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Abstract 

This paper uses Gumbel-Hougaard (G-H) copula, Clayton copula and Frank copula to construct joint distributions 
of hydrological variables of the two typical stations on the Yellow River Region, including the annual maximum 
flood magnitude (AMFM), the annual maximum flood occurrence date (AMFOD) and the annual runoffs (ARs). 
The results give the joint distribution between each pair of the variables. Also an isoline of the concurrence return 
periods between the AMFMs of the two stations was drawn up.  
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1. Introduction 

Water resource is a kind of indispensible natural resource 
to human society. Large scale hydrological issues have 
drawn great attention by researchers all over the world 
because it may have some impacts on the living, 
economy and society. Costa, M. H. et al 1 studied the 
effect of changes in land cover on the discharge of the 
Tocantins River (175360 km2) in Southeastern Amazonia 
and found that the change of vegetable cover did 
disturbed the hydrological response of the region. Lin, Y. 
and Wei, X. H. 2collected lone-term hydrological and 
climate data and large scale cumulative forest harvesting 
in the Willow watershed of 2860 km2 in Canada and 
investigated the impact of the harvesting on hydrology.  

The Yellow River is the second longest river in china 
and it covers large area of 752443 km2 where about 110 
million residents live. The water resource of the Yellow 
River is 2.6% of national total water resources, ranking 
the fourth in the national seven longest rivers. What is 
more, the per capital water resource is one third of the 
national average level. Thus, water resource in the 
Yellow River region is in shortage. The runoff of the 
Yellow River is not uniformly distributed through a year. 
About 60% of the runoff of the Yellow River happens 
during July to October (the flood season) and runoff from 
March to June only covers 10%-20% of the total runoff 
of a year. Most of the flood during the flood season 
comes from the middle region of the Yellow River where 
two types of flood combination can lead to devastating 
flood of the Huayuankou station and cause flood disaster 
to the downstream region of the Yellow River, namely, 
“up large” flood (it comes from the Hekou station to 
Longmen station or from longmen station to Sanmenxia 
station) and “down large” flood (it comes from 
sanmenxia station to Huayuankou station). Among the 
two types of flood, the “down large” is more threatening 
to the downstream region where 70 million people live 
because of the high flood peak discharge it brings and the 
short time it needs to reach peak. On the other hand, In 
the climate changing environment, water resources is 
gradually shrinking, Flood is a kind of water resource and 
the measures of making flood of Yellow River useful 
should be considered in the case that Yellow River is in 
shortage. So it is important to study the possible water 
resource—the flood. In order to know the water resource 
of Sanmenxia station and Huayuankou station well, some 
emphasis should be drawn to analyzing the characteristics 

of the flood and runoff of the Sanmenxia and 
Huayuankou station. 

 Some work has been done to analyze some typical 
great floods between Sanmenxia and Huayuankou 
stations. Zhang et al. 3explored the relationship between 
the floods of July 1958 and August 1982 in Sanmenxia 
–Huayuankou reach and found that the temporal and 
spatial distribution of the rainstorm has great impact on 
the relation between rainstorm and flood. Wang et al. 
4studied the extraordinary rainstorm and modeled the 
eventual flood in 1761 on the Sanmenxia-Huayuankou 
reach of Yellow River. This paper, however, mainly 
considers the joint behavior between the flood and runoff 
of the two stations using copula method and von Mises 
distribution. 

Copula is a relatively new way to build joint 
distribution of several variables independently of the 
marginal distribution. It is widely used in hydrologic 
frequency analysis. Zhang and Singh5 derived bivariate 
rainfall frequency distribution using Archimedean 
copulas and proved that the advantage of copula method 
is the variables do not need to have the same marginal 
distributions. Xiao et al. 6 employed G-H copula to build 
joint distribution of flood peak and flood volume, from 
which synthetic flood hydrographs are constructed. Kao 
and Govindaraju7 used copulas to capture the joint 
behaviors of drought information. Guo et al. 8 
summarized the using of copulas in multivariate 
hydrological analysis and prospected the future applying 
of the method. Lee, T. and Salas, J. D.9 introduced copula 
method to stochastic streamflow simulation. Chowdhary, 
H. et al. 10discussed selection procedure of copulas and 
demonstrated their application in the bivariate flood 
frequency analysis. Some researchers have accomplished 
some work via copulas considering the runoff and 
drought of the Yellow River. Shiau et al.11 built bivariate 
droughts distributions and investigated historical 
noticeable droughts of the Yellow River by means of 
Clayton copula. Fu et al. 12 used G-H copula to calculate 
the encounter risk between the abundant and low runoffs 
from Weihe River and Fenhe River which are the two 
largest tributary of the Yellow River. 

The von Mises distribution is widely used in analysis 
of circular statistics in medical science, statistic analysis 
and some other research fields. Mooney et al. 13 
introduced mixed von Mises distribution to illustrate the 
distribution of sudden infant death syndrome. Catar et al. 
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14explored the distribution of directional wind speed 
using a finite mixture of von Mises distributions. 
Recently some researchers have done work in the joint 
distribution of flood date and magnitude. Fang et al.15 for 
the first time successfully fitted the flood occurrence date 
using von Mises method and construct joint distribution 
of flood occurrence date and flood magnitude of 
Qingjiang River using Gumbel Archimedean copula. Yan 
et al.16 studied the joint distribution of flood occurrence 
date and magnitude of Qingjiang River and Changjiang 
River using mixed von Mises method and Clayton 
copula.  

On the basis of the above treatises, this paper mainly 
discusses the encounter risk of the annual maximum 
flood magnitudes (AMFMs) and annual maximum flood 
occurrence dates (AMFODs) between Sanmenxia station 
and Huayuankou station and of each station using the 
Archimedean copula such as G-H copula, Clayton copula 
and Frank copula. Also the joint distribution of the annual 
runoffs (ARs) between the two stations will be 
established. First, the joint distributions will be 
constructed. Then the daily encounter risk of AMFMs 
between the two stations can be calculated, so as the 
encounter risk of a specific magnitude of flood peak and 
a given date of each station. Further, the paper also deals 
with the conditional joint probability between the 
AMFMs of the two stations and the conditional joint 
probability between the AMFOD and AMFM of each 
station. Also the joint return periods and concurrent 
return periods between the AMFMs of the two stations 
will be studied. Finally, an isoline of encounter return 
periods of equivalent frequency combination is made.  

2. Methodology  

2.1. Von Mises distribution  

The AMFOD can be regarded as a circular vector which 
can be demonstrated by von Mises distribution. Von 
Mises distribution has been used in demonstrating the 
distribution of sudden infant death syndrome (see Ref. 
13) and the distribution of directional wind speed (see 
Ref. 14). Some researchers have introduced von Mises 
distribution into hydrological variable analysis. Fang et 
al. 15and Yan et al.16 used this method to analyze the 
distribution of flood date. The probability density 
function (PDF) of a variable X fitting von Mises 
distribution is defined as: 

0

exp[ cos( - )]
( ) .

2 ( )

k x
f x

I k




；        (1) 

Where, , )Tk （ , 0 2 ,0 2x        and 
0k  .  is the mean position parameter, k is the 

concentration parameter. 0 ( )I k is the modified Bessel 
function of order zero. The flood date can be transformed 
as follows: 

2
,0 2 .i i ix D x

T

              (2) 

Where, iD is the i th day during the calculating period. 
T is the length of the calculating period. Thus, the date 
can be transformed to a series which can be illustrated by 
the von Mises distribution. 

2.2. Marginal distributions 

P-Ⅲ distribution is widely used in flood frequency 
analysis and the paper prefers the method to illustrate the 
distribution of the AMFM and AR of Sanmenxia station 
Huayuankou station. The PDF of a variableY fitting P-Ⅲ 
distribution is given as: 

                      

0( )1
0( ) ( ) exp

( )
y af y y a





  


, 0.y a   (3) 

Where,  ,  and 0a are parameters of shape, 
concentration and mean position, respectively. These 
parameters are estimated by linear-moment (LM) 
method. 

2.3. General theory about copulas 

Copulas are functions that link multivariate probability 
distributions as the statement by Nelsen17 and it can 
capture the dependence feature between multiple 
different marginals (see Ref. 18). The advantage of using 
copula is that copula can demonstrate the joint 
characteristics of multiple variables independent of their 
marginal distributions. In terms of bivariate situations, let 

( )XF x u be the cumulative density function (CDF) 
of X and ( )YF y v  be the CDF ofY .Then the copula 
connects two marginal distributions to form a bivariate 
probability distribution ( , )H x y  given by: 

                          

( , ) ( ( ), ( )) ( , ).X YH x y C F x F y C u v      (4) 
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Where, C  is the function of the corresponding 
copula. is a parameter of the copula function. Details 
about copulas can be found in the book of Nelsen17. G-H 
copula, Clayton copula and Frank copula are three 
common used families from Archimedean copulas in 
hydrology as stated by Genest19. Table1 shows the 
relationships between Kendall’s tau and the parameter  
and the corresponding functions of each of the three 
copulas.  

Table1. Relationship between Kendall’s tau and the 
parameter   and the corresponding functions of three 
Archimedean copulas. 

Family Kendall’s tau Function of copula 

G-H 1 1/   1/exp [( ln ) ( ln ) ]u v     

Clayton /( 2)    1/( 1)u v       

Frank 11 4 / 4 ( ) /D     1 [exp( ) 1][exp( ) 1]
ln 1

exp( )

u v 
 

  
 

 

 

Note here 1(.)D is the first Debye function. t is either u or v  

2.4. Way of choosing proper copula and 

parameters 

A key step of building joint distributions is choosing the 
best fitted copula and the corresponding parameters. This 
paper introduces two ways to decide the most suitable 
copula. One is the canonical maximum likelihood 
estimator (CMLE) which is one of the semiparametric 
(SP) methods and proved to be better than the maximum 
likelihood estimator (MLE) and the inference function 
from margins (IFM) method in most situations as 
mentioned by Kim20. Details about the CMLE can be 
found in the work done by Vandenberghe 21. The other 
one is estimating the parameter  via relationship 
between  and Kendall’s tau shown in Table 1.  

Then, in order to test the goodness of fit of the copula 
methods, two criterions will be applied, including the 
AIC (see Ref. 5) value and ordinary least square (OLS) 
value: 

                               

2

1

1
= ( ) .

n

ei i
i

OLS p p
n 

            (5) 

          

2

1

1
log[ ( ) ] 2 .

n

ei i
i

AIC n p p m
n 

  
    

 (6) 

Where, n is the length of the data, m is the number of 
the parameters, ip is the theoretical joint probability, 

eip is the empirical joint probability given as: 

          

1

. ( , ) 0.44

( , ) .
0.12

n

j i j i
j

ei i i

Noof x x y y

p p X x Y y
n



  
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


  (7) 

Where the . ( , )j i j iNo of x x y y  means the number 
of the pairs of variables that satisfy iX x and iY y . 
The best choice of  and copula are supposed to bring 
with the minimum AIC and OLS values. 

3. Case Study 

Annual maximum flood peaks and the related flood 
occurrence dates of 1958-1988 (no data of 1986) from 
Sanmenxia station and Huayuankou station are collected, 
so are the annual runoff series from the two stations 
during the same time domain. Using the von Mises 
distribution and P-Ⅲ distribution discussed above, the 
marginal distribution parameter and corresponding 
testing results are given in Table 2 and Table 3. The KSP 
in Table 3 is K-S (Kolmogorov Smirnov Test) test value 
calculated by Matlab and  is significance level. 
If / 2KSP  then the theoretical distribution can be 
accepted. The Tables show that the Bias and RMSE 
values are both small and all the corresponding KSP 
values are acceptable, which indicates that the von Mises 
and P-Ⅲdistribution of the two stations fit well.  

 After the marginal distribution is obtained, it comes 
to the choice of the parameter and the preference of 
copula through the following steps: 
(i) Calculate the marginal empirical probability of 

AMFOD, AR, and AMFM using the equation: 

                                    

( )
( ) ( ) .

1i i

m i
F x p X x

n
  


           (8) 

Where, ( )m i is the index of m th smallest observation 
in the data set of a variable arranged in ascending order. 
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Table2. Parameters of von Mises and P-Ⅲ distribution of Sanmenxia and Huayuankou station. 

  Von Mises P-Ⅲ 

 
   k  vC  

sC  mean(cms) 

Annual maximum 

flood  

Sanmenxia station 4.029 1.7907 0.36 1.33 5534.67 

Huayuankou station 3.932 1.6821 0.45 1.87 7799.67 

    k  vC  
sC  mean(108cm) 

Annual Runoff Sanmenxia station － － 0.35 1.11 403.09 

Huayuankou station － － 0.38 1.04 439.61 

 

Table3. Parameters testing results of von Mises and P-Ⅲ distribution of Sanmenxia and Huayuankou station. 

 AMFM and AMFOD AR 

 Sanmenxia station Huayuankou station Sanmenxia station Huayuankou station 

 P-Ⅲ Von Mises P-Ⅲ Von Mises P-Ⅲ P-Ⅲ 

RMSE 0.0718 3.5761 0.0901 5.2698 0.0425 0.0406 

Bias -0.0206 1.0362 0.0277 1.3847 -0.0164 -0.0124 

KSP 0.9360 0.76 0.9360 0.9360 0.9970 0.9970 

Note here KSP is the K-S test value and significance level 0.05   

 
(ii) Use CMLE to estimate  ; 

(iii) Calculate Kendall’s tau between the AMFOD and 
the AMFM of each station, between the AMFODs of 
the two stations, between the AMFMs of the two 
stations and between the ARs of the two stations 
respectively. 

(iv) Estimate 


 via the relationship between Kendall’s 
tau and 


 as demonstrated in Table 1; 

Using , 


 and the three types of copula to build 
joint distributions between pairs of variables and compare 
the results of Goodness of fit (GOF), then make a choice 
of   and copula which brings the best GOF. The GOF 
results of different  and copula are shown in Table 4. 
The best fitting situation are represented by the 
highlighted minimum OLS and AIC value. Thus it can be 
deduced that the G-H copula fits the bivariate distribution 
between AMFMs of the two stations and the joint 
distribution between the ARs of the two stations best; 
The Clayton copula is the best choice to construct joint 
distribution between AMFOD and AMFM of Sanmenxia  

 
station and the joint distribution between the AMFODs of 
the two stations. Frank copula performs best in building  
the joint distribution between the AMFOD and AMFM of 
Huayuankou station. Table 4 also shows that in most 
situations, the parameter estimated via Kendall’s tau 
performs better than that from CMLE, except for the joint 
distribution between the AMFOD and AMFM of 
Huayuankou station in which case the Kendall’s tau is 
negative.  

We plot the best fit copula probabilities against the 
empirical probabilities to check the see the modeling 
effect more straightly. Comparison of empirical joint 
probability and theoretical joint probability are shown in 
Fig. 1-5 corresponding to the chosen copulas. It can be 
seen that all the copulas fit well with the empirical joint 
distributions. So we can implement the fitted copulas to 
analyze the characteristics of the variables of the two 
stations. 
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Table 4  GOF results of different  and copulas. 

Bivariate variables  CMLE Via Kendall’s tau 

Between AMFMs of the two 

stations 

 

OLS 
G-H 0.0486 0.0474 

Clayton 0.0586 0.0594 

Frank 0.0540 0.0530 

AIC 

G-H -179.44 -180.96 

Clayton -168.21 -167.45 

Frank -173.08 -174.20 

Between AMFM and AMFOD 

of Sanmenxia station 

 

OLS 

G-H 0.0808 0.0813 

Clayton 0.0814 0.0804 

Frank 0.0812 0.0809 

AIC 

G-H -148.93 -148.23 

Clayton -148.49 -149.23 

Frank -148.64 -148.89 

Between AMFM and AMFOD 

of Huayuankou station 

 

OLS 

G-H 0.0381 － 

Clayton 0.0388 － 

Frank 0.0353 0.0353 

AIC 

G-H -194.00 － 

Clayton -193.00 － 

Frank -198.60 -198.57 

between AMFODs of the two 

stations 

OLS 

G-H 0.0712 0.0719 

Clayton 0.0711 0.0607 

Frank 0.0649 0.0644 

AIC 

G-H -156.50 -155.90 

Clayton -156.61 -166.14 

Frank -162.07 -162.55 

between ARs of the two 

stations 

OLS 

G-H 0.039 0.0383 

Clayton 0.0502 0.049 

Frank 0.0426 0.0431 

AIC 

G-H -192.72 -193.69 

Clayton -177.50 -179.01 

Frank -187.41 -186.72 

 

4. Results and discussions  

The paper implemented three common used Archimedean 
copulas, namely G-H copula, Clayton copula and Frank 
copula to analyze the joint behavior between several 

hydrological variables e.g. annual maximum flood peak 
and occurrence date of Sanmenxia station and 
Huayuankou station and compare the GOF of different 
copulas and estimators. Result shows that G-H copula is 
the most fitted model for the joint distribution between 
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the AMFMs of the two stations and between ARs of the 
two stations. The Clayton copula performs best in 
constructing the joint distribution between AMFM and 
AMFOD of Sanmenxia station and the joint distribution 
between the AMFODs of the two stations. The Frank 
copula can illustrate the joint distribution between 
AMFM and AMFOD of Huayuankou station best. CDFs 
and contour isolines of the above joint distributions can 
be drawn up from which it is convenient to find the joint 
probability. Then the joint behaviors of the variables and 
encounter risks can be discussed. 

First, the conditional joint probability can be inferred 
from the marginal distributions and joint distribution as 
follows: 

( , ) 1 ( ) ( ) ( , )
( | ) .

( ) 1 ( )

P X xY y F x F y H x y
P X x Y y

PY y F y

    
   

     

 (9) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Comparison of empirical and theoretical joint 

probability of the AMFOD and AMFM of Sanmenxia 
station

Fig. 3. Comparison of empirical and theoretical joint probability 
of the AMFOD and AMFM of Huayuankou station 

Fig. 4. Comparison of empirical and theoretical joint probability 
of the AMFODs of Sanmenxia and Huayuankou stations 

Fig. 5. Comparison of empirical and theoretical joint probability 
of the ARs of Sanmenxia and Huayuankou stations

Fig. 1. Comparison of empirical and theoretical joint probability 
of the AMFMs of Sanmenxia and Huayuankou stations 
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The situation is the same when reversing X and Y . If we 
take the AMFMs of the two stations as X and Y , Eq. (9) 
can be used to analyze the probability of happening flood 
of or exceeding a given magnitude on one of the stations 
when the other station suffers a flood of or exceeds some 
magnitude. Another application of Eq. (9) is that if we set 
AMFM as X and AMFOD as Y or vise versa, we are 
able to estimate the probability of happening flood of or 
exceeding a given magnitude after some given date on 
each of the stations or the probability of a flood 
happening after a given date when the flood is of or 
exceeding some magnitude. 

For instance, use Eq. (9) to calculate the conditional 
joint distribution between AMFMs of the two stations 
and between AMFM and AMFOD of each station. Here, 
take the former situation for example, the conditional 
probability of Huayuankou station is drawn up in Fig. 6 
on the condition that the annual maximum flood 
magnitudes (AMFMs) of Sanmenxia station are 
respectively 11969 cubic meter per second (cms) and 
8201 cms. It can be deduced from Fig. 6 that the flood 
peak values of marginal distribution are lower than 
estimated values from conditional joint distribution, 
which indicate that it is safer to use joint distribution than 
univariate distribution to analyze flood frequency. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Further more, it is of interest to discuss the 

probability of a flood of or exceeding a given magnitude 
happening on a specific date. The following equation can 
be used to derive the risk of each station: 

               

1

1 1

( , )

( ) ( ) ( , ) ( , ).

i
q i i

t i t i i i

P P t T t Q q

F t F t H t q H t q



 

   

   
 (10) 

Where, i
qP is the encounter risk of AMFOD and AMFM. 

T is the happening date of the AMFM. Q is the 
magnitude of the AMFM. Similarly, daily encounter risk 
of AMFODs between the two stations can be inferred as: 

1 1

1 1 1 1

( , )

( , ) ( , ) ( , ) ( , ).

i
i i s t i h t

i i i i i i i i

P P t T t t T t

H t t H t t H t t H t t
 

   

    
   

(11) 

Where, sT and hT is the AMFOD of Sanmenxia station 
and Huayuankou station, respectively.  

Eqs. (10-11) are applied to illustrate the encounter 
risk of AMFODs of the two stations and the encounter 
risk of AMFM and AMFOD of each station. Using the 
first encounter risk, it is convenient to obtain the 
probability that the AMFMs of the two stations 
happening on the same date. The second risk stands for 
the probability that a flood of or exceeding some 
magnitude happening on a given date. Take the former 
encounter risk for example, Fig. 7 shows the daily risk of 
the Sanmenxia and Huayuankou station both suffering 
annual maximum flood. It can be referred from the figure 
that during the flood season, the risk first rise in June and 
arrives at peak. After that the encounter risk declines with 
the time. The greatest risk appears on about August 24th. 

When analyzing the flood characteristics of the two 
stations, joint return period and concurrent return period 
are always should be considered. Joint return period 
stands for the return for either one of the two stations 
suffering some magnitudes of AMFMs. And the 
concurrent return period can represent the return for the 
two stations both suffering some magnitudes of AMFMs. 
They are given as: 

                           

1 1
( , ) .

( ) 1 ( , )jT x y
P X x Y y F x y

 
  

   (12) 

                 

1
( , )

( , )

1
.

1 ( ) ( ) ( , )

c

X Y

T x y
P X x Y y

F x F y F x y


 


  

   (13) 

Fig. 6. Conditional frequency of Huayuankou station on the 
condition of different AMFM of Sanmenxia station
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Where, ( , )jT x y and ( , )cT x y represent for joint return 
periods and concurrent return periods.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 Eqs. (12-13) are implemented to calculate the joint 

and concurrent return periods between the AMFMs of 
Sanmenxia station and Huayuankou station. Fig. 8 and 
Fig. 9 illustrate the CDF of the joint return periods and 
concurrent return periods between the annual maximum 
flood magnitudes (AMFMs) of the two stations, from 
which the return periods of any flood magnitude 
combination between the two stations can be inferred. 
Fig. 10 gives an isoline of the concurrent return periods. 
From Fig. 10, it is convenient to check out the concurrent 
return periods between the AMFMs of Sanmenxia and 
Huayuankou station or find theAMFM of one station 
when the other and their concurrent return period is 
given. For instance, when the flood peak of Sanmenxia 
station is 11777 3 /m s and that of Huayuankou is 
13875 3 /m s , then it can be inferred that their concurrent 
return period is 100 year.  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Conclusions  

This paper studied the characteristics of the flood and 
runoff of the Yellow River, China using 30-year long 
time series of annual runoff and annual maximum flood 
from two typical stations on the middle and lower reaches 
of the region. Von Mises distribution is applied to 
analyze the AMFOD distributions and P-Ⅲ distribution 
is used for illustrating the AMFM and AR distribution. 
The paper presents the joint distribution between the 
AMFMs and the corresponding annual AMFODs of 
Sanmenxia and Huayuankou station. The joint 
characteristic of ARs of the two stations is also 
demonstrated. Some conclusions can be drawn as 
follows:  

Fig. 7. Daily encounter risk between the AMFODs of 
Sanmenxia and Huayuankou station 

Fig. 8. Joint return periods of AMFMs of Sanmenxia 
and Huayuankou station 

Fig. 9. Concurrent return periods between the annual 
maximum flood magnitudes of Sanmenxia and 

Huayuankou station 

Fig. 10. isoline of concurrent return periods between the 
annual maximum flood magnitudes of Sanmenxia and 

Huayuankou station 
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(i) It is safer to choose copula method than univariate 
method in flood frequency analysis.  

(ii) The highest risk of Sanmenxia station and 
Huayuankou station both suffering the annual 
maximum flood peak appears on about August 24th. 

(iii) This paper mainly discusses 3 common Archimedean 
copulas and do not consider the fitness of the other 
one parameter copulas and this needs further study. 

(iv) The paper uses CMLE and estimating by Kendall’s 
tau method to estimate the parameter of copula and 
the results show that parameters estimated via 
Kendall’s tau produce a better GOF when the 
Kendall’s tau is positive and parameters estimated by 
CMLE are fit better when the Kendall’s tau is 
negative. But since the number of the flood data is 
relatively small, it may be necessary to have a deeper 
discuss about the parameter estimating methods 
according to Favre22. 
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