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Abstract

In real applications, mobile robot may be commanded to go to multiple goals to execute special com-
missions. This study analyzes the particular properties of this multiple goals visiting task and proposes a
novel tailored genetic algorithm for optimal path planning for this task. In proposed algorithm, objectives
for evaluating the path are energy consumption and idle time that are proposed in our previous work. Un-
der the constraint of energy consumption, it will generate an optimal path that comprises as more goals as
possible and as less idle time as possible. In this algorithm, customized chromosome representing a path
and genetic operators including Repair, Cut and Deletion are developed and implemented. Afterwards,
simulations are carried out to verify the effectiveness and applicability. Finally, analysis of simulation

results is conducted and future work is addressed.
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1. Introduction

Mobile robots have been developed for many real-
life tasks such as automatic patrolling in a trans-
former substation !, welding automatically in a pro-
duction line ? and tour guiding **. For all the ap-
plications, path planning plays an important role in
navigating robot to execute missions >°. Further, it
is generally occurred that more than one accessible
path can be found, thus a strategy is necessary for
selecting the optimal or near-optimal path. In recent
years, the important issue of optimal path planning
has attracted considerable attentions.

1.1. Cases of path planning

Generally, path planning is to find a suitable
collision-free path for a robot moving from a start

point to a designated goal 7:8. In this situation, there
are just one start location and one goal. However,
in different applications, there are four other cases
of path planning according to the number of robots,
start points and goals:

(i) Path planning for one robot that starts from a
point, and chooses a goal from multiple goals
to move to. For example, when needing to
recharge, the robot should select a charging
station from all the stations to go to !;

(ii) Path planning for one robot that moves from
a start point and arrives at a destination while
during this course it must visit parts of the
specified goals, for example, to pick up loads
and carry them to the target location °. Spe-
cially, if the robot must visit all the nodes in
the environment and finally return to the initial
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point, it is well known as the routing problem
of TSP (Traveling Sales Problem) 10,

(iii) Path planning for Multiple robots that leave
from the same start point and go towards the
same goal !!;

(iv) Path planning for Multiple robots that start
from different initial points and move to dif-
ferent goals 1213,

The problem that this study will concentrate on
is more close to TSP in which there are many goals.
Further, the most alike research was described in [9]
where there are a start point and a destination and the
robot chooses parts of the other nodes to visit. Ac-
tually this can be deemed as a part of our problem
since in our work there exists several goals and for
visiting each goal, it is similar to that starting from
a new start point and going to a new goal. However,
compared with these works it has five important spe-
cific properties:

(1) The ultimate goal is not designated, thus every
goal may be the final destination;

(i1) All the problems are usually solved by using

a graph-based environment in which goals are

represented by nodes. For TSP, all the nodes

are goals, while in this study goals are just a

part of the nodes;

(iii) No priority is set for goals and therefore the

robot can visit the goals in any order;

(iv) The robot may arrive at a goal for more than

once (only the first time arriving at a goal is

for visiting this goal), which is different from

other researches since they require that the

robots visit each goal only once strictly;

(v) Since the robot may have not sufficient energy

to visit all the goals,the optimal path is allowed

to involve not all the goals.

To the best of the authors’ knowledge, no re-
search has investigated on this special problem with
the five properties listed above.

1.2. Objectives for optimal path determination

The optimal path planning task can be described as
an optimization problem in which a single objec-

tive or multiple objectives are employed. Among
researches about optimal path planning, mainly path
length is used for evaluating a path '“'>. However,
when various features of outdoor environment are
considered such as friction and gravity, other criteria
are proposed for determining an optimal path. For
example, Wang et al. intend to plan a time-optimal
trajectory for the mobile robot '®. When finding op-
timal paths on terrains for a mobile robot, Sun et al.
use energy consumed due to friction and gravity as
the cost of a path !7. Liu et al. also treat energy
consumption as the central factor in the cost func-
tion when developing the global path planner for
the mobile robot 8. Mei et al. ! consider the en-
ergy expended on rotating, since in the environment
with many walls and corners, it may cause much en-
ergy consumption if rotating frequently. For plan-
ning an optimal path to multiple goals, Lobaton et
al. took retracing into consideration 2°. In previous
research on optimal path planning, on consideration
of road attributes including length, road grade, sur-
face roughness and the set of speed hump, we have
studied optimal path planning based on energy con-
sumption 2'. Further, considering influence of vi-
bration on mobile robot induced by motion, we pro-
posed the decision factor - idle time (non-working
time) as the cost of a path, which is proven to be
more comprehensive for evaluating a path .

In many cases multiple objectives are consid-
ered simultaneously. In terrains, as part of path seg-
ments are easy to pass while some are difficult, au-
thors use two factors, namely path length and dif-
ficulty for evaluation of paths >>23. It may occur
that there is no longer a single optimal solution but
rather a whole set of possible solutions of equiva-
lent quality if more than one objective is consid-
ered. When dealing with multiple objectives, re-
searchers have created effective methods for various
situations. A general way is to assign a weight to
each objective, and then use the sum or product of
the weighted value of each objective as the decision
factor for evaluating a path ''?*23_ The advantage
of this method is that it is simple and easy to realize.
However in some situations, it is difficult to give an
exact weight for each factor, so other methods deal-
ing with the objectives are proposed. Takanori Shi-
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bata et al. use a fuzzy set to determine the fitness
of a string (representing a path) where each value is
decided by effects of two objectives, i.e., time and
load °. Lexicographic method is another effective
approach with which the objective functions are ar-
ranged in order of importance 2. In addition, it is
reasonable to pursue an optimal solution according
to one criterion while satisfying other objectives that
are used as constraints, which is called “bounded ob-
jective function method” 26. Moreover, Gideon Avi-
gad et al. have studied the sequential optimization-
constraint multi-objective problems, where different
optimal solutions are generated in accordance with
different planning demands 27. In this work, both
lexicographic method and bounded objective func-
tion method will be employed to deal with the two
factors, i.e., energy consumption and idle time pro-
posed in previous studies 2.

1.3. GA-based path planning

A majority of researches have concerned on optimal
path planning and many conventional techniques in-
cluding potential field method, visibility graph and
Voronoi roadmap are used ?®. Recently, various
kinds of artificial intelligence methods like genetic
algorithms, neural networks, fuzzy logic method,
particle swarm optimization and ant colony opti-
mization have been proposed for optimal path plan-
ning 2930 Tn this work, Genetic algorithm (GA) is
adopted and tailored to solve concrete problem. Ge-
netic algorithm, based on the mechanism of natural
selection and natural genetics, was first developed in
the 1970s by Holland 3'. It is an evolutionary opti-
mization method and is proven to perform well in
optimal path planning 2. To use GA, one should
first find a pattern to express the feasible solutions,
which is called chromosome. Besides, it is neces-
sary to create a fitness function to evaluate each solu-
tion. The most challenging part is developing some
appropriate genetic operators acting on the popula-
tion of each generation that is the set of solutions.
After evolving for certain generations, the optimal
one will be determined by a criterion.

For diverse applications, due to the differentia-
tion of problems, various modifications are made
based on basic GA to solve concrete problems.

In many occasions, researches use fixed-length
chromosome to represent a path 3334 While in
other circumstances, variable-length chromosomes
are adopted. For example, in a grid-based environ-
ment, authors use string of cells to describe a path
whose length is unfixed !333637 Meanwhile, dif-
ferent forms of fitness functions are created due to
the fact that different objectives should be consid-
ered in respective application, such as path length
14 energy consumption '®, time consumption '°,
smoothness and safety 8. The key for evolution
are the genetic operators. Traditionally, three op-
erators, 1.e., selection, crossover and mutation are
employed nearly in all applications 6. They play
significant role in adding diversity to the population
and therefore are in favour of finding the global opti-
mal solution. Apart from them, customized genetic
operators are often established according to different
purposes. For example, to make a feasible solution
better, operator improvement is designed, which will
randomly choose a node, and search in neighbouring
grids of the node, and move it to a better location !!.
This function is also realized by an operator with the
name repair *>. However, there exists an operator
called repair ', while it is used for make infeasi-
ble path feasible. Besides, deletion is employed to
eliminate duplicate nodes existing in a path, to re-
arrange it in order to make the path more concise
37 Thus, the robot will not return to the same nodes
more than once along this path. In addition, inser-
tion is developed to make invalid path qualified by
inserting nodes between unconnected nodes. Vari-
ous customized operators have enlarged the field of
application of GA-based method vastly.

In this study, for the multiple goals visiting task,
we proposed a novel tailored genetic algorithm to
find an optimal path to visit as more goals as pos-
sible. The remainder of this paper is organized as
follows: in section 2, we will state the problem in-
cluding the model of work environment, the multi-
ple goals visiting task and properties of a path. In
section 3, tailored genetic algorithm is described in
detail. Then, simulations and analysis of results are
conducted in section 4. Finally, conclusion and fu-
ture work are addressed.
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2. Problem Formation

In this section, we further discuss the problem in-
cluding the model of work environment and the task
of multiple goals visiting. At last we introduce the
properties of a path that are very important for the
proposed genetic algorithm.

2.1. Work environment

We use a graph-based topological map to describe
the work environment !, which is illustrated in Fig-
ure 1.

4

Fig. 1. Work environment.

Let V be the environmental space that includes
three parts, namely, path segments, nodes connect-
ing path segments, and obstacle regions, which are
described as follows.

P: The set of path segments. In Figure 1,
Py (e.g.,m = 0,1) represents a path segment and for
each one, four attributes are considered, i.e., path
length p,, ; surface roughness p,,_,, road grade p,,_,
and speed-control hump p,, 5, ¥ Especially, the seg-
ment with shadow implies that it is a rough segment.

N: The set of nodes connecting path segments.
For example, A to H are nodes connecting two or
more path segments respectively. Particularly, There
are some charging dock stations placed on some
nodes (e.g., charging dock stations Dy and D, are
placed at nodes H and E respectively). In a concrete
mission, if any one node is designated to visit, it is
called a goal, and the position where the robot starts

from is called the start point. Since each segment
has two nodes, a segment can be also represented
by nodes. For example, in Figure 1, segment P can
be also represented as Pgp if in one path the robot
moves from node G to F, or Prg from F to G.

O: The set of obstacle regions. In Figure 1,
the regions with gray oblique lines represent obsta-
cle areas. Thus we can describe the environment as
V={P,0,N}.

In previous study '2°, we have elaborated the

cost of a path segment. The cost that the robot will
pay for passing each segment includes two parts: en-
ergy consumption c, and the influence of vibration
on robot body ¢;. and the calculation of ¢, and ¢;, is
also deduced.Further we clarified how to computing
the idle time Tjp; g based on ¢, and ¢, (refer to Ref.
[1] and [39] for more details).

2.2. Optimal path planning for multiple goals
visiting Task

Normally when performing regular inspecting task,
the robot moves in accordance with predefined route
in the environment. Occasionally, the robot may be
asked to go to multiple goals to execute particular
missions. To make it easy to analyze and under-
stand, in subsections 2.2, 2.3 and section 3, we will
use D; (e.g., i=0,1) to represent charging dock and
G, (e.g., j=0,1) the goal. For example, in Figure
2, when the robot is at point S, it is commanded to
visit G1, G, and G3. The robot can select the path
coloured in blue to visit all the goals. Thus, the se-
quence of goals visited is G| — G, — G3, for which
we use I'y = {S,A,Gy, G2,D,G3} to describe the
path. However, the robot may choose visiting G3 be-
fore G, then the sequence becomes G| — G3 — G,
and consequently we obtain another feasible path
I'; = {S,G1, G3,G,} that is colored in red. The op-
timal path planning for multiple goals visiting task
is to find the optimal one among all the accessible
paths.

*Pm_> Pm_r» Pm_g and py, j, 1efer to py1, pur, Pmg and py,y, respectively in [1].
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Fig. 2. Multiple goals visiting task.

The ideal situation is that the robot can visit all
the goals by using the remaining energy. But in real
cases, it is possible that the remaining energy is not
sufficient for the robot to visit all the goals. There-
fore, a compromising solution is to cut down a goal
or more, and then try to find an optimal path for the
visiting task. The expecting result is to make the
robot visit as more goals as possible under the pre-
condition that after arriving at the last goal the robot
still has enough energy to reach one charging sta-
tion. For example, in Figure 2, if the robot cannot
get to G3 when following the most energy-saving
path I';, it can decide not visiting goal G3, then the
optimal path is I'; = {S,A, Gy, G, } and G, becomes
the last goal to be visited. Certainly the worst situa-
tion is that the remaining energy can not support for
visiting even one goal. Consequently, four cases can
be obtained that are shown in Figure 3.

Energy is

G;

exhausted

Start Point |
Energy is G,
exhausted

Energy is exhausted

Fig. 3. Four cases of task execution.

The four situations shown in Figure 3 are de-
scribed as follows.

(i) The robot can visit all the goals and the re-
maining energy is enough for reaching a charg-
ing station, which is shown as situation (a) in
Figure 3;

(i) The robot can just visit a portion of the goals
and has to go back to one charging station. For
example, in situation (b), the robot can not get
to Gj after visiting G, which means the robot
can just visit two goals, i.e., G1 and G5.

(iii)) The robot has sufficient energy to visit all the
goals with the energy-saving path, but it can-
not get to the nearest charging station from the
last goal. Therefore, the robot should give up
the last goal. For instance, in situation (c), the
robot has to give up the last goal G3.

(iv) The robot can not visit even one goal and has to
go back to recharge. In situation (d), the robot
even has not enough remaining energy to visit
the first goal G. It should go back to charging
station to recharge right now. Thus, No path is
feasible for completing this task.

2.3. Properties of a path

We use the combination of nodes to represent a path.
In this research, three basic properties of a path are
obtained:

(i) A path is constituted of parts of the nodes. For
example, the path colored in blue in Figure 2
can be described as I'} = {S,A, G|, G2,D,G3}.
This path is constituted by nodes S, A, G, G»,
D and Gj3 in which Gy, G; and Gj3 are the goals
assigned.

(i) There is no priority or constraint for the se-
quence of goals to be visited. For example, in
Figure 2, both paths I'} = {S,A, G, G»,D,G3}
and I', = {S, Gy, G3,G,} are valid for visiting
goals G, G, and Gj3.

(iii) It is permissible for a node appearing in
the sequence more than once. For in-
stance, in Figure 4, one available path is I' =
{8,G1,S,G2,G4,G,,G3}, where S and G, ap-
pear twice. The purpose of the first arrival at
one goal is to “visit” the goal in order to per-
form task, and that of the other times are for
going to other goals.
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S
Start Point

Gs

Fig. 4. A special situation.

3. Proposed Genetic Algorithm for Path
Planning

In this section, we will first introduce basic genetic
operators which play important role in basic GA.
Then the proposed tailored genetic algorithm is in-
troduced to solve the problem described above.

3.1. Basis of genetic operators

As an advanced stochastic search technique similar
to natural evolution based on the principle of “sur-
vival of the fittest” !, traditionally, genetic algo-
rithm involves three basic genetic operators to sim-
ulate the adaptive process of natural systems: Selec-
tion, Crossover and Mutation °.

Selection is an operator to select the survival in
a set of present candidate individuals (usually be-
ing called population) according to the fitness value
computed by the fitness function. The selected indi-
vidual(s) will be kept surviving in the next genera-
tion.

Crossover is an operator adopted to reform the
survival candidates. Usually, it is performed by ex-
changing parts of strings by use of old strings and
then new strings are generated. This process derives
from the natural system, in which a set of creatures
creates a new set of the next generation by swapping
among the creatures. Often the parts are crossed in
couples of candidates selected randomly. When us-
ing this operator, one should determine a crossing
rate to decide how often the selected individuals will
carry out this operation.

Mutation, which means to replace one random
gene of the chromosome by an arbitrary different
gene, is another way to increase the diversity of pop-
ulation. Compared to Crossover, mutation rate is
much smaller. Another important function of this

operator is to avoid trapping in the local minima in
the search space.

3.2. Tailored genetic algorithm

Based on traditional genetic algorithm, modifica-
tions are made to fit our problem. We use the com-
bination of nodes to represent the chromosome. The
fitness functions include two parts which are used to
calculate energy consumption and idle time respec-
tively. Except the basic three operators, i.e., Selec-
tion, Crossover and Mutation, we create three new
operators: Repair, Cut and Deletion.

3.2.1. Chromosome

The proposed genetic algorithm uses the combina-
tion of nodes for path representation. An example
of path encoding is shown in Figure 5, which is
S—A—G; —Gy—D—Gj. In this chromosome, S
is the start point, G, G2, and G5 are three goals.

start point goals

Fig. 5. An example of chromosome.

Two different chromosomes may have different
length. For example, the length of the chromosome
shown in Figure 5 is 6, in which 3 goals are involved.
While the length of the chromosome in Figure 2,
S —G; — Gy — Gy, is 4, and the same 3 goals are
included.

3.2.2.  Path evaluation

Chromosomes are selected for reproduction through
genetic operators based on the fitness function, so it
is important to establish a set of criteria to evaluate
the quality of a path. For each individual, we adopt
three terms €, F, and Fy,,,, to describe it. € is the
number of goals involved in this chromosome. Thus,
Q(T) represents the number of goals in path T. F, is
the energy that the robot will spend on moving along
this path, and F7,,,, indicates the idle time induced
by this path. The total energy consumption of a path
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is the sum of that of each path segment, so

h
Fe:ZCe(Pi)- (1)
i=1

where / is the number of segments, ¢, (P;) is the en-
ergy consumption of the ith segment.
Similarly, F7;,,, can be calculated as

h
Fripwe = Y Tioee(Py) - )
i=1

where & is the number of segments and Tjpy g (F;) is
the idle time of the ith segment. ¢, (P;) and Tjp g (P;)
are introduced in Section 2.1. For example, for the
individual § —A — G| — G, — D — G3 shown in Fig-
ure 5, we have

F, = Ce(PSA) +Ce(PAG1) +CE(PG162)Jr

(3)
Ce(PGzD) + CE(PDGz) .

Fripe = Tipee (Psa) + Tipre (Pag, )+

4)
Tipre (Pe,6,) + Tipre (Po,n) + Tipee (Pos ) -

Define E,. as the available energy the robot can
utilize to perform the task, then we get

Erest = Ecur - Elow . (5)

where E., is the remaining energy the robot has
when it is at the start point, and Ej,,, is the threshold
value of low energy.

We define e, as the extra energy consumption
that the robot spends on executing task at each goal,
and assume that it is a fixed value, namely, e, = 7.
For a path I, the total extra energy E; s spending on
performing task is

Etask - Q(F) * etask - Q(F) *T. (6)

Thus, we get another condition that makes one
path feasible, namely,

Fe(r) +Etask < Erest . (7)

which means that the sum of the energy spent on
walking along the path and executing tasks should
be less than the remaining energy.

3.2.3. Genetic operators

In proposed genetic algorithm, except the three ba-
sic operators, i.e., Selection, Crossover and Muta-
tion, we create three new operators, i.e., Repair, Cut
and Deletion.

Selection The selection process includes two
steps. First, using the strategy “elitism”, it will find
out the best chromosome and keep it in the popula-
tion in the next generation. This operation will be
helpful for finding the global optimal solution. The
selection is based on the fitness value. At the begin-
ning of the algorithm, candidate solutions are gen-
erated randomly, which constitute the initial popula-
tion. We assume that there exists at least one feasible
path I' that involves all the goals and its energy con-
sumption F,(I") meets Equation 7, then in the initial
population each candidate solution will include all
the goals. When executing selection operation, we
first check if any individual meets Equation 7. If
at least one solution conforming to this condition is
found, we will use Fr,,,, as the criterion to select the
best one from individuals that meet this condition.
Otherwise, if none is found, the selection process
will utilize F, to evaluate a path since the one having
less energy consumption is more likely to be evolved
to a feasible one. Subsequently, the best one that has
the minimal F, or Fr;,,, will be selected to remain
in the next generation. This strategy can guarantee
that the best one up to now will not be destroyed by
other genetic operations and can accelerate the con-
vergence of the algorithm.

Secondly, to keep the number of individuals in
next generation unchanged, it will select out the rest
stochastically. This strategy can prevent the algo-
rithm converging to the local optimal.

Crossover Crossover is an efficient way to add di-
versity to the population. First, a crossover proba-
bility (noted as P.) is predefined. In this operation,
two parents are selected randomly and a position is
selected randomly too. Then, a random probability
is generated. If the probability value is less than the
predefined value, the operation will go on. Other-
wise, the two parents are passed to the next gener-
ation directly. The operation will end until certain
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times of crossing operations are carried out.

When executing Crossover operation, a
crossover point will be generated. Since the length
of two parents may be different, the sequence num-
ber of the point will not be bigger than the length of
the shorter one. Then, in the other parent, we find
the corresponding node and its sequence number of
the first appearance. If the other one has the same
node, exchange the latter parts of the two parents. If
not, quit and restart from choosing parents.

The following is an example of Crossover oper-
ation. First, two parents are selected:

Parent 1: S— G| — G35 — Ga

Parent2: S—A— G| — G, — D — Gj

If node G is selected as the position for exchanging,
then we get the offspring after crossing:

Child1: S—G,—G,—D—G3s

Child2: S—A—-G—G3—G;

After crossing, the two children are put into the pop-
ulation of next generation.

Mutation In Mutation operation, a position is ran-
domly chosen and the node at this position is re-
placed with a different node. Like “Crossover”, a
mutation rate P, is also predefined. Mutation is
served as a key role to diversify the solution pop-
ulation. Therefore, it is not necessary that a solution
is better after mutating. After mutating, this node
may not be connected directly with the two nodes
before and after. For example, if node A in path
S—A— G| — G, — D — Gj3 shown in Figure 2 is cho-
sen to mutate, and changes to C, then, this individ-
ual becomes S — C — G| — G, — D — G3. However,
as seen in Figure 2, nodes S and C, and C and G| are
not connected directly, which means that the indi-
vidual after mutation is not a feasible solution. Even
s0, it has made the population diversified, and the
following operator Repair can make it feasible.

Repair When executing genetic operators, some
infeasible paths may be generated. For instance, af-
ter mutation, individual S—A — Gy — G, — D — G3
becomes S — C — Gy — G, — D — G3, while nodes
S and C and C and G are not connected directly.
When this happens, we will use Repair operator to
solve this problem. The practical way is inserting

some suitable nodes between the two nodes.

Take S —C — G; — G, — D — G3 as an example.
When executing repair operation, we first check if
this individual is feasible by examine every two ad-
jacent nodes. If at a position, the node and the next
node are not connected directly, then, this operator
will try to add some nodes between them in order
to make the two nodes connected reasonably. In the
above example, the nodes S and C may be inserted
by node A. and then C and G; may be inserted by
nodes G; or A, which is decided randomly. If A s se-
lected, then the individual is repaired to be S —A —
C—A—G|—Gy—D—Gs, and if G, is selected, it
will becomes S—A—C— G, — Gy — G, — D — Gs.
No matter whichever is chosen, the result is that the
path becomes feasible at last.

It is notable that after mutation or crossover, the
number of goals may change. If an individual should
have k goals but just involve k’(k" < k) goals now, the
repair operator will try to repair this string by adding
nodes after the last node until the other k — k’ goals
appear at least one time.

Cut In a chromosome, it is allowed that any node
appears more than one time. But the unnecessary
reduplication must be avoided. For example, in
string S —A —C — A — G| — G, — D — G3 obtained
after repairing, node A appears twice and between
them there is no goal. It can be regarded as that be-
tween the two times arriving at A, the intention is
not for going to any goal. So, the sequence C — A
is meaningless and it needs to be cut. Finally, this
string becomes S —A — G| — G, — D — G3. So, the
Cut operator is to do such things that cutting the un-
meaning sequences existing in each individual.

However, the reduplication does not include the
situation that a goal exists between the same two
nodes. For instance, in chromosome S —A — C —
Gy, — G| — G, — D — G3, Goappears twice. But be-
tween them there is another goal G| which indicates
that the purpose of arriving at G, for the second time
is for visiting another goal. Thus, the second time
passing G» is meaningful.

From the above analysis, two criteria can be used
as judging whether a chromosome needs Cut opera-
tion:
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(i) If a node that is not a goal appears twice,
and no goal is between them, then this se-
quence after the node can be cut. For exam-
ple, the sequence A — C — A appearing in path
S—A—C—A—G;—Gy—D—Gj can be cut
to A.

In an individual, for each goal, only the first
appearance is regarded as a goal. The other
times of appearance will be regard as a com-
mon path node, which implies that the pur-
pose of passing the goal for the second or
third time is for reaching another goal. Take
S—A—-G—A—---—B—G;—B—-Gjasan
example, in which the robot reaches G twice.
Only the first time is for visiting this goal. This
is why we cannot execute cut operation on the
part A— G; —A On the contrary, the second
time when it appears, it will be deemed as a
common node. Therefore, B— G; — B should
be cut to be B according to rule i.

(ii)

Deletion In a chromosome, when all the goals
have appeared once, the remainder of the string is
not necessary and should be deleted. Assume that
the string is admitted to include k (0 < k < N, where
N is the number of goals assigned at the beginning)
goals, then if ' (k' > k) different goals appear in the
string, we should delete the string after the kth goal.

When it is confirmed that the robot has no suf-
ficient energy to visit all the goals, it will attempt
to reduce one goal and go on searching the optimal
path. For example, in the task of visiting goals Gy,
G, and Gs, if it is found that the robot has no suf-
ficient energy to visit all the three goals, then the
robot will try visiting two goals. Thus, the path
S—A—C—-Gy— Gy — Gy —D— G3 will become
S —A —C — G, — G after performing Deletion op-
eration.

3.2.4. Execution of proposed tailored genetic
algorithm

Compared to traditional genetic algorithm, varia-
tions are made in the execution of proposed algo-
rithm. It is cyclically executed, where the criterion
for deciding the circulation is to check if any path

satisfying the energy constraint. In each cycle, the
evolution process is similar to the basic GA. In Fig-
ure 6, the execution of proposed GA is illustrated.

—_—
( stat )
—

Parameters Initialization:
gSize= POPULATION_SIZE;
gGeneration =0,
2Goal=MAX GOALS NUM,;
gFlag iter = TRUE;

\

Gernerate gSize individuals

randomly, and each one

involves gGoal goals

\
v

Calculate F;, and 7, for each individual

If for any one path I', F,,(D)+E, 4 < E

rest>

set gFlag iter = False

v

Selection, Crossover, Mutation, Repair, Cut, Deletion

Execute Operators:

| gGeneration = gGeneration+1;

N ///—/gGéﬁeration = T

\\"‘\\,G\ENEATION_I/\LUMV/

W N

_ D — N
<i/ gFlag iter = \/>N>{ gGoal= ‘ »@ al<1
- FALSE _— gGoal-1 N

vY Y
Report the result:

Report the optimal
No feasible path.

path

Fig. 6. Execution of the proposed genetic algorithm.

In Figure 6, gSize is the population size, and
gGeneration is the number of generations. gGoal
indicates how many goals are involved in each in-
dividual, and gFlag_iter is used for determining
if another circulation of performing the basic ge-
netic algorithm is needed. In the entire proce-
dure, gSize keeps being POPULATION _SIZE that
is constant. On the contrary, gGoal may reduce
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if gFlag_iter remains TRUE when beginning an-
other cycle. At the beginning, the value of gGoal
is MAX _GOALS_NUM which is the total number of
goals to be visited. If gFlag_iter remains TRUE
when one cycle is over, gGoal may reduce by one
until it decreases to zero, which means trying to find
an optimal path with one less goal. If in one cy-
cle, gFlag_iter turns into FALSE, the whole pro-
cedure will finish when gGeneration increases to
GENERATION_NUM which is a predefined con-
stant.

In each cycle, the basic tailored genetic algo-
rithm is conducted to search the optimal path of cor-
responding number of goals. In the end, if gGoal is
not smaller than one, then one optimal path is ob-
tained, otherwise, it will report that no feasible path
is available. This mechanism will guarantee that the
algorithm obtains an optimal path involving as more
goals as possible if at least one feasible path exists.

4. Simulation Studies

In this section, simulations are implemented to ex-
amine our proposed tailored genetic algorithm.

4.1. Simulations and results

We use the topological map shown in Figure 7 in
simulations, which is built in previous work (see
[1]). There are 23 path segments and 17 nodes seg-
ments in the environment. In addition, the attributes
of each segment are also listed in [1]. In simula-
tions, parameters in the proposed genetic algorithm
are set as follows: POPULATION_SIZE= 30, and
GENERATION_NUM= 100. Crossover rate P. =
0.9 and P, = 0.001. To simplify the computation,
we assume ez, = T = 0, then E;,5 = 0. Therefore,
Eq. (7) becomes F,(I') < E,ey. Furthermore, we
assume that E,. is a constant. In the following sim-
ulations, we set E,.;;, = 0.17V.

Fig. 7. Topological map of environment.

4.1.1. Simulation I

In this test, node A is set as the start point, and the
goals are C, H and M. The energy consumption and
idle time of the best individual in each generation
are shown in Figure 8. It is obtained from the result
that the optimal solution comes out in the 18/ gen-
eration. The optimal pathis A—B—-C—0—M —
O — P—H. lIts energy consumption F, = 0.1511V
and idle time F7,,,, = 1022.1330s. Since F, < Ejq
= 0.17V, this path is feasible, and all goals can be
visited. Further more, the order of visiting is C, M
and H. The computational time is measured to be
151ms.

The Best Individualsin Each Generation 1200

0.17 T
Energy Consumption
——Idle Time
=
c
‘a —
£ 5
g ) 110Q=
8 :
- o
o
9]
C
w
- 1000
80 100

40 . 60
Generation

Fig. 8. Result of simulation I.

In addition, there is a notable situation shown in
the red rectangle in Figure 8. For the best individ-

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

1118



Optimal Robot Path Planning for Multiple Goals Visiting Task Based on Tailored Genetic Algorithm

ual found in the 6" generation, its idle time is less
than that of the 5" generation, while the energy con-
sumption is more. This is because in the former 5
generations, we have found one path satisfying the
condition of energy constraint, then the minimal idle
time will be employed as principal for selecting the
optimal path.

Table 1. Details of Best Individuals in Each Generation

Generation Best individual F.(s)  Fr,,,.(s)

1-5 A_;f_*oc_*]f_*[y 0.1653  1139.6626
6-10 A__CL__QM_ _GN_ _HB 0.1656  1128.5902
1 ATEMZO7C 0617 10905179
12-17 A _LQ* _MG*_OH* € 01540 1026.6969
18-100 A_fo__C;_OI;M 0.1511 1022.1323

For sake of further understanding, we list out the
concrete data of energy consumption and idle time
of the best one in each generation in Table 1, the
energy consumption of the best one in the first gen-
eration is 0.1653V that is less than 0.17V . So, from
the second generation, the best individual is selected
from the candidates that satisfying energy condition
by using idle time as criterion.

4.1.2. Simulation Il

In this simulation, we set A as the start point, and
the goals are H, N, O and Q. One result is shown
in Figure 9. In the first 29 generations, energy con-
sumption keeps more than 0.17V, thus, during this
period, the criterion for selecting optimal individ-
ual in each generation is energy consumption. In
the 30"" generation, we get the optimal path that is
A-B—-N-M—-0-C—-Q—-G—-H . Its energy
consumption is 0.1646 V and idle time is 1123.5112
s. The result shows that the robot also has sufficient
energy visiting all the goals, and the order is N, O,
Q and H. The computational time is 157ms.

The Best Individual in Each Generation

2000

0.25 T
Energy Consumption
— - —Idle Time
=
<
=}
g )
3]
3 -41500E
Q =
O [}
> =l
P =
9]
C
(]
0.15 L L L L 1000
0 20 40 . 60 80 100
Generation

Fig. 9. Result of simulation II.

4.1.3. Simulation II1

In this simulation, A is the start point, and goals are
E, H, N and O. We show the result in Figure 10.

0.24

o
N
N

The Best Individual in Each Generation

Energy Consumption
Idle Time

1500

-11400

<130

o
Idle Time[g]

\;i 1200

Energy Consumption [V]
2 o
oo N

0.16 1100
0

20 40 . 60 80 100
Generation

Fig. 10. Result of simulation III.

From Figure 10, we get the optimal solution
in the 92"¢ generation in the first cycle. The en-
ergy consumption F, is 0.1743V and idle time is
1193.8413s. Because F, exceeds the remaining
available energy 0.17V/, this path is not feasible and
we will continue searching another optimal path
with one goal less. With this strategy, a new op-
timal path that both satisfies requirement of energy
consumption and has the minimum idle time is gen-
erated: A—B—N—-M —O—P—H. Its energy con-
sumption is 0.1274V and idle time is 886.9106s. The
energy consumption is less than 0.17V, however, it
just allow the robot to visit three goals which are N,
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O and H. The total computational time is measured
to be 282ms.

4.2. Analysis of simulation results

In the three simulations above, we implement our
proposed tailored genetic algorithm to find the opti-
mal path for multi-goal visiting task and finally op-
timal solutions are obtained. In the following we
will discuss about the similarity and difference be-
tween each case and evaluate the proposed genetic
algorithm based on simulation results.

(1) As the genetic algorithm itself is a kind of
stochastic, evolutionary search method, the op-
timal solution obtained at the end may not be
the global optimal one truly.

(i1) In the three cases, the speed of converging to
the optimal solution is different. For example,
the optimal one appears in the 18/ generation
in simulation I, while it is obtained in the 30"
generation in simulation II. Moreover, in sim-
ulation III, in the first cycle, the optimal one is
found in the 92" generation, and is proven to
be not feasible.
(iii) The computational time in case I and II are
151ms and 157ms respectively, and only one
cycle of evolution is executed. In simulation
III, two cycles are performed and 282ms is
needed. It shows great efficiency in compu-
tation. However, in the simple environment
there are just 17 nodes. To verify the timeli-
ness and efficiency, a more complicated envi-
ronment needs to be established and more sim-
ulations are required.

(iv) Generally, when using GA method, the stop

condition can be either that the best solution

keeps unvaried for certain number of genera-
tions, or that the current maximum generation
is exceeded #°. In proposed genetic algorithm,
the latter is adopted. However, in reality, both
can not ensure the final solution is truly the
optimal one, and therefore it is uncertain that
which one is better absolutely. As an example,
in simulation III, the solution generated firstly
in the 30" remains the best one in the follow-
ing 62 generations. If we use the former stop

criterion, and set the maximum generation to

be 50 or 60, this solution will be regarded as

the final optimal path. However, it is soon re-

placed by a better solution. Furthermore, if we

set the maximum generation is 90, we also can

not get the better solution that comes out soon.
(v) In all the simulations, parameter E,. is con-
sidered as a constant for simplifying the prob-
lem. Nevertheless, for different paths, the last
goal reached may not be the same, this value
will be different. Actually, this value should
be the minimum energy the robot needs to
move to one charging station from the last
goal. Hence, in practice, it is wiser to use dif-
ferent values of E .y rather than the same fixed
value.

5. Conclusion

We have proposed a novel tailored genetic algorithm
to solve the problem of optimal path planning for
multiple goals visiting task. Aiming at the particu-
larity of the problem, special form of chromosome
is used to represent the path and customized ge-
netic operators are development. The effectiveness
of the method is verified by simulations. Further-
more, through analysis of simulation results, evalu-
ation on our proposed method is addressed, which is
useful for wider implementation in various circum-
stances. Future work will be carried out to perfect
this method by considering parameters more realis-
tically, and to execute more simulations with more
complicated environment. At last, we will imple-
ment the proposed algorithm on real systems.
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