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Abstract

The Bayesian estimation of the conditional Gaussian parameter needs to define several a priori parame-
ters. The proposed approach is free from this definition of priors. We use the Implicit estimation method
for learning from observations without a prior knowledge. We illustrate the interest of such an estimation
method by giving first the Bayesian Expectation A Posteriori estimator for conditional Gaussian parame-
ters. Then, we describe the Implicit estimators for the same parameters. Moreover, an experimental study
is proposed in order to compare both approaches.

Keywords: Conditional Gaussian Bayesian networks; Bayesian estimation; Implicit estimation; Parameter

learning.
1. Introduction

Bayesian Networks (BNs) are probabilistic graphi-
cal models widely used for knowledge representa-
tion and reasoning within an uncertain framework
123 Learning Bayesian networks from data, i.e.,
obtaining automatically the structure and parameters
from information belonging to the available sam-
ples, is a NP hard problem *. In this paper, we fo-
cus on the first component of BN learning which is
parameter learning. Classical methods such as Max-
imum Likelihood (ML) or Bayesian methods such
as Maximum A Posteriori (MAP) or Expectation A
Posteriori (EAP) can be used for parameter learning,
whatever the BN parametrization: discrete BNs, lin-
ear Gaussian BNs, or conditional Gaussian BNs.

In fact, by using the Bayesian approach, the pos-

terior distribution is given by multiplying the like-
lihood function by a known prior distribution and
then dividing by a norming constant. Consequently,
this prior information is used, together with the data,
in order to derive the posterior distribution. The
use of prior allows us to take into account the ex-
pert knowledge. Nevertheless, this prior is not al-
ways available. As we know, the choice of a spe-
cific prior information in Bayesian approaches is of-
ten problematic and is even considered to represent
the major weakness of such methods because a bi-
ased result can be obtained if we make a bad choice
of the prior distribution. Hence, if we can find the
posterior distribution with the data likelihood, the
method will be much easier to use. This represents
the principle of the Implicit approach >. This ap-
proach is similar to the Bayesian one, and happens
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in a natural context without specifying any prior pa-
rameters. We use the Implicit method in order to
overcome some of the shortcomings associated with
the Bayesian estimation concerning the choice of
the prior distribution parameters. The implicit ap-
proach has already been applied for learning param-
eters in discrete BNs %7 with an extension for struc-
ture learning 8. We propose here new theoretical
results concerning Implicit learning in Conditional
Gaussian Bayesian Networks (CGBNs) in different
contexts used in real applications by dealing with
tied or untied parameters. In such models, priors im-
plied can be more complex to express as compared
with the usual Dirichlet priors for discrete variables.
By going back to the classical notations used in the
domain, and following Murphy’s work ° devoted
to Maximum Likelihood (ML) and Bayesian Maxi-
mum A Posteriori (MAP) estimation for conditional
Gaussian models, we enlarge them with Expectation
A Posteriori (EAP) and Implicit approaches. The
outline of this paper is organized as follows: in sec-
tion 2, we briefly present the Implicit method and
recall the principles of Implicit estimation. In sec-
tion 3, we discuss the problem of parameter learn-
ing in CGBNs by using Bayesian estimation. In sec-
tion 4, we present parameter estimation in CGBNs
using Implicit approach. Then, both approaches are
formally compared in section 5 and experimental re-
sults are provided in section 6. Finally, we conclude
with perspectives for future work.

2. Implicit estimation

2.1. Principle

The Bayesian estimation method gathers the infor-
mation of the data (the data likelihood) with the in-
formation collected from past experience (prior dis-
tribution) and finds a new updated information (pos-
terior distribution). The Implicit estimation is an al-
ternative to Bayesian estimation and does not need
to specify any prior for the parameters. In the con-
text of the Bayesian theory, the unknown parameter
0 in a statistical model is assumed to be a random
variable with a known prior distribution. This prior
information is used, together with the data, in or-
der to derive the posterior distribution of 6. The

choice of a prior is generally based on the prelim-
inary knowledge of the problem. So, the basic idea
of the Bayesian theory is to consider any parameter
0 as arandom variable and to determine its posterior
distribution given the data and the assumed prior.
Alternatively, the concept of Implicit distribution
previously proposed by>, can be described as a kind
of posterior distribution of a parameter given the
data. To explain the principle of Implicit distribu-
tion, let us consider a family of probability distribu-
tions {p(x|0), 0 € O} parameterized by an unknown
parameter 0 in a set ®; where x represents the ob-
served data.

The Implicit distribution is computed by multiplying
the likelihood function p(x|6) by a counting mea-
sure o if ® is a countable set and by a Lebesgue
measure o if @ is an open set (¢ depends only on the
topological structure of ®) and then, dividing by the

p(x|0)o(dO). There-

fore, the Implicit distribution is given by the follow-
ing formula

0:(d8) = {c(x)} ' p(x|6)c(d6)

and plays the role of a posterior distribution of 6
given x in the Bayesian method, corresponding to
a particular improper prior which depends only on
the topology of ® (without any statistical assump-
tion). Provided its existence (which holds for most
statistical models), the Implicit distribution can be
used for the estimation of the parameter 8 following
a Bayesian methodology. The Implicit estimator 0
of 0 is nothing but the mean of the Implicit distribu-
tion, that is

norming constant ¢(x) = /

6—E(6)x) = /@)egx(de).

Readers are referred to the paper from > for a pre-
sentation of the theoretical foundations of Implicit
estimation and some selected applications.

2.2. Example with variance estimation

Let X; ~ N(0,0%) be a centered Gaussian ran-
dom variable with an unknown variance 62 €
]0,+0[, the likelihood of o for n indepen-
dent observations x = (xi,...,x,) is [(x,0%) =
(210%) L exp{—Ls X1 221
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and then, its sample Implicit distribution Q,(dc?) is
given by

n
(0%) Sexpl~ o Y. 7)

Q&(dcz) = l—w(g _ 1) =l

I & Hon
(5 le?)z g
Py

By a standard calculation, we show that the Implicit
estimator of 62 is

(62" =E(0*(Xi,.... X,) = f}x? (1)

with n > 4, which is different from the ML esti-
mator for which the normalizing factor is % We
can compare this result with the Bayesian estima-
tion obtained by the EAP (Expectation A Posteriori)

approach

Y X?+2b

~2\Bay __
o =
(6%) n+2a-2

; 2)

where the prior distribution of ¢ is an Inverse-
Gamma /G(a,b) with a shape parameter a and a
scale parameter b.

First, we can see that the Implicit estimator does
not need to tune any hyper-parameters such as a and
b in the EAP approach. We can also notice that the
equality between the two estimators of variance ob-
tained by Bayesian and Implicit approaches is es-
tablished for a = —1 and b = 0, which is impossi-
ble since a and b (parameters of an Inverse Gamma
distribution) have to be positive. This shows that the
Implicit estimator does not correspond to a Bayesian
one for specific prior values. To compare the perfor-
mances of Implicit and Bayesian method, we start
(as a first step) by simulation of data using Matlab
software, and (in the second step) we validate our re-
sults by comparing them with those of the Bayesian
method. To compare two statistical approaches and
to appreciate in which measure the result will be
more definite, we choose an indicator which is the
Mean Squared Errors (MSE) between the estimator
and the true value of the parameter. We generated
1000 observations from the Gaussian model, then
we compare the Bayesian and Implicit estimators in
terms of the mean squared errors (MSE) for differ-
ent true parameter values of 2. We replicate the

process 10000 times and we compute the average
estimates and the MSE. We perform two Bayesian
simulation studies based on two different prior den-
sities for the parameter 6. The results are reported
in Table 1.

Bayesian estimation (Bay*) is obtained by speci-
fying true values as prior parameters. Bayesian esti-
mation (Bay**) corresponds to parameters estimated
by using prior values different from the true ones.

The comparison of MSE obtained by Bay* and
Bay™* proves the sensibility of the parameter estima-
tion with respect to the choice of the prior distribu-
tion. This result proves the fragility of the Bayesian
estimation. A biased result can be obtained if we
make a bad choice of the prior distribution. Results
obtained by Implicit approach (without need of any
prior information) and Bay™* approach (based on true
values as priors) are close to the true values. We
notice a very good concordance between both ap-
proaches. However, we may point out a better preci-
sion of parameter estimated by Implicit method than
the corresponding one for Bay** method (with pri-
ors different from true values). These results are il-
lustrated in Fig.1. The yellow part corresponds to
the area where the Implicit MSE is smaller than the
Bayesian MSE with respect to the values of the prior
coefficients a and b. Whatever the value of 2 (a low
or a high one), the Implicit MSE is often lower than
the Bayesian one.

2.3. Related works

As seen previously, the Implicit estimation does not
rely on a prior definition. Another alternative to
Bayesian method, with the objective to get a dis-
tribution of the unknown parameter 8 without any
priors is the Fiducial distribution introduced by '°.
It describes the uncertainty about the value of the
fixed unknown parameter 6 by supposing that there
is a population characterized by the density func-
tion p(x,0), where the form of the density p(x,0)
is known, but there is no prior information available
about the true value of the parameter 6 '!.
Mukhopadhyay '?> claimed that the Implicit
inference is nothing new and that it is either
a Fiducial-like approach or a non-informative
Bayesian method. Concerning his criticism, our
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o2 | priors || (62 | MSE(Imp) || (02)®" | MSE(Bay*) || (c2)8@" | MSE(Bay**)
0.1 | a=2,b=0.1 0.1 2.10°° 0.1 2.10°° 0.11 1.03. 107
0.05 | a=2,b=0.05 || 0.05 | 4.99. 1077 0.05 5.1077 0.053 9.39.10°°
1 a=2, b=1 1.0002 | 1.99.10~* || 1.0006 | 1.99.10°¢ 1.019 5.87. 1074
1.5 | a=2,b=1.5 1.5 4.45.107* || 1.5006 | 4.46.107% 1.52 0.0013
2 a=2, b=2 2 8.03.10~% || 2.0007 | 8.05.10°* 2.039 0.0024

Table 1: Estimators of 62 obtained by Implicit method, Bayesian method with true a priori (Bay*) and different
one (Bay™™), for several prior parameters (a and b) and o2
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Figure 1: Difference between Bayesian and Implicit mean squared errors with respect to prior parameters a and

b for 62 =0.1 and 6% = 2.

comment is to show that Implicit inference is in fact
a new paradigm in statistical inference. Using sev-
eral examples, we show that, in many cases when the
parameter space 6 is infinite, Implicit distribution
does not coincide with neither Fiducial nor Bayesian
distribution. If the parameter space 6 is bounded,
then the Implicit distribution coincides with the pos-
terior distribution with uniform prior in Bayesian
method. The coincidence of both Implicit and Fidu-
cial distributions in the normal model N(0,1) with
a mean 6 and a variance 1, seems to explain the
misleading comments of '2. In what follows, we
give selected examples illustrating clearly the dif-
ference between Implicit, Bayesian and Fiducial ap-
proaches.

2.3.1. Example I1: Binomial model B(n, )

In the Binomial case, applying the Implicit method

gives:
1
c(x) = m——

It comes that the Implicit distribution of 6 given
x is a Beta distribution with parameters x + 1 and
n—x+ 1, denoted Beta(x+ 1,n—x+1). Heike and
al ' showed that, for the same binomial model, the
Fiducial distribution is a Beta distribution denoted
Beta(x,n —x+ 1), with parameters x and n —x+ 1.

2.3.2. Example 2: Exponential model €(0)

Let Xi,...,X, be n independent random variables
identically distributed according to the exponential
distribution with parameter 0. It is well known that
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n
in follows a gamma distribution denoted y(n, 0),
i=1
with parameters n and 0.
The norming constant is given by

n!

(ixi)n—i-l

(X1, yxn)

Then, the Implicit distribution of 8 given X1,..., X,
n

is a gamma distribution denoted y(n+1, in), with
i=1

n

parameters n+ 1 and in. For the same model, !!
i=1

showed that the Fiducial distribution is a gamma dis-

n
tribution denoted y(n, in), with parameters n and
i=1

n

in. Then, the difference between the two methods
i=1
is very clear. The first parameter is n+ 1 in the case
of Implicit method but, in the Fiducial method, it is

n.

3. Parameter estimation in conditional
Gaussian Bayesian networks using Bayesian
approach

In this section, we formally define Conditional
Gaussian Bayesian Networks. We inspire from Mur-
phy’s work ° devoted to MAP and ML estimation
for parameters of such models and we enlarge them
with EAP estimation.

3.1. Definitions and notations

Bayesian Networks (BNs) are usually defined for
discrete variables with a finite number of states. This
assumption is not very realistic in several applica-
tion areas such as medicine, where the elaboration of
the diagnosis is generally the result of some mixture
of information of continuous type (results of labo-
ratory) and of discrete type (presence / absence of a
symptom).

In the literature, previous works have concen-
trated on the study of probabilistic graphical models
with both discrete and continuous variables 31413,

In this paper, we are interested in domains con-
taining either continuous variables or a mixture of
both discrete and continuous variables, under the as-
sumption that continuous data constitute a sample
from a multivariate normal (Gaussian) distribution.
Consider a finite set X = {X,...,X,} of random
variables. A Bayesian network (BN) is a directed
acyclic graph G and a set of conditional probabil-
ity distributions which represent a joint probability
distribution!. The nodes of the graph correspond to
the random variables and are annotated with a Con-
ditional Probability Density (CPD) of the random
variable given its parents Pa; in the graph G. The
joint distribution is the product over families (vari-
able and its parents)

n

p(X1,....X,) = [ [ p(Xi|Pay).

i=1

The graph G represents independence properties
which are assumed to hold in the underlying dis-
tribution: each X; is independent from its non-
descendants given its parents Pa;.

Unlike the case of discrete variables (when the vari-
able X and some or all of its parents are real valued),
there is no representation that can integrate all con-
ditional densities. A common choice is the use of
linear Gaussian conditional densities '°, where each
variable is a linear function of its parents. When
all the variables in a network have linear Gaussian
conditional densities, the joint density over X is a
multivariate Gaussian. In order to simplify future
equations, we summarize below the notations ini-
tially proposed by Murphy”. We will consider the
problem of finding estimators for the parameters
of a conditional Gaussian variable Y with continu-
ous parent X and discrete parent Q, i.e., p(y|x,0 =
i) = c|Zi|“2exp(= 3 (y—Bix— ) T (y— B — )
where c is a constant and |y| = d. We assume that we
have N iid training cases {e,} so the complete data
log-likelihood is logl—[ﬁ\;lnlg‘l PO, Qr = i,e )
where g; = 1 if Q has the value i in the t’th com-
plete case, and 0 otherwise. Since Q,X and Y may
all be unobserved, the expected complete-data like-
lihood is defined by p(y|x,Q = i) = exp(l) with [ =

~1 X E(Zigilog =il + 4 0 — Bixi — i)' (3 -
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Bixi — )ler).

We can write
E(gnixile) = E(gle)E(xx|Qr = ie) =
w!E(XX') where the weights w! = p(Q = i|e;) are
posterior probabilities and E,;(XX') is a conditional
second moment. We get [ = —1 Y, ¥;wilog|Z;| —

%ZzZiwiEti(()’z — By — w)'E " (r — Bixy —

wler).
The following expected sufficient statistics are in-
troduced in order to simplify future equations:

wi=Y wi
t

Sxxr ;i = gwiEti(XX/>

Sx,i = ;WfEri(X)
Syyi = ;W§Ezi(YY/)
Syryi = ;wa,,-(Y'Y)

Syi= ;WfEn‘(Y)
Sxy' i = ;WiEn'(XY/)
Syx'i = ;WfEti(YX/)-

Usually, two situations can be considered when
dealing with the parameters of CGBNs models. The
first one (untied parameters) corresponds to the gen-
eral one, with the parameters defined in the previous
definition. In this situation, if one continuous vari-
able has continuous and discrete parents, we will
have to deal with conditional Gaussian parameters
(mean, covariance, regression coefficients) for each
configuration of the discrete parents. The second
situation (tied parameters) considers that the condi-
tional Gaussian parameters are independent from the
discrete parents. This assumption reduces the num-
ber of parameters which can be interesting when the
number of data is limited.

Another way to decrease the number of param-
eters when estimating the covariance matrix is to

consider a spherical covariance matrix, i.e. the con-
straint that £; = 61 is isotropic.

The remaining of this section will be devoted
to the proposition of Bayesian estimation (with Ex-
pectation A Posteriori method) of conditional Gaus-
sian parameters (regression coefficients, mean, co-
variance) for all these situations (untied or tied pa-
rameters, full or spherical covariance matrix).

3.2. Regression matrix estimation

3.2.1. Untied parameters

exp(—%

M=

pO|Bi,x Xy, ly) o< (v — B

1)'Z (v — Bixe — 1))

We classically assume that the prior for B; is a multi-
variate normal distribution with mean a and covari-
ance matrix V.
Hence, the

t=1

posterior  p(Bilys, x, Zi, i) =

WgEt[()’t — Bix; — Hi)/Z;I(Yt — Bixy —

M=

exp(—%

t=1

1
,ui))exp(—E(Bi —a)VY(Bi—a)) is also a multi-
variate normal distribution with a mean given by

~ Bay

B, = (X' (Syxri— wiSy;) +av 1)

(X Sxxr i +V ! 3)

3.2.2. Tied parameters
For the tied case, the estimator of B; becomes

BBy (Z(Z;I(SYX/J — WiSx;)+av"))
(Z(Zflsxx',i-i-vfl))il- “)

1

3.3. Mean estimation

3.3.1. Untied parameters

For the mean parameter y;, the prior density is
a multivariate normal distribution with parameters

(m, ) 103

P(Wi/Yerxe, 5, Bi) o< exp(—3 Y wiE, (v, — Bixy —

M=

I
—_

t
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_ 1 )
)% (v — Bixi — Hi))exp( = (Hi —m)

m))
After some calculations applied to the posterior
density and using the following identity

v (i —

d(XA+b)C(XA+b
( ;X( ) _ (C+C)(XA+b)A" (5)
we get the following expression
AP = (' m 27 (S BiSx.)
(wiZi ' +y )7 (6)

3.3.2. Tied parameters

For the tied case, we get

[T (Z(w’lm +2; Sy — BiSx.)))

i

Yz +y )l (7)

i

3.4. Estimating the regression matrix and the
mean simultaneously

Since the equation for B; depends on y and vice
versa, if both of them have to be estimated, we must
estimate them jointly. We can do this by append-
ing u; as the last column to B; in order to create D;,
and also appending a 1 to the last component of X in
order to create Z. Then, we have

. _1 1 _
PO, @ =1) =c|Z| 2exp(—5 (y—Di) T
By using the equation 5 with y; = 0 and replacing
Sxx'; by Szz and also Syx: ; by Syz ; we get
DBay (Z lSYZ/ +aV— )(Z;ISZzl’i-i-Vil)il

1

®)

The substitutions are
, XX X
E,.ZZ —Et,.< X 1
S0,
Szz = < Sxxi Sx.i )
! Sxri Wi
and
EYZ =E,(YX Y).
Then,

Syzi=( Syxi Sy ).

(y=Diz)).

3.5. Full Covariance matrix estimation

3.5.1. Untied parameters

We classically assume that the prior for X; is an
Inverse-Wishart distribution with & degrees of free-
dom and a positive definite precision matrix V which
implies that the posterior density for the parameter
Y is proportional to the following expression:
FLY

- witatd+1
P(Zilye,xe, Bi, i) o<

X~ 2 exp( 2tr
W;.Eti (yt Bix; — ,uz) ( Bix; — .ul) - )) .

Hence, the posterior p(X;|B;,yr,x;, it;) is also an
Inverse-Wishart distribution with (w; + o) degrees
of freedom and a positive definite precision matrix
ZW;Eti()’t —Bix; — W) (yr — Bix; — .Ui), +vl
So,

= Bay
4

- AtV 9
Wi—|-06—d—1(l+ ) ©)
where A; = Syy'; — SyxiBi — Syill] — BiSxy'; +
BiSXX',iB§+BiSX,zIJ, MzSY', +.leSX',B + uip;.
If B; = 0, then we have

5 Bay _ Syyri — Sy,ill] — WSy’ ; + i/ +V (10)
' wi+oa—d—1 '

3.5.2. Tied parameters

if X; is tied, we get

yBay — ZA +V) an
i

3.6. Spherical covariance matrix estimation

3.6.1. Untied parameters

. _ 1
p(ylx,0 =1) =C0; dexP(_EGi 2Hy—B,-x,—/J,~||2).

For the 67, we classically assume that the prior is an
Inverse-Gamma distribution with parameters (a, )

Y dwi7 _
p(61'2|yt>xtaBia.ui) o< (()'1.2)*7 a lexp( _
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S (L wiEa(lly — B — i) +b) ).
Yot

In fact, after some computations applied to the pos-
terior density, we get the following expression for
the estimator of 67

- 1
2P = 1r(C;j+2b 12
(Gl) dwl+2a—2r( l+ ) ( )
where
Ci = Sywvi — BiSyxi — Syili — BiSxv,i +

BiBiSxix i + BipiSx ; — Wi Sy, + W BiSx i + 1] l;.
If we don’t have any regression, then
(82)30)7 _ tr(Syry ;—Syr i~ Sy i+ Wi+2b)

[ dwi+2a—2 :

3.6.2. Tied parameters
If 67 is tied, we have

1

~2\Bay _
(0™ = V@7 2a-2)

trY (Ci+2b).  (13)

4. Parameter estimation in Conditional
Gaussian Bayesian Networks using Implicit
approach

As seen in section 2.3, if the parameter space is
bounded, then the Implicit distribution coincides
with the posterior distribution with a uniform prior
in Bayesian method, which is not the case for condi-
tional Gaussian parameters.

Using the same notation of the previous section,
we propose here the estimation of parameters by the
Implicit method.

4.1. Regression matrix estimation

4.1.1. Untied parameters

Let ﬁ(y"x Q - l) - eXP() ~(1Bi|ylu-xt7zi7“i) o<
exp( 2Zthn yi —Bix; — )27 (i — Bixe — ).

By a standard calculation and using equation 5, we
show that the Implicit estimator of B; is

~Imp

B;

= (Syxri— WiSx ) (Sxxri) ' (14)

4.1.2. Tied parameters

For the tied case, we get

i

— WiSx (15)

)Y Sxxri)”
i

4.2. Mean estimation

4.2.1. Untied parameters

The Implicit estimator of /,L, is a Normal distribution

p(ilye, i, Zi, Bi) o exp(— ZW;En Vi — Bixy —
.ui)lzi_l (ve = Bixe — i)
Then, by using equation 5, we have
. Syi—BiS
‘Imp X,i (16)

n
Z W,

If B; = 0 (No regression), the estimator of y; be-
comes

. S
B =S (17)
Z wi
4.2.2. Tied parameters
For the tied case, we get
Z(SY,i —B;Sx ;)
= (18)

N

4.3. Estimating the regression matrix and the
mean simultaneously

Since both the equation for B; and u are mutually de-
pendent on each other, we present the expression es-
timating them jointly. By applying the same method
used in section 3.4, we get

l’)\lmp

" =SvziSzp (19)
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4.4. Full Covariance matrix estimation

4.4.1. Untied parameters

P(Zilye, xe,Biy i) o< |Zi]” 7 exp ZWIE,,
Bix, — i)' “( — Bix, — 1)) o
|Z;| =7 exp( —ftr IZthn — Bix; — W) (O

Bix; — 1;)")

where p(X;|y;,x:, Bi, i) is an Inverse-Wishart distri-
bution with (w; —d — 1) degrees of freedom and a
positive definite precision matrix

Z Wl{Eti()’t — Bix; — ;) (yr — Bix; — ;).
t
Then, the Implicit estimator of ¥; is given by

= Imp 1

i —7141'.
W,‘—Zd—2( )

(20)

If there is no regression, the estimator of X; becomes

/\ilmp _ SYY’ _SY/,ll., - .uiSY’ +,ut.uz/ (21)
Wi — 2d —2
4.4.2. Tied parameters
For the tied case, we have
simp — ; ZA (22)
N —2dN —2N

4.5. Spherical covariance matrix estimation
4.5.1. Untied parameters

If we have the constraint that ¥; = 61-2] is isotropic,
the conditional density of ¥ becomes

pOlx,0=i)=co; Yexp(—Lo;7 2|y~ Bix— |}l =

. 1 _ .
—dZwalog\Gi\ ~ 50 zzzwﬁEn‘H)’t — Bix; —
T i T i
ill>.
Hence,
piylx,Q = i) = exp( — dZZw§10g|Gi| -
T

1 .
~0; 2ZZW;E;,'Hyt — Bix; —‘LL,'HZ)
t i

where 67 follows an Inverse-Gamma distribution

with a shape parameter (”T’d — 1) and a scale param-
eter (% ijEn‘Hyt —Bix, — ui\\z)_

t
We can easily deduce that the Implicit estimator of
o?is

ZW;En'(H)’t — Bix; —lJiHZ)

(6,7)mp = dwi—4
In order to compute the expected Value of this

distance, we use the fact that xX’Ay = rr(x’Ay) =
tr(Ayx’). So, E[x'Ay| = tr(AE[yx']).

Hence,
1
~2\Imp __
O; = tr(Cy). 23
(z) dWl'_4r(l) (23)
4.5.2. Tied parameters
For the tied case, we have
1
O e p— R 6A 24

5. Comparative study

Table 2 provides us a summary of the estima-
tors of conditional Gaussian distribution parameters
(Ui, B, X;) obtained by Maximum of Likelihood and
by Expectation A Posteriori (described in section 3)
and our Implicit method (described in section 4).

First, we notice that there is a difference be-
tween the Implicit estimator and the classical ML
one when estimating the covariance matrix, whereas
both estimators coincide for the mean and regres-
sion parameters. According to our knowledge, there
is no theoretical work which explains these coinci-
dences. Concerning the comparison between Im-
plicit and Bayesian estimation, we point out that the
parameters estimated by Bayesian approach depend
on the prior parameters and, as we know, the choice
of a specific prior information has always been prob-
lematic, hence representing the major weakness of
this approach. In most cases, we either need an ex-
pert to get the prior knowledge or, we have to use
non informative priors.

Since Implicit and ML approaches coincide for
the estimation of the mean parameter p and also the
parameter of regression B, we only have to com-
pare them with the Bayesian (EAP) estimation of
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IMP [ ML

EAP |

Sy.i—BiSx.i

Ui Z W;
t

Sy.i—BiSx.i

1
ZW,
t

(W m+Z7 Sy — BiSx)) (wiZ;  +y !

B || (Syxi— wiSx i) (Sxxri) !

(Syx'i — WiSx' i) (Sxxri) !

(" (Syxri—wiSx i) +avV =) (Z7 Sxx i +V )]

Syy!i—Syz! iDi—DiSzy1 i +DiSzy ;D]

. A;
Z” W[—21d—2 wi

AtV
wit+o—d—1

Table 2: Estimation of conditional Gaussian distribution parameters (u;,B;,%;) obtained by Implicit method
(section 4), Maximum of Likelihood (°) and Expectation A Posteriori (section 3).

the covariance matrix. We can point out that the Im-
plicit estimator of X corresponds to the Bayesian one
(EAP) by taking V =0 and ot =d — 1. However, this
situation is impossible because V is a positive defi-
nite precision matrix. This situation is similar to the
one described in section 2.2 for ¢ estimation.
Since the parameter space is infinite, the Implicit
distribution does not coincide with neither Fidu-
cial nor Bayesian distribution. Therefore, our Im-
plicit estimation should give more robust results than
the Bayesian ones, particularly if the priors used in
Bayesian estimation are far away from the true ones.

6. Experimentations

6.1. Experimental protocol

In order to evaluate the interest of using the Im-
plicit approach for learning parameters in Condi-
tional Gaussian Bayesian Networks and to measure
the quality estimation, we have carried out repetitive
experiments in several contexts.
In these contexts, we are able to control several pa-
rameters such as the number of variables n (n = 10,
30, 50) and the size of generated datasets N (N =
100, 1.000, 10.000). The maximal cardinality K of
our discrete variables is also controlled for Condi-
tional Gaussian Bayesian Networks (K =2, 3, 5). In
such conditions, every dataset generation is iterated
10x10 times, with 10 randomly generated DAGs,
and 10 random parameter values for each of these
DAGs.
Our goal is to compare the performance of two esti-
mators working without any prior definition, i.e. the
implicit and maximum likelihood estimators.

Our various models and algorithms have been
implemented in Matlab with BNT !7and BNT Struc-

ture Learning Package '8.

6.2. Evaluation criteria

Accuracy evaluation of each method is estimated by
the Kullback-Leibler (KL) divergence between the
“original” distribution used for generating a given
dataset and the “final” distribution obtained with
parameter learning. For large numbers of variable
configurations (greater than 10°), a Markov Chain
Monte Carlo (MCMC) approximation is used with
10° random configurations.

Comparison of both methods is illustrated by plot-
ting absolute values of KL obtained by the Implicit
approach versus maximum likelihood for the same
datasets. The fact that one method is better than the
other can be observed with respect to the first diago-
nal (upper triangle : ML is better, versus lower trian-
gle : implicit approach is better). In order to deter-
mine whether the observed differences are statisti-
cally significant, we use the Wilcoxon paired signed
rank test, with a significance level equal to 0.05.

6.3. Results and interpretations

Figure 2 proposes the KL divergence obtained by
Implicit approach versus the Maximum Likelihood
one for the same datasets, for » = 10. Similar re-
sults have been obtained for n = 30 and 50.
Whatever the values of K (maximum cardinality
of variables) and N (dataset size), the Implicit ap-
proach gives either similar or better results than the
ML one. Both approaches coincide when N is high
(N = 1000 and 10000, results in magenta and black)
but also with a small sample size (N = 100) but only
when the maximum cardinality is low (K = 2).
When the maximum cardinality is high (K =3
and K =5) and the dataset size N is low, the Implicit
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Figure 2: Comparison of KL divergence obtained by Implicit approach versus the method of maximum likeli-
hood for the same datasets (upper triangle : ML is better, versus lower triangle : Implicit approach is better) with
respect to dataset size (N = 100, 1.000, 10.000, resp. blue, magenta and black points) and maximum cardinality

(K =2,3,5).

approach gives more interesting results. All these re-
sults are also confirmed by the Wilcoxon tests which
are not detailed here.

7. Conclusion and perspectives

In this paper, we introduce the notion of Implicit ap-
proach for the estimation of parameters in Condi-
tional Gaussian Bayesian Networks (CGBNs). This
method of estimation is similar to the Bayesian one,
but happens in a natural context without specifying
any prior parameters. This characteristic can be in-
teresting for CGBNs where priors are not easily un-
derstandable or interpretable for users. Bayesian es-
timation with priors far away from the true values
can lead to poor results. the Implicit (prior free)
estimators proposed here are then very attractive to
avoid such situations and to replace advantageously
the ML estimator when the sample size is low.

This Implicit approach can also be used to learn
the network structure. Most structure learning ap-
proaches use a score function that measures the
goodness of fit between the structure and the data
and thus try to find a good model optimizing this
score. Many scoring functions have been proposed
and are based on different principles, such as en-
tropy or Bayesian approaches. Within this frame-
work, our future work will propose an extension of
Implicit score function proposed in 8 (and devoted

to discrete BNs) in which CGBN structure inference
can be based without determining any prior.
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