that the maximum amount of
load planned in the operation is not exceeded. Ide-
ally, it should be an equality, but it could be unfea-
sible to deliver all planned aid, introducing it as a
goal (this issue will be clarified in the next section).
Finally, constraints (9)-(10) state the domain of the
variables.

A lexicographical dynamic flow model for relief operations

Please note that, in the plans given by the static
model, all flow of aid leaving one node is supposed
to be sent at the same time and thus two vehicle de-
partures from the same node cannot take place at
different moments; however, as it can be observed
in the structural model, the dynamic model does not
suffer from this limitation, because it allows some
vehicles to depart from a given node before or after
some other vehicles did (see variables NL;; j;), pro-
viding a particular schedule for each vehicle.

4. Attributes and criteria aggregation

Criteria concerning the amount of goods distributed,
time of operation, the equity of the distribution and
the cost of operation will be considered. For each of
these attributes a target will be defined and the goal
of achieving this target will be included.

The global amount of aid desired to be dis-
tributed has been defined previously in condition (8),
where the target is included as the parameter g.

COST is calculated by adding both fixed and
variable costs as stated in equation (6). As condi-
tion (7) stated before, it is bounded by the available
budget, but additionally, a desired target could be
defined.

For equity, a worst case philosophy is applied,
defining it as the most unsatisfied demand:

Oir

dem,-

DX >1 Vi/dem; >0 (11)

DX is intended to measure how equitable the dis-
tribution plan is, by calculating the largest propor-
tion of unsatisfied demand among the nodes. It is
a real number between O and 1: a distribution plan
in which the demand of all nodes is completely ful-
filled is associated to 0, while any solution in which
at least one demand node receives nothing is associ-
ated to 1. Note that the ideal value DX = 0 is only
achievable if the offer and the quantity finally dis-
tributed in the operation are not smaller than the de-

mand. Otherwise, the most equitable itinerary is ob-

tainedif DX =1— aidt;[)(t)a?%gglleil\r/lered, meaning that

exactly the same proportion of aid is transported to
each node. A target rgpx will be defined by the de-
cision maker.
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Two measures 77 and 7 dealing with the opera-
tion time are introduced:

Ty >t-BQ; vVt >tgr1 (12)
o= Y (1—1gr2)* BQ, (13)
1>18712

where BQ; is a binary variable being 1 if all load has
been delivered in period ¢t and O otherwise, and fgr
and rgr are the targets for 71 and 75, respectively.

T and T; are time measures defined so that they
are equal to O if the corresponding time target (g7
or tgr2) is achieved and they are positive otherwise.
Both variables will be used to measure the deviation
from the time targets, with a different purpose. If the
target g is not achieved, 7T} represents the number
of time periods required to complete the operation,
as stated by constraints (12). Hence, 77 grows lin-
early with the number of time periods used. How-
ever, we realized that it could be useful to consider
some other variable with a faster increase with the
time of the operation, in order to add higher penal-
ties to long operations. For this purpose, we defined
T; as stated in equation (13), so that it has a quadratic
increase on the number of time periods used if the
time target g7, is not achieved.

In order to guarantee that the binary variables
BQ, are defined correctly, constraints (14) to (18)
are added to the model:

BQ; 1 < BO; vt (14)

Nijt — Nijjr <mj-BQ; Vi, j,t (15)
Nijr — Nij: <mj-BQ; Vi, j,t (16)
ZZ Lipje <mj-BQ; V)t a7
BQ; €{0,1} Vit (18)

where m; =) ;vav;; for each j, that are bounds rep-
resenting the total number of vehicles of each type j
available in the network.

Notice that BQ; is equal to O only if N;;; = N;jr
for all i, j (see equations (15)-(16)), i.e., when all
vehicles have reached their final destination at time
period ¢. Note also that if BQ, = 0 for a given ¢ (rep-
resenting that the operation is finished at time period

1), it holds that BQ,» = 0 for all ¢’ > t, as implied by
equation (14).

The proposed attributes are aggregated using a
goal programming scheme, based on a satisfying
philosophy. As indicated earlier, goal program-
ming (see, for example, Charnes and Cooper ¢ and
Romero 2°) is based on the achievement of a set of
goals, more than on the optimization of the perfor-
mance measures. The resulting goal programming
model requires a set of additional conditions named
goal constraints (20)-(24), used to measure the de-
viations from the targets.

Y Qr+DVp=g¢ (19)
ildem;>0

COST —DV¢e < tgc (20)

DX —DVp < tap Q1)

T\ —DVry <1tgr1 (22)

T, —DVry <tgr2 (23)

COST,T,,Ts,DX,DV¢, DV, DVy1,DVis >0 (24)

Parameter ¢ is the target for the amount of aid to be
distributed, and coefficients tgc, tgp, tgr1 and tgr>
represent the targets defined by the decision maker
for the attributes related to COST, DX, Ty and 75, re-
spectively. Non-negative variables DV, DV, DVp,
DVy,, DV, are the unwanted deviations from the
given targets in the solution.

The problem is solved by lexicographical goal
programming, corresponding to two priority levels.
The primary goal is distributing the planned amount
of goods, or if unfeasible, delivering as much as pos-
sible, understood as a criterion of effectiveness. It
is considered that there is not possible trade-off be-
tween this criterion and other criteria such as time,
cost or equity. Then, the first priority level is defined
as reaching the goal of the quantity to be distributed,
and once the value of the deviation variable of equa-
tion (19) is fixed, the second level deals with the rest
of goals.

Level 1 is thus defined by (25), where the de-
viation of delivered aid with respect to the planned
amount of the operation is minimized.

min DV, s.t. (1) to (10),(19) 25)
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Once level 1 is solved and the optimal value of
DVQ* is obtained, constraint (19) must be redefined
to ensure that this amount of humanitarian aid is also
distributed in the second level. This is done by re-
placing constraint (19) by constraint (26).

Y Or+DVy=g¢ (26)
i|dem;>0

Hence, level 2 is defined by (27), where, once
the amount of aid to be delivered is fixed, the sum of
weighted deviations from the other targets is mini-
mized.

min Z %DVV s.t. (1) to (18),(20) to (24),(26)

(27)

Index v represents the attributes considered for
the second level of priority (COST, T, T, DX), o,
is the weight given by the decision maker to attribute
v and ¢, is its target (in order to manage together de-
viations measured in different units, the variables are
divided by their targets).

For technical purposes (obtaining an initial inte-
ger solution for the second level), equations (11) to
(24) will also be included in the first level, but note
that, since the deviation variables are not included in
the objective function, attributes related to cost, time
or equity do not affect the final solution until level 2.

5. Case Study

The aim of this section is to compare the pro-
posed dynamic model with the static one proposed
in Ortufio et al. !’ and also to study how they can
be coordinated to improve their performance. This is
done by using a realistic base case study to illustrate
how the models could be used in practice (Section
5.1), and also a testbed created from that base case,
that allows for a more comprehensive computational
study (Section 5.2).

5.1. Base case study

The static and the dynamic models proposed have
been tested and compared on a case study built on
the Haiti catastrophic earthquake of January 12th,

A lexicographical dynamic flow model for relief operations

2010. It is based on the planning of an operation
of humanitarian aid distribution in Port-au-Prince,
Haiti’s capital, and its surroundings. The main data
of the base case study have been mostly estimated
from the information contained at the web sites
OCHA " and Redhum.org '°.

The transportation network consists of 24 nodes
and 42 available links between locations. There are
9 settlements demanding a total of 250 tons of load,
3 depots (the port with 60 tons of available aid, the
airport with 80 tons, and Jimani, border city of Do-
minican Republic, with 140 tons) and 12 intermedi-
ate nodes.

In Figure 1 a map of the region is presented,
showing the network nodes (depots labeled 1-3, de-
manding nodes labeled by 10, 12, 13, 16, 17, 18,
20, 21, 22, and the rest for intermediate nodes) and
all available links. The demand of the demanding
nodes is, respectively, 30, 40, 30, 30, 10, 30, 40, 20,
20 tons.

The thickness of each link is related to its quality
(depending on if it is an unpaved road, a highway,
etc.), determining the maximum speed of the vehi-
cles travelling through them (through a thicker link
vehicles can travel faster).

We have considered the use of 3 types of vehi-
cles available for transportation, that are parked at
the depots and at a few intermediate nodes.

The final cost of the operation is given in dol-
lars and the time of response in minutes (not includ-
ing loading and unloading operations). Finally, the
planning operation consists of delivering 150 tons of
humanitarian aid with a budget of 80,000 dollars.

For additional details on this base case study we
refer the reader to Vitoriano et al. 26, where the same
base case study was also used to test the static flow
model mentioned earlier.

Both the static and the dynamic model were im-
plemented in GAMS ® and solved using CPLEX 2
in parallel mode as optimizer.

For this case study the duration of each time pe-
riod is chosen to be one minute. Besides, as the time
horizon is related to the total duration of the op-
eration, the operation time given by the static flow
model, increased by 10%, has been used to approxi-
mate the time horizon.
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Fig. 1. Transport network at Port-au-Prince (OCHA, 31

January 2010)

The targets proposed for the second level goals,
chosen in a very optimistic way, are 40,000$ for the
cost, 30 minutes for the operation time and 0.4 for
the equity. The corresponding weights, also for the
second level goals, are the following:

o Static model: oc =1, op =2, ar = 2.
e Dynamic model: oc =1, op =2, a7y = op = 1.

According to these weights, all attributes are
taken into account, but the equity of the distribution
and the time of response are given a higher impor-
tance than the cost of the operation. Note also that,
since the static model only uses one time measure 7’
and the dynamic model uses two time measures 7;
and 7>, the weight related to time, that is iy = 2, is
divided in two parts in the dynamic model, so that
ori+or=1+1=o7.

Figures 2 and 3 illustrate the solutions provided
by the static flow model and the dynamic model, re-

spectively, when applied to the case study described
above. In both cases, goals related to the quantity to
be distributed are reached.

In Figures 2 and 3 it can be observed that the
itineraries given by both models are quite similar,
differing in only a few links and delivering the same
amount of humanitarian aid to each demand node.
Furthermore, the values of the attributes of both so-
lutions are also quite alike: the cost of the solution
provided by the dynamic model is just 0.35% higher
than the cost of the solution provided by the static
one, while the operation time is 6.67% higher. Both
the cost and the operation time are higher in the dy-
namic model due to the discretization of the time
in periods; however, the itineraries given by the dy-
namic model are much closer to a real operation, and
the same node could be visited at different times.
Besides, since the same load is delivered to each
node, the equity is identical in both cases.
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This suggests that the static model approximates
quite well the dynamic one. Note that for the dy-
namic model it is crucial to estimate properly the
maximum number of time periods that are going to
be used because model dimensions increase dramat-
ically with this parameter. However, if they are too
few, it may not exist any feasible solution, or the
available time horizon would be so restricting that
several criteria could not have any implication. As a
result, we have decided to use the information of the
solution provided by the static model concerning the
operation time to evaluate the number of time peri-
ods to be used in the dynamic model.

5.2. Computational study

Starting from the initial base case study introduced
in the previous section, we have created 8 more test
instances by changing the maximum speed of the ve-
hicles and on the links, with the aim of making the
distribution times of the operations change so that
the new testbed could be used to compare the perfor-
mance of the static and the dynamic model in more
detail. This has been done by reducing the speeds
to 20%, 30%,. .., 90% of the original values of the
base case, obtaining 8 additional cases.

This testbed has been created in order to study
computationally the performance of the dynamic
model, because the slower the speed the higher the
operation time, and consequently, the higher the
number of time periods needed. Notice that the di-
mensions of the static model are independent of the
travel and operation times and it can be solved quite
fast in any case. However, the dynamic model re-
quires a higher number of time periods if the opera-
tion time is larger, increasing the model dimensions
and making it more difficult to solve. A solution to
this problem could be addressed by increasing the
length of the time periods, but this would lead to
higher discretization errors. Besides, for this com-
putational study this has not been done also to facil-
itate the comparison between both models.

The values of the attributes of the solutions pro-
vided by the two models on the 9 considered cases
are given in Table 1. The case considered is dis-
played in the first column and the information re-
garding cost, time of response and equity is given in

columns 2-3, 4-5 and 6-7, respectively. On each of
these groups, the first column shows the value of the
corresponding attribute in the solution provided by
the static flow model and the second column shows
the percentage increase observed in the solution pro-
vided by the dynamic model.

Table 1. Comparison of the attributes on the two models

Case| cost % dv. time % dv. equity % dv.
20146391 53.79 139.76 3.75 04 100
3046391 0.35 93.17 3.04 04 0
4046391 0.35 69.88 4.46 0.4 0
50|46391 294 5590 3.76 04 0
6046391 0.35 46.59 7.32 0.4 0
70146391 0.35 3993 5.18 04 0
8046391 0.35 3494 8.76 0.4 0
9046391 0.35 31.06 9.47 04 0

10046391 0.35 30.00 6.67 0.4 0

On the one hand, it can be observed that the first
case (all speeds are reduced to only 20% of the orig-
inal values) behaves differently than the others. This
is so because the dynamic model could not be solved
to optimality in less than half an hour of running
time, and thus the process was ended before obtain-
ing the optimal solution. As a consequence, the so-
Iution provided by the solver is the initial integer so-
lution found in level 1, in which cost, time or equity
were not taken into account. Then, the two solu-
tions given by the static and the dynamic model are
significantly different: the costs differ in more than
50% and the itinerary given by the dynamic model is
much less equitable, leaving some nodes unvisited.

On the other hand, the solutions provided by the
two models on the rest of the cases are notably sim-
ilar, delivering the same amount of aid to each node
(see the last column) with very similar costs (see col-
umn 3) and in a total time with small differences
(between 3% and 10%, see column 5). This small
increase of the cost and time of response on the dy-
namic model is due to the discretization of time,
needed to divide the time horizon in periods. We
observed that the designed schedules allow multiple
departures from each node, reducing the arrival time
at some demand nodes and thus providing a fastest
response to some of the recipients, even though the
longest path, determining the operation time, is in-
deed the same for both models. Please note also that
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solving the models using a certain tolerance may
also produce solutions that are slightly different, as
it happens for example in the case of 50% speed,
in which the cost is slightly higher than in the other
cases.

The running times (in seconds) required to solve
each model on each test case are shown in columns
2 and 3 of Table 2, together with the maximum num-
ber of periods defined on the dynamic model on each
case (column 4) and the dimensions of the model:
number of rows (column 5), total number of vari-
ables (column 6) and number of discrete variables
(last column). The number of time periods to ac-
tivate in the dynamic model on each case, as indi-
cated before, has been decided by using the infor-
mation given by the static flow model, that is much
faster to solve. Hence, for the 20% speed case, since
the operation time given by the static flow model
was 139.76, we decided to activate 145 time peri-
ods; analogously, an operation time of 93.17 on the
30% speed case led to the use of 102 periods, a time
of 69.88 to 76 periods and times smaller than 56 to a
fixed value of 61 periods for all remaining test cases.

Table 2. Complexity of the models

Case|t. s. t. d.|active| rows vars. disc.
20| 2.7 >1800.0| 145]72014 86973 36510
301 2.0 335.5| 102|50686 61217 25675
40| 1.9 169.9 76(37790 45643 19123
50/ 2.0 151.8 61|30350 36658 15343
60/ 1.9 3324 61|30350 36658 15343
700 2.1  404.0 61|30350 36658 15343
80| 2.1 223.1 61|30350 36658 15343
90| 1.9 148.2 61|30350 36658 15343

100| 2.1 143.2 61|30350 36658 15343

Table 2 shows clearly how, in all cases, the run-
ning time required to solve the dynamic model is
significantly higher than the one to solve the static
flow model, specially in the 20% speed case (see first
row), which does not reach optimality in less than
half an hour, in comparison with less than 3 seconds
for the static one. Concerning the complexity of the
model (see last 3 columns), it can be observed how
it is directly related to the number of time periods
that are active, highlighting again the importance of
finding good estimates for the maximum number of
time periods to use.

A lexicographical dynamic flow model for relief operations

One of the main conclusions of this computa-
tional study is the close relation between the values
of the criteria obtained by both models, and espe-
cially for the operation times. This relation supports
the strategy of solving the model in a coordinated
way, obtaining the time horizon to be included in
the dynamic model from the static one.

6. Conclusions

A dynamic flow model for solving the aid distribu-
tion problem in a disaster situation considering mul-
tiple criteria has been presented in this paper. The
model provides a realistic schedule for the distribu-
tion of humanitarian aid taking into account goals
related to quantity to be distributed (effectiveness),
cost, time and equity. This model builds upon the
static model introduced in Ortufio et al. '7 by con-
sidering a time horizon divided in periods of time
that allows the model to be much closer to the oper-
ation scheduling.

The approach chosen to deal with these criteria is
lexicographical goal programming with two priority
levels. The first one is to reach the goal of distribut-
ing the planned amount of humanitarian aid with the
available resources and infrastructures (not allowing
tradeoff with other performance criteria), providing
in addition an initial integer feasible solution in a
very short computational time. Once the amount of
aid to be distributed is fixed, the second level is in-
tended to find a distribution scheduling meeting a set
of goals related to cost, operation time and equity of
the distribution.

The second level takes significantly longer to be
solved, being crucial to estimate properly the num-
ber of time periods to be used, so that the solution
is not restricted but the model is not unnecessarily
complex to solve. The static flow model showed to
be very helpful in this task, because it provides good
estimates of the operation times and it can be solved
very fast. This shows that the coordination of the
static and the dynamic model improves significantly
their performance.

Summarising, the main contributions of this pa-
per are as follows: (1) The introduction of a dynamic
flow model providing a suitable scheduling for the
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aid distribution through a time horizon, dealing with
four criteria (total quantity distributed, time, equity
and cost) in a lexicographical goal programming
scheme. (2) The validation of the proposed approach
in a realistic case study based on the Haiti 2010
earthquake. (3) The comparison between the pro-
posed dynamic model and the static one presented in
Ortufio et al. 7, also based on the Haiti case study.
(4) The computational experiments which suggest
the strategy of using the static flow model to esti-
mate the number of time periods to be used by the
dynamic model. This shows that the coordination
of both models improves significantly their perfor-
mance.

Future work will be focused on the comparison
of both models with other case studies, the coordi-
nation of both models to obtain a better approxima-
tion of the time horizon, the inclusion of other per-
formance criteria such as those ones considered in
Vitoriano et al. %, and the inclusion of other time
measures in order to deliver goods to each demand
node as soon as possible. Finally, a decision aid sys-
tem should be developed, ready to be used by any
organization involved into humanitarian relief oper-
ations.
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