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Abstract

The weighted geometric averaging (WGA) operator and the ordered weighted geometric (OWG) operator are two 
of most basic operators for aggregating information. But these two operators can only be used in situations where 
the given arguments are exact numerical values. In this paper, we first propose some new geometric aggregation
operators, such as the log-normal distribution weighted geometric (LNDWG) operator, log-normal distribution
ordered weighted geometric (LNDOWG) operator and log-normal distribution hybrid geometric (LNDHG)
operator, which extend the WGA operator and the OWG operator to accommodate the stochastic uncertain 
environment in which the given arguments are log-normally distributed random variables, and establish various 
properties of these operators. Then, we apply the LNDWG operator and the LNDHG operator to develop an 
approach for solving multi-criteria group decision making (MCGDM) problems, in which the criterion values take 
the form of log-normally distributed random variables and the criterion weight information is known completely.
Finally, an example is given to illustrate the feasibility and effectiveness of the developed method.
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1. Introduction

Information aggregation operators play an important 
role in multi-criteria decision making (MCDM). As we 
know, the weighted geometric averaging (WGA)
operator1 and the ordered weighted geometric (OWG) 
operator2 are two of most common operators for 
aggregating arguments. The WGA operator first weights 
all the given arguments and then aggregates all these 

weighted arguments into a collective one. The OWG 
operator first reorders all the given arguments in 
descending order and then weights these ordered 
arguments, and finally aggregates all these ordered 
weighted arguments into a collective one. But the WGA 
operator and the OWG operator can only be used in 
situations where the given arguments are exact 
numerical values.
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In the last decades, the WGA operator and the OWG 
operator have been extended to accommodate the fuzzy 
and uncertain situations. Xu et al.3-5 extended these two
operators to accommodate the situations where the input 
arguments are fuzzy numbers, for example, Xu3

proposed the fuzzy ordered weighted geometric 
(FOWG) operator, Xu and Da4 proposed the uncertain 
ordered weighted geometric (UOWG) operator, Wang 
and Yang5 proposed the trapezoidal fuzzy ordered 
weighted geometric (TFOWG) operator; Xu et al.6-11

extended these two operators to accommodate the 
situations where the input arguments are intuitionistic 
fuzzy numbers or extended intuitionistic fuzzy numbers, 
for instance, Xu and Yager6 proposed the intuitionistic 
fuzzy weighted geometric (IFWG) operator, 
intuitionistic fuzzy ordered weighted geometric 
(IFOWG) operator and intuitionistic fuzzy hybrid
geometric (IFHG) operator, Wei7 proposed the dynamic
intuitionistic fuzzy weighted geometric (DIFWG) 
operator and uncertain dynamic intuitionistic fuzzy 
weighted geometric (UDIFWG) operator, Tan8

proposed the generalized intuitionistic fuzzy ordered 
geometric averaging (GIFOGA) operator, Xu9 and Xu 
and Chen10 developed the interval-valued intuitionistic 
fuzzy weighted geometric (IIFWG) operator, interval-
valued intuitionistic fuzzy ordered weighted geometric 
(IIFOWG) operator and interval-valued intuitionistic 
fuzzy hybrid geometric (IIFHG) operator, Wang11

proposed the fuzzy number intuitionistic fuzzy weighted 
geometric (FIFWG) operator, fuzzy number 
intuitionistic fuzzy ordered weighted geometric 
(FIFOWG) operator and fuzzy number intuitionistic 
fuzzy hybrid geometric (FIFHG) operator; Xu et al.12-15

extended these two operators to accommodate the 
situations where the input arguments are linguistic 
variables or uncertain linguistic variables, for example, 
Xu12 proposed the linguistic weighted geometric 
averaging (LWGA) operator, linguistic ordered 
weighted geometric averaging (LOWGA) operator and 
linguistic hybrid geometric averaging (LHGA) operator,
Wei13 proposed the extended 2-tuple weighted 
geometric (ET-WG) operator and extended 2-tuple 
ordered weighted geometric (ET-OWG) operator, Xu14

proposed the uncertain linguistic weighted geometric 
mean (ULWGM) operator and uncertain linguistic 
ordered weighted geometric (ULOWG) operator, Wei15

proposed the uncertain linguistic hybrid geometric mean 
(ULHGM) operator, which is based on the ULWGM 

operator and the ULOWG operator. In addition, they 
established various properties of these operators and 
applied them to solve MCDM problems.

In some MCDM situations, the given arguments take
the form of random variables under stochastic uncertain 
environment16-22. However, at present, there is few 
research related to the aggregation operators for 
aggregating arguments which are in the form of random
variables, except that Wang and Yang23 extended the
weighted arithmetic averaging (WAA) operator24, 25 to 
accommodate the situations where the input arguments 
are normally distributed random variables, and 
presented the normal distribution number weighted 
arithmetic averaging (NDNWAA) operator and the 
dynamic normal distribution number weighted 
arithmetic averaging (DNDNWAA) operator. 

In addition, in stochastic MCDM problems, normal 
distribution with bell-shaped curve is usually used to 
describe the random variation that occurs in the criterion 
value, and the criterion value is commonly characterized 
by two parameters: the expected value and the standard 
deviation16, 26, 27. However, many measurements of 
criterion values show a more or less skewed 
distribution. Particularly, skewed distributions are 
common when expected values are low, variances large, 
and values cannot be negative. Such skewed 
distributions often approximately fit the log-normal 
distribution28, 29. Moreover, a variable might be 
distributed as log-normally if it can be thought of as the 
multiplicative product of a large number of independent
random variables each of which is positive. The log-
normal distribution is a continuous probability 
distribution of a random variable whose logarithm is 
normally distributed28, 30, and it can model many 
instances, such as the loss of investment risk, the change 
in price distribution of a stock, and the failure rates in 
product tests and so on28, 31-33. Therefore, in real-life, 
there are many stochastic MCDM problems in which 
the criterion values take the form of log-normally 
distributed random variables. At present, the stochastic 
MCDM problems, in which the criterion values take the 
form of normally distributed random variables, have 
attracted lots of attentions from researchers16-23. But 
regarding to the stochastic MCDM problems, in which 
the criterion values take the form of log-normally 
distributed random variables, there is still few related
research. It is worthy of pointing out that, in many
stochastic MCDM problems with log-normally
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distributed random variables, we need to aggregate the 
given log-normally distributed random variables into a 
single one. In such case, information fusion techniques 
are necessary. In this paper, based on the WGA operator 
and the OWG operator, we shall develop some new 
geometric aggregation operators for aggregating 
arguments which take the form of log-normally 
distributed random variables, and apply them to solve 
multi-criteria group decision making (MCGDM) 
problems in which the criterion values are in the form of 
log-normally distributed random variables and the 
criterion weight information is known completely.

In order to do that, this paper is organized as follows.
In Section 2, we introduce some basic concepts of log-
normal distribution. In Section 3, we extend the WGA
operator and the OWG operator to accommodate the 
situations where the input arguments take the form of 
log-normally distributed random variables, propose 
some new geometric aggregation operators, such as the 
log-normal distribution weighted geometric (LNDWG) 
operator, log-normal distribution ordered weighted 
geometric (LNDOWG) operator and log-normal 
distribution hybrid geometric (LNDHG) operator, and 
establish various properties of these operators. In 
Section 4, we apply the LNDWG operator and the 
LNDHG operator to develop an approach for solving 
the MCGDM problems, in which the criterion values 
take the form of log-normally distributed random 
variables and the criterion weight information is known 
completely. In Section 5, we provide an illustrative 
example to demonstrate the feasibility and effectiveness 
of the developed method. Finally, we conclude the 
paper in Section 6.

2. Preliminaries

The normal distribution is a continuous probability 
distribution defined by the following probability density 
function, known as the Gaussian function or informally 
the bell curve34:

2

2
( )

21( )
2

x

f x e , x

where is the expectation, 0 is the standard 

deviation, and 2 is the variance. Generally, we use 
2~ ( , )X N as a mathematical expression 

meaning that X is distributed normally with the 
expectation and the variance 2 .

The log-normal distribution is a probability 
distribution of a random variable whose logarithm is 
normally distributed28, that is, if 2ln ~ ( , )Y N ,
then Y has a log-normal distribution. If Y is 
distributed log-normally with parameters and ,

then we write 2~ log- ( , )Y N . For convenience, 

we call 2log- ( , )N a log-normal distribution, 
and let be a set of all log-normal distributions.

Definition 128 Let 2
1 1 1log- ( , )N and

2
2 2 2log- ( , )N be two log-normal 

distributions, then
(1) 2 2

1 2 1 2 1 2log- ( , )N ;

(2) 2 2
1 1 1log- ( , )a N a a , 0a .

It’s easy to prove that all operational results are still 
log-normal distributions, and according to these two 
operational laws, we have the following.

(1) 1 2 2 1 ;

(2) 1 2 3 1 2 3( ) ( ) ;

(3) 1 2 1 2( )a a a , 0a ;

(4) 1 2 1 2
1 1 1
a a a a , 1 2, 0a a .

Furthermore, if 2log- ( , )N is a log-normal 

distribution, then its expected value log ( ) and 

standard deviation log ( ) can be calculated by the 
following formulas28:

21
2

log ( ) e                      (1)

2
2

1
2

log ( ) 1e e                (2)

Therefore, by using the relation between expectation
and variance in statistics, in the following, we propose a 
method for the comparison between two log-normal 
distributions, which is based on the expected value

log ( ) and the standard deviation log ( ) .
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Definition 2 Let 2
1 1 1log- ( , )N and

2
2 2 2log- ( , )N be two log-normal 

distributions, then
(1) If log 1 log 2( ) ( ) , then 1 is smaller than 

2 , denoted by 1 2 ;

(2) If log 1 log 2( ) ( ) , then

If log 1 log 2( ) ( ) , then 1 is equal to 

2 , denoted by 1 2 ;

If log 1 log 2( ) ( ) , then 1 is bigger than 

2 , denoted by 1 2 ;

If log 1 log 2( ) ( ) , then 1 is smaller 

than 2 , denoted by 1 2 .

3. Log-normal distribution geometric 
aggregation operators

3.1. The LNDWG and LNDOWG operators

In what follows, based on Definition 1, we propose 
some new geometric aggregation operator for 
aggregating log-normal distribution information, such as 
the LNDWG operator and the LNDOWG operator.

Definition 3 Let 2log- ( , )j j jN
( 1, 2, ,j n ) be a collection of log-normal

distributions, and let LNDWG: n , if

LNDWG 1 2( , , , )nw

1 2
1 2

nww w
n (3)

then LNDWG is called the log-normal distribution 
weighted geometric operator (LNDWG) of dimension 
n , where 1 2( , , , )T

nw w ww is the weight vector 

of j ( 1, 2, , )j n , with 0jw and 
1

1
n

j
j

w .

Especially, if (1 ,1 , ,1 )Tn n nw , then the 
LNDWG operator is reduced to the log-normal 
distribution geometric averaging (LNDGA) operator of 
dimension n , which is defined as:

LNDGA 1 2( , , , )nw

1

1 2( )n
n (4)

Theorem 1 Let 2log- ( , )j j jN
( 1, 2, ,j n ) be a collection of log-normal 

distributions and 1 2( , , , )T
nw w ww be the weight 

vector of j ( 1, 2, , )j n , with 0jw and 

1
1

n

j
j

w , then their aggregated result by using the 

LNDWG operator is also a log-normal distribution, and

LNDWG 1 2( , , , )nw

2 2

1 1
log- ,

n n

j j j j
j j

N w w (5)

Proof: Obviously, the aggregated result by using the 
LNDWG operator is also a log-normal distribution. In
the following, we prove Eq. (5) by using mathematical 
induction on n .

(1) For 2n : since
1 2 2

1 1 1 1 1log- ( , )w N w w
2 2 2

2 2 2 2 2log- ( , )w N w w
Then

LNDWG 1 2
1 2 1 2( , ) w w

w

2 2 2 2
1 1 2 2 1 1 2 2log- ,N w w w w
2 2

2 2

1 1
log- ,j j j j

j j
N w w .

(2) If Eq. (5) holds for n k , that is
LNDWG 1 2( , , , )kw

2 2

1 1
log- ,

k k

j j j j
j j

N w w

Then, when 1n k , by Definition 1, we have
LNDWG 1 2 1( , , , , )k kw

2 2

1 1
log- ,

k k

j j j j
j j

N w w

12
1 1log- , kw

k kN

2 2

1 1
log- ,

k k

j j j j
j j

N w w
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2 2
1 1 1 1log- ,k k k kN w w

1 1
1

log- ,
k

j j k k
j

N w w

2 2 2 2
1 1

1

k

j j k k
j

w w

1 1
2 2

1 1
log- ,

k k

j j j j
j j

N w w .

i.e. Eq. (5) holds for 1n k .
Thus, based on (1) and (2), Eq. (5) holds for all 

n N , which completes the proof of Theorem 1. 

Example 1. Let 2
1 log- (2.06,0.20 )N ,

2
2 log- (2.21,0.18 )N , 3 log- (1.39,N

20.12 ) and 2
4 log- (1.93,0.21 )N be four log-

normal distributions, and (0.2,0.3,w 0.1,0.4)T

be the weight vector of j ( 1, 2,3, 4)j , then 

1 2 3 4LNDWG ( , , , )w

log- (0.2 2.06 0.3 2.21N
2 20.1 1.39 0.4 1.93,  0.2 0.20

2 2 2 2 2 20.3 0.18 0.1 0.12 0.4 0.21 )
2log- (1.986,0.108 )N .

Theorem 2 (Properties of LNDWG) Let 
2log- ( , )j j jN ( 1, 2, , )j n be a 

collection of log-normal distributions, and 

1 2( , , , )T
nw w ww be the weight vector of j

( 1, 2, , )j n , with  [0,1]jw and 
1

1
n

j
j

w ,

then we have the following.
(1) (Idempotency): If all j ( 1, 2, , )j n are 

equal, i.e. j for all j , then

LNDWG 1 2( , , , )nw (6)

(2) (Boundary) :

1 2LNDWG ( , , , )nw (7)

where min{ }jj
, max{ }jj

.

(3) (Monotonicity): Let j ( 1, 2, , )j n be a 

collection of log-normal distributions. If j j for 

all j , then

LNDWG 1 2( , , , )nw

LNDWG 1 2( , , , )nw (8)

Definition 4. Let 2log- ( , )j j jN
( 1, 2, ,j n ) be a collection of log-normal 
distributions. A log-normal distribution ordered 
weighted geometric (LNDOWG) operator of dimension 
n is a mapping LNDOWG: n , that has an 
associated weight vector 1 2( , , , )T

n such 

that 0j and 
1

1
n

j
j

. Furthermore, 

LNDOWG 1 2( , , , )n

1 2
(1) (2) ( )

n
n (9)

where ( (1), (2), , ( ))n is a permutation of 

(1, 2, , )n such that ( 1) ( )j j for all j .

Especially, if (1 ,1 , ,1 )Tn n n , then the 
LNDOWG operator is reduced to the LNDGA operator.

Similar to Theorem 1, we have the following.

Theorem 3. Let 2log- ( , )j j jN
( 1, 2, ,j n ) be a collection of log-normal 
distributions, then their aggregated result using the 
LNDOWG operator is also a log-normal distribution, 
and

LNDOWG 1 2( , , , )n                            

2 2
( ) ( )

1 1
log- ,

n n

j j j j
j j

N (10)

where 1 2( , , , )T
n is the weight vector 

related to the LNDOWG operator, with 0j and 

1
1

n

j
j

, which can be determined similar to the 

OWA weights35.
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Example 2. Let 2
1 log- (2.06,0.20 )N ,

2
2 log- (2.21,0.18 )N , 3 log- (1.39,N

20.12 ) and 2
4 log- (1.93,0.21 )N be four log-

normal distributions. Then by Eq. (1), we can calculate 
the expected values of i ( 1, 2,3, 4)j :

log 1( ) 8.0045 , log 2( ) 9.2646 ,

log 3( ) 4.0439 , log 4( ) 7.0431.
Since

log 2 log 1 log 4 log 3( ) ( ) ( ) ( )
Thus

2
(1) 2 (2.21,0.18 )N ,

2
(2) 1 (2.06,0.20 )N ,

2
(3) 4 (1.93,0.21 )N ,

2
(4) 3 (1.39,0.12 )N .

Suppose that (0.155,0.345,0.345
0.155)T (derived by the normal distribution based 
method [35]) is the weight vector of the LNDOWG 
operator, then by Eq. (10), we get

1 2 3 4LNDOWG ( , , , )w

log- (0.155 2.21 0.345 2.06N
0.345 1.93 0.155 1.39,  

2 2 2 20.155 0.18 0.345 0.20
2 2 2 20.345 0.21 0.155 0.12 )

2log- (1.9346,0.1055 )N .

The LNDOWG operator has the following properties 
similar to those of the LNDWG operator.

Theorem 4 (Properties of LNDOWG) Let 
2log- ( , )j j jN ( 1, 2, , )j n be a 

collection of log-normal distributions, and 

1 2( , , , )T
n be the weight vector related to 

the LNDOWG operator, with [0,1]j and 

1
1

n

j
j

, then we have the following.

(1) (Idempotency): If all j ( 1, 2, , )j n are 

equal, i.e. j for all j , then

LNDOWG 1 2( , , , )n (11)

(2) (Boundary) :

LNDOWG 1 2( , , , )n (12)

where min{ }jj
, max{ }jj

.

(3) (Monotonicity): Let j ( 1, 2, , )j n be a 

collection of log-normal distributions. If j j for 

all j , then

LNDOWG 1 2( , , , )n

LNDOWG 1 2( , , , )n (13)

(4) (Commutativity): Let j ( 1, 2, , )j n be a 
collection of log-normal distributions, then

LNDOWG 1 2( , , , )n

LNDOWG 1 2( , , , )n (14)

where 1 2( , , , )n is any permutation of 

1 2( , , , )n .

From Eq. (14), it can be known that the LNDOWG 
operator has commutativity property that we desire. It is 
worth noting that the LNDWG operator does not have 
this property.

Besides the above properties, the LNDOWG operator 
has the following desirable results.

Theorem 5 Let 2log- ( , )j j jN
( 1, 2, , )j n be a collection of log-normal 

distributions, and 1 2( , , , )T
n be the weight 

vector related to the LNDOWG operator, with 

[0,1]j and 
1

1
n

j
j

, then

(1) If (1,0, ,0)T , then 

LNDOWG 1 2( , , , ) max{ }n jj
.

(2) If (0,0, ,1)T , then

LNDOWG 1 2( , , , ) min{ }n jj
.

(3) If 1j , 0r , and r j , then

LNDOWG 1 2 ( )( , , , )n j

where ( )j is the thj largest of r ( 1, 2, , )r n .
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3.2. The LNDHG operator

From Definition 3 and Definition 4, it can be known 
that the LNDWG operator weights only the log-normal 
distributions, whereas the LNDOWG operator weights 
only the ordered positions of the log-normal 
distributions instead of weighting the arguments 
themselves. To overcome this limitation, in what 
follows, we propose a LNDHG operator, which weights 
both the given log-normal distributions and their 
ordered positions.

Definition 5. Let 2log- ( , )j j jN
( 1, 2, ,j n ) be a collection of log-normal 
distributions. A log-normal distribution hybrid 
geometric (LNDHG) operator of dimension n is a 
mapping LNDHG: n , which has an associated 
vector 1 2( , , , )T

n with 0j and 

1
1

n

j
j

, such that

LNDHG , 1 2( , , , )nw

1 2

(1) (2) ( )
n

n (15)

where ( )j is the thj largest of weighted log-normal 

distributions ( 1 2
1 2, , , nnwnw nw

n ), 

1 2( , , , )T
nw w ww is the weight vector of j

( 1, 2, , )j n , with 0jw and 
1

1
n

j
j

w , and n

is the balancing coefficient. 

Theorem 6. Let 2log- ( , )j j jN
( 1, 2, ,j n ) be a collection of log-normal 

distributions and 2
( ) ( ) ( )log- ( , )j j jN

( 1, 2, , )j n , then 

LNDHG , 1 2( , , , )nw

2 2
( ) ( )

1 1
log- ,

n n

j j j j
j j

N (16)

and the aggregated result derived by using the LNDHG 
operator is also a log-normal distribution.

Example 3. Let 2
1 log- (2.16,0.17 )N ,

2
2 log- (2.21,0.18 )N , 3 log- (2.19,N

20.12 ) and 2
4 log- (2.03,0.11 )N be four log-

normal distributions, and let (0.2,0.3,w
0.3,0.2)T be the weight vector of j

( 1, 2,3,4)j . Then by Definition 1, we can get the 
weighted log-normal distributions:

2
1 log- (1.728,0.136 )N ,

2
2 log- (2.652,0.216 )N ,

2
3 log- (2.628,0.144 )N ,

2
4 log- (1.624,0.088 )N .

By Eq. (1), we can calculate the expected values of 

j ( 1, 2,3,4)j :

log 1( ) 5.6817 , log 2( ) 14.5171,

log 3( ) 13.9904 , log 4( ) 5.0930 .
Since

log 2 log 3 log 1 log 4( ) ( ) ( ) ( )
Thus

2
(1) 2 (2.652,0.216 )N ,

2
(2) 3 (2.628,0.144 )N ,

2
(3) 1 (1.728,0.136 )N ,

2
(4) 4 (1.624,0.088 )N .

Suppose that (0.155,0.345,0.345, 0.155)T

(determined by the normal distribution based method35)
is the weight vector of the LNDHG operator, then by 
Eq. (16), it follows that

, 1 2 3 4LNDHG ( , , , )w

log- (0.155 2.652 0.345 2.628N
0.345 1.728 0.155 1.624,  

2 2 2 20.155 0.216 0.345 0.144
2 2 2 20.345 0.136 0.155 0.088 )                                           

2log- (2.1656,0.0773 )N .

Theorem 7. The LNDWG operator is a special case of 
the LNDHG operator. 
Proof. Let (1 ,1 , ,1 )Tn n n , then
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, 1 2LNDHG ( , , , )nw

1 2

(1) (2) ( )
n

n

1

1 2
n

n

1 2
1 2

nww w
n

1 2LNDWG ( , , , )nw

which completes the proof of Theorem 7.

Theorem 8. The LNDOWG operator is a special case of 
the LNDHG operator.
Proof. Let (1 ,1 , ,1 )Tn n nw , then j j ,

1, 2, ,j n , then 

, 1 2LNDHG ( , , , )nw

1 2

(1) (2) ( )
n

n

1 2
(1) (2) ( )

n
n

1 2LNDOWG ( , , , )n

which completes the proof of Theorem 8.

Obviously, from Theorem 7 and Theorem 8, we can 
see that the LNDHG operator weights both the given 
log-normal distributions and the ordered positions of 
these arguments, reflects the importance degrees of both 
the given log-normal distributions and their ordered 
positions, and generalizes both the LNDWG operator 
and the LNDOWG operator at the same time.

4. An application of the LNDWG and LNDHG 
operators to MCGDM

In this section, we apply the LNDWG and LNDHG 
operators to MCGDM based on log-normally distributed 
random variables.

Let 1 2{ , , , }mX X X X be a discrete set of 

feasible alternatives, 1 2{ , , , }nC C C C be the 

finite set of criteria, and 1 2( , , , )T
nw w ww be the 

weight vector of jC ( 1, 2, ,j n ) with 0jw

and 
1

1
n

j
j

w . Let 1 2{ , , , }tD d d d be the set of 

decision makers, and 1 2( , , , )T
te e ee be the 

weight vector of kd ( 1, 2, ,k t ) with 0ke and

1
1

t

k
k

e . Assume that the decision makers kd

( 1, 2, ,k t ) represent, respectively, the 

characteristics of the alternatives iX ( 1, 2, ,i m )

with respect to the criteria jC ( 1, 2, ,j n ) by log-
normally distributed random variables 

( ) ( ) ( ) 2log - ( , ( )k k k
ij ij ijN ( 1, 2, ,i m ;

1, 2, ,j n ; 1, 2, ,k t ), and construct decision 

matrices ( ) ( )( )k k
ij m nR ( 1, 2, ,k t ). 

Based on the above decision information, in the 
following, we propose a practical procedure to select the 
most desirable alternative(s).

Step 1 Normalize the decision matrices
( ) ( )( )k k

ij m nR ( 1, 2, ,k t ). Let bC be the set

of all benefit criteria and cC be the set of all cost 
criteria, then we can use the following formulas to 
transform the decision matrices ( ) ( )( )k k

ij m nR into 
the corresponding normalized decision matrices

( ) ( ) ( ) ( ) 2( ) (log - ( , ( ) ))k k k k
ij m n ij ij m nNR

( 1, 2, ,k t ):

( )
( )

( )max max

k
ijk

ij k
ijk i

, b
jC C (17)

( )

( )
( )

min min k
ijk k i

ij k
ij

, c
jC C (18)

( )
( )

( )max max{ }

k
ijk

ij k
ijk i

, jC C (19)

Note that standard deviation is relative to expectation, 
so the Eq. (19) is suitable for all jC C .

Step 2 Utilize the LNDWG operator 

( ) ( ) ( ) ( )
1 2LNDWG , , ,k k k k

i i i inw (20)

to aggregate the criterion values of the thi column of 
the normalized decision matrices ( ) ( )( )k k

ij m nR
and derive the individual overall values

( ) ( ) ( ) 2log- ( , ( ) )k k k
i i iN of the alternatives iX
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( 1, 2, ,i m ) given by the decision makers kd
( 1, 2, ,k t ), where

( ) ( )

1

n
k k

i j ij
j

w ,
2 2( ) 2 ( )

1

n
k k

i j ij
j

w

(21)

Step 3 Utilize the LNDHG operator

(1) (2) ( )
,LNDHG , , , t

i i i ie v

1 2(1) (2) ( ) tv v vt
i i i

(22)

to derive the collective overall values 

2log - ( , )i i iN of the alternatives iX
( 1, 2, ,i m ), where 

( )

1

t
k

i k i
k

v ,
22 2 ( )

1

t
k

i k i
k

v (23)

1 2( , , , )T
tv v vv is the weighting vector of the 

LNDHG operator, with 0kv and 
1

1
t

k
k

v ,

( ( )) ( ) ( ) 2log - ( , ( ) )k k k
i i iN is the thk

largest of the weighted log-normal distributions
( 1 2(1) (2) ( )( ) , ( ) , , ( ) ttete te t

i i i ),

Table 1. Decision matrix (1)R (unit: ten thousands RMB)

1C 2C 3C

1X 2log - (399,9.2 )N 2log - (279,7.9 )N 2log - (139,6.6 )N

2X 2log - (393,10.1 )N 2log - (269,8.5 )N 2log - (136,6.1 )N

3X 2log - (368,8.9 )N 2log - (273,6.8 )N 2log - (130,6.8 )N

4X 2log - (428,10.9 )N 2log - (307,7.5 )N 2log - (166,7.2 )N

5X 2log - (463,9.6 )N 2log - (313,6.9 )N 2log - (159,7.5 )N

Table 2. Decision matrix (2)R (unit: ten thousands RMB)

1C 2C 3C

1X 2log - (381,9.6 )N 2log - (251,7.6 )N 2log - (134,5.5 )N

2X 2log - (385,10.2 )N 2log - (269,9.3 )N 2log - (138,6.1 )N

3X 2log - (359,  9.3 )N 2log - (253,8.6 )N 2log - (135,6.5 )N

4X 2log - (463,10.9 )N 2log - (309,9.1 )N 2log - (169,7.5 )N

5X 2log - (455,9.7 )N 2log - (319,8.9 )N 2log - (157,8.6 )N

Table 3. Decision matrix (3)R (unit: ten thousands RMB)

1C 2C 3C

1X 2log - (379,9.2 )N 2log - (255,7.9 )N 2log - (131,5.7 )N

2X 2log - (391,9.8 )N 2log - (269,9.2 )N 2log - (136,6.1 )N

3X 2log - (351,10.6 )N 2log - (257,8.6 )N 2log - (133,6.7 )N

4X 2log - (362,10.6 )N 2log - (326,9.3 )N 2log - (168,7.1 )N

5X 2log - (469,11.7 )N 2log - (309,8.8 )N 2log - (158,7.6 )N
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( (1), (2), , ( ))t is a permutation of (1, 2, , )t ,
and t is the balancing coefficient.

Step 4 Utilize Eq. (1) and Eq. (2) to calculate the 

expected values log ( )i and the standard deviations 

log ( )i of the collective overall values i

( 1, 2, ,i m ).
Step 5 Use Definition 2 to rank all the alternatives 

iX ( 1, 2, ,i m ), and then select the best one

according to the values log ( )i and log ( )i

( 1, 2, ,i m ).

5. Illustrative example

Let us suppose that there is an investment company,
which wants to invest a total amount of money in the 
best option (adapted from Ref. 17). There is a panel 
with five possible companies in which to invest the 
money: (1) 1X is an arms company; (2) 2X is a 

computer company; (3) 3X is a food company; (4) 4X
is an auto company; and (5) 5X is a TV company. The
criteria to be considered in the selection process are the 
following: (1) 1C : cost; (2) 2C : net present value; and 

(3) 3C : loss, whose weighting vector is 

(0.35,0.37,0.28)Tw . Three decision makers kd
( 1, 2,3k ) (whose weighting vector is 

Table 4. Normalized decision matrix (1)R

1C 2C 3C

1X 2log - (0.8797,0.0196 )N 2log - (0.8558,0.0242 )N 2log - (0.9353,0.0391 )N

2X 2log - (0.8931,0.0215 )N 2log - (0.8252,0.0261 )N 2log - (0.9559,0.0361 )N

3X 2log - (0.9538,0.0190 )N 2log - (0.8374,0.0209 )N 2log - (1.0000,0.0402 )N

4X 2log - (0.8201,0.0232 )N 2log - (0.9417,0.0230 )N 2log - (0.7831,0.0426 )N

5X 2log - (0.7581,0.0205 )N 2log - (0.9601,0.0212 )N 2log - (0.8176,0.0444 )N

Table 5. Normalized decision matrix (2)R

1C 2C 3C

1X 2log - (0.9213,0.0205 )N 2log - (0.7699,0.0233 )N 2log - (0.9701,0.0325 )N

2X 2log - (0.9117,0.0217 )N 2log - (0.8252,0.0285 )N 2log - (0.9420,0.0361 )N

3X 2log - (0.9777,  0.0198 )N 2log - (0.7761,0.0264 )N 2log - (0.9630,0.0385 )N

4X 2log - (0.7581,0.0232 )N 2log - (0.9479,0.0279 )N 2log - (0.7692,0.0444 )N

5X 2log - (0.7714,0.0207 )N 2log - (0.9785,0.0273 )N 2log - (0.8280,0.0509 )N

Table 6. Normalized decision matrix (3)R

1C 2C 3C

1X 2log - (0.9261,0.0196 )N 2log - (0.7822,0.0242 )N 2log - (0.9924,0.0337 )N

2X 2log - (0.8977,0.0209 )N 2log - (0.8252,0.0282 )N 2log - (0.9559,0.0361 )N

3X 2log - (1.000,0.0226 )N 2log - (0.7883,0.0264 )N 2log - (0.9774,0.0396 )N

4X 2log - (0.9696,0.0226 )N 2log - (1.0000,0.0285 )N 2log - (0.7738,0.0420 )N

5X 2log - (0.7484,0.0249 )N 2log - (0.9479,0.0270 )N 2log - (0.8228,0.0450 )N
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(0.30,0.40,0.30)Te ) evaluate the performance of 

these companies iX ( 1, 2, ,5i ) with respect to 

the criteria jC ( 1, 2,3j ) by log-normally 
distributed random variables 

( ) ( ) ( ) 2log - ( , ( ) )k k k
ij ij ijN , and construct the 

decision matrices ( ) ( )
5 3( )k k

ijR ( 1, 2,3k ) as 
listed in Table 1 ~ Table 3.

To get the best company, the following steps are 
involved.

Step 1 Utilize Eq. (17) ~ Eq. (19) to normalize the 
decision matrices ( ) ( )

5 3( )k k
ijR into the 

corresponding decision matrices ( ) ( )
5 3( )k k

ijR
( 1, 2,3k ) as listed in Table 4 ~ Table 6. Note that 

the criterion 2C is benefit criterion and the criteria 1C
and 3C are cost criteria.

Step 2 Utilize Eq. (20) to aggregate the criterion 
values of the thi column of the normalized decision 
matrices ( ) ( )

5 3( )k k
ijR and derive the individual 

overall values ( )k
i of the alternatives iX

( 1, 2, ,5i ) given by the decision makers kd
( 1, 2,3k ):

(1) 2
1 log - (0.8864,0.0157 )N ,
(1) 2
2 log - (0.8855,0.0159 )N ,
(1) 2
3 log - (0.9237,0.0152 )N ,
(1) 2
4 log - (0.8547,0.0168 )N ,
(1) 2
5 log - (0.8495,0.0163 )N ,
(2) 2

1 log - (0.8790,0.0144 )N ,
(2) 2
2 log - (0.8882,0.0165 )N ,
(2) 2
3 log - (0.8990,0.0161 )N ,
(2) 2
4 log - (0.8314,0.0181 )N ,
(2) 2
5 log - (0.8639,0.0189 )N ,
(3) 2

1 log - (0.8914,0.0147 )N ,
(3) 2
2 log - (0.8871,0.0163 )N ,
(3) 2
3 log - (0.9154,0.0168 )N ,
(3) 2
4 log - (0.9260,0.0177 )N ,
(3) 2
5 log - (0.8430,0.0183 )N .

Step 3 Utilize Eq. (22) to derive the collective overall 

values i of the alternatives iX ( 1, 2, ,5i ),
where the weighting vector of LNDHG operator is 

(0.2429,0.5142,0.2429)T which is 
determined by the normal distribution based method35:

2
1 log - (0.8625,0.0087 )N ,

2
2 log - (0.8630,0.0096 )N ,

2
3 log - (0.8896,0.0092 )N ,

2
4 log - (0.8577,0.0104 )N ,

2
5 log - (0.8292,0.0102 )N .

Step 4 Utilize Eq. (1) to calculate the expected values 

log ( )i of the collective overall values i

( 1, 2, ,5i ):

log 1( ) 2.3692 , log 2( ) 2.3704 ,

log 3( ) 2.4343 , log 4( ) 2.3580 ,

log 5( ) 2.2917 .
Thus

log 3 log 2 log 1( ) ( ) ( )

log 4 log 5( ) ( ) .
Step 5 Use Definition 2 to rank all the alternatives 

iX ( 1, 2, ,5i ):

3 2 1 4 5X X X X X .

Therefore, the best investment enterprise is 3X .

6. Conclusions

In this paper, we have extended the WGA operator and 
the OWG operator to accommodate the stochastic 
uncertain situations where the given arguments take the
form of log-normally distributed random variables,
proposed some new geometric aggregation operators,
such as the LNDWG operator, the LNDOWG operator 
and the LNDHG operator, and established various 
desirable properties of these operators. Weights 
represent different aspects in both the LNDWG operator
and the LNDOWG operator. The LNDWG operator
weights only the log-normal distributions, the 
LNDOWG operator weights only the ordered positions 
of the log-normal distributions instead of weighting the 
log-normal distributions themselves, and both these two
operators consider only one of them. The LNDHG
operator weights both the given log-normal distributions
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and their ordered positions, and generalizes both the 
LNDWG operator and the LNDOWG operator at the 
same time. In addition, the LNDOWG operator and the 
LNDHG operator can relieve the influence of unfair 
data on the final results by assigning low weights to 
those unduly high or unduly low ones. Furthermore, we 
have given an application of the LNDWG operator and 
the LNDHG operator to MCGDM based on log-
normally distributed random variables. This paper
enriches and develops aggregation operator theory. In
the future, we shall continue working in the extension 
and application of the developed operators to other 
domains.
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