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Abstract

One of the key issues in the theory of concept lattices is to extract the useful rules from the decision
formal context. The maximal rules implicate the others, thus people are interested in them. This paper
proposes two new kinds of attribute reduction in the decision formal context based on maximal rules. The
reducts preserve all the condition extensions and the decision extensions related to the original maximal
rules. The internal relationship between the original maximal rules and the maximal rules in the reduced
decision formal context is derived. The reducts can make the maximal rules more concise and accurate.
The mathematical property of the proposed attribute reduction is investigated and we construct the dis-
cernibility matrix and function to compute all the reducts. Finally, all the attributes are classified into
three types based on the maximal rules. The characteristics of these types of attributes are also analyzed.
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1. Introduction

The theory of concept lattices (also called formal
concept analysis), proposed by Wille in 1982, is a
relatively new model to represent the formal con-
cepts associated with a context 30. It can unrav-
el hierarchical concepts organized as a lattice from
relational information systems. A formal context
consists of a universe of discourse U , an attributes
set A, and a binary relation I from U to A. Al-
l the formal concepts are constructed from the for-
mal context and form a concept lattice which reflects
the relationship of generalization and the specializa-
tion among concepts. It has been studied from var-
ious perspectives, such as its mathematical property
4,8,13,17,18,25 and the applications in knowledge dis-
covery 3,5,6,26,33,35.

In this paper, we investigate attribute reduction
based on maximal rules in the decision formal con-
text. Attribute reduction is performed in informa-
tion systems by means of the notion of a reduct
based on a specialization of the general notion of
independence 15. After eliminating the superflu-
ous attributes, the formal context becomes simpler
and the discovery of the initial knowledge hidden in
the formal context becomes easier, thus it is a key
problem in knowledge discovery. In recent years,
many scholars have studied attribute reduction ex-
tensively from various perspectives and each of them
aims at some basic requirements 14,16,19,27,32,36. In
2005, a method to attribute reduction was proposed
in concept lattices via the discernibility matrix and
Boolean function 36. It can get all the reducts and
each of them preserves all the original concepts and
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their hierarchy in the reduced context. Then inspired
by rough set theory 22, two kinds of attribute re-
duction methods and object reduction methods for
concept lattices were developed, respectively 14. Af-
ter that, based on irreducible elements in the objec-
t and property oriented concept lattices, a new ap-
proach to attribute reduction was presented 27. Re-
cently, the relation among attribute reductions in for-
mal, object-oriented and property-oriented concept
lattices is studied and the equivalence among them
has also been proved 16. Besides, much attention has
been paid to attribute reduction of the decision for-
mal context 11,12,28,29,34. A decision formal context
consists of a universe of discourse U , a conditional
attributes set A, a decision attribute set C, and binary
relations I from U to A and J from U to C. Based on
the discernibility matrix and Boolean function, at-
tribute reduction of the strongly consistent decision
formal context and the weakly consistent decision
formal context was discussed 29. Then a knowledge-
reduction heuristic algorithm is developed to search
for a minimal reduct of a consistent decision formal
context and its time complexity is polynomial 11.
Recently, an order-preserving mapping is proposed
to classify the decision formal contexts into consis-
tent and inconsistent formal decision contexts. Then
their corresponding knowledge reduction methods
are given by constructing the suitable discernibility
matrices and Boolean functions 12.

On the other hand, rules extraction is an im-
portant problem and it has been studied extensively
from different perspectives 1,2,9,10,20,21,23. In the de-
cision formal context, a rule is derived based on the
condition formal concept (generated from the con-
dition attribute set) and the decision formal concept
(generated from the decision attribute set). Each for-
mal concept is constituted with the extension and the
intension. For a rule, there often exist some redun-
dant attributes, thus the reduction based on rules ex-
traction is necessary. As we know, the maximal rules
implicate the other rules, thus the formal concepts
related to the maximal rules are important. Attribute
reduction based on maximal rules is proposed in this
paper. The proposed reducts preserve all the con-
dition extensions and decision extensions related to
the original maximal rules. Furthermore, it is proven

that all the maximal rules in the reduced decision
formal are derived from these condition extensions
and decision extensions. In other words, every o-
riginal maximal rule corresponds to a maximal rule
in the reduced decision formal context and they are
derived based on the same condition extension and
decision extension. However, the depiction of the
maximal rule becomes more concise and accurate
after eliminating the superfluous attributes. Using
the similar idea of attribute reduction in the classi-
cal formal context 36, the corresponding discernibil-
ity matrix is presented. All attributes are classified
into three types based on the maximal rules. The
characteristics of these types of attributes are then
analyzed.

The remainder of the paper is organized as fol-
lows: in the next section, some basic concepts relat-
ed to this paper are reviewed. In Section 3, two kind-
s of reduction based on maximal rules are proposed
and their properties are investigated. In Section 4,
we study attribute reduction based on maximal rules
in the decision formal context. Some judgment theo-
rems of a reduct are developed, and the discernibility
matrix is constructed to compute all the reducts via
Boolean approach. In Section 5, all the attributes are
classified into three types based on maximal rules.
The characteristics of these attributes are also stud-
ied. Finally, in Section 6, we conclude the paper
with a summary and an outlook for further research.

2. Preliminaries

To facilitate our discussion, some basic notions and
results related to this paper are reviewed in this sec-
tion 7,29,31.

A formal context is a triplet (U,A, I), where U
is a nonempty finite set of objects, A is a nonempty
finite set of attributes, and I ⊆U ×A is a binary re-
lation from U to A. (x,a) ∈ I means that x has the
attribute a.

Definition 1. Let (U,A, I) be a formal context. For
all X ⊆U and B ⊆ A, two operations are defined re-
spectively

X∗ := {a ∈ A| ∀x ∈ X ,(x,a) ∈ I}, (1)

B∗ := {x ∈U | ∀a ∈ B,(x,a) ∈ I}. (2)
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Evidently, X∗ consists of exactly those attributes
which the objects in X have in common, and B∗ con-
tains exactly those objects which share all attributes
in B.

Definition 2. Let (U,A, I) be a formal context. A
pair (X ,B) with X ⊆ U and B ⊆ A is called a for-
mal concept iff X∗ = B and B∗ = X . Here X and B
are called the extension and the intension of (X ,B),
respectively.

Theorem 1. Let (U,A, I) be a formal context. For
all X ,X1,X2 ⊆ U and B,B1,B2 ⊆ A, the following
statements hold:

(1) X1 ⊆ X2 =⇒ X∗
1 ⊇ X∗

2 ; B1 ⊆ B2 =⇒ B∗
1 ⊇ B∗

2.
(2) X ⊆ X∗∗, B ⊆ B∗∗.
(3) X∗ = X∗∗∗, B∗ = B∗∗∗.
(4) (X1 ∪X2)

∗ = X∗
1 ∩X∗

2 , (B1 ∪B2)
∗ = B∗

1 ∩B∗
2.

(5) (X∗∗,X∗) and (B∗,B∗∗) are both concepts.
Here (X1,B1) 6 (X2,B2) if and only if X1 ⊆ X2

(or equivalently B2 ⊆ B1). The set of all the con-
cepts in (U,A, I) together with the partial order is
denoted by L(U,A, I). Furthermore, the set of all the
extensions is defined as LU(U,A, I) = {X |(X ,B) ∈
L(U,A, I)}. It can be seen that LU(U,A, I) =
{X |(X ,B) ∈ L(U,A, I)} = {X∗∗|X ⊆U}.

Definition 3. A five-tuple (U,A, I,C,J) is called a
decision formal context, if (U,A, I) and (U,C,J) are
both the formal contexts, and A is called a condition
attribute set, C is a decision attribute set.

Let (U,A, I,C,J) be a decision formal contex-
t, with each B ⊆ A, we associate a binary relation
IB = I ∩ (U ×B). Then (U,B, IB) is a sub-context
of (U,A, I). It is easy to see that IA = I,X∗B =
X∗∩B,X∗B ⊆ X∗.

The following theorem follows immediately
from the definition of LU(U,A, I).

Theorem 2. Let (U,A, I) be a formal context. For
all B ⊆ A(B ̸= /0), LU(U,B, IB)⊆ LU(U,A, I).

Definition 4. Let (X ,K) ∈ L(U,A, I) and (Y,H) ∈
L(U,C,J). If X ⊆ Y (Y ̸= U, /0), then “K → H” is
called a rule. Furthermore, if there exist (X

′
,K

′
) ∈

L(U,A, I) and (Y
′
,H

′
) ∈ L(U,C,J) satisfying K ⊆

K
′
and H ⊇ H

′
(or equivalently X

′ ⊆ X and Y
′ ⊇Y ),

then it means that “K → H” implicates “K
′ → H

′
”

and the rule “K
′ → H

′
” is redundant. If there is no

rule “K
′ → H

′
” satisfying K

′ ⊆ K,H ⊆ H
′
, then the

rule “K → H” is called a maximal rule.
It should be noted that the rule proposed above

is in fact a decision implication 24. However, a
decision implication may not be a rule because it-
s premise or conclusion may not be the intension of
any formal concept. Besides, the premise or the con-
clusion of the implication rules given in 7 may also
not be the intension of any formal concept. Thus,
compared with the decision implication 24 and im-
plication rules 7, the rule proposed above has more
semantic explanation than a decision implication.

3. Attribute reduction based on maximal rules

In this section, we introduce the definition of at-
tribute reduction based on maximal rules in the de-
cision formal context, and then present some prop-
erties related to the definition.

For any Xi ∈ LU(U,A, I), denote by SC(Xi) =
{Yj|Xi ⊆ Yj ∈ LU(U,C,J) and f or any Y ′

j ∈
LU(U,C,J), i f Xi ⊆ Y ′

j , then Y ′
j ̸⊂ Yj}.

Clearly, for any Yj ∈ SC(Xi),Yj is the minimal ex-
tension which contains Xi in LU(U,C,J) and denote
by

ΦC =
∪

Xi∈LU (U,A,I)

SC(Xi). (3)

For any Yj ∈ ΦC, TA(Yj) = {Xi|Yj ⊇ Xi ∈
LU(U,A, I) and f or any X ′

i ∈ LU(U,A, I), i f X ′
i ⊆

Yj, then X ′
i ̸⊃ Xi} and denote by

ΨA =
∪

Y j∈ΦC

TA(Yj). (4)

Evidently, for any Xi ∈ TA(Yj),Xi is the maximal
extension which is contained in Yj in LU(U,A, I).

From the definition of ΦC and TA(Y ), the follow-
ing theorem can be obtained:

Theorem 3. Let (U,A, I,C,J) be a decision formal
context. For any (X ,K) ∈ L(U,A, I) and (Y,H) ∈
L(U,C,J), “K → H” is a maximal rule if and only if
Y ∈ SC(X)(Y ̸=U, /0) and X ∈ TA(Y ).

Definition 5. Let (U,A, I,C,J) be a decision formal
context. D ⊆ C is called a decision consistent set
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if for all Xi ∈ LU(U,A, I),SD(Xi) = SC(Xi). Further-
more, if for any d ∈ D, there exists Xi ∈ LU(U,A, I)
such that SD\{d}(Xi) ̸= SC(Xi), then D is called a de-
cision reduct of (U,A, I,C,J). The intersection of
all the decision reducts are called the decision core
of (U,A, I,C,J).

A decision reduct D of (U,A, I,C,J) is a minimal
attribute subset satisfying for all Xi ∈ LU(U,A, I),
SD(Xi) = SC(Xi).

Definition 6. Let (U,A, I,C,J) be a decision for-
mal context, E ⊆ A is called a condition consisten-
t set if for all Yj ∈ ΦC, TE(Yj) = TA(Yj). Further-
more, if for any e ∈ E there exists Yj ∈ ΦC such
that TE\{e}(Yj) ̸= TA(Yj), then E is called a condi-
tion reduct of (U,A, I,C,J). The intersection of all
the condition reducts are called the condition core of
(U,A, I,C,J).

A condition reduct E of (U,A, I,C,J) is a min-
imal attribute subset satisfying for all Yj ∈ ΦC,
TE(Yj) = TA(Yj).

It follows from the Definitions 5 and 6 that there
are at least one condition reduct and one decision
reduct in the decision formal context.

We can see that the reducts preserve all the con-
dition extensions and the decision extensions related
to the original maximal rules. And further, the fol-
lowing theorem is given:

Theorem 4. Let (U,A, I,C,J) be a decision for-
mal context, D ⊆ C is a decision consistent set and
E ⊆ A is a condition consistent set. Then for all
(X ,K) ∈ L(U,E, IE),(Y,H) ∈ L(U,D,JD),“K → H”
is a maximal rule in (U,E, IE ,D,JD) if and only if
Y ∈ SC(X),X ∈ TA(Y ).

Proof. ⇒) “K → H” is a maximal rule in
(U,E, IE ,D,JD), thus Y ∈ SD(X) and X ∈ TE(Y ).
From Theorem 2 and the definition of decision con-
sistent set, X ∈ LU(U,E, IE)⊆ LU(U,A, I),SD(X) =
SC(X), thus Y ∈ SC(X). From the definition of the
condition consistent set and Y ∈ SC(X), we have that
X ∈ TE(Y ) = TA(Y ).

⇐) From the definition of SC(X) and TA(Y ),
there is no X

′ ∈ LU(U,A, I) and Y
′ ∈ LU(U,C,J) sat-

isfying X ⊂ X
′ ⊆ Y and X ⊂ Y

′ ⊆ Y . By Theorem
2, LU(U,E, IE) ⊆ LU(U,A, I) and LU(U,D,JD) ⊆
LU(U,C,J) hold. Thus, there is no X

′ ∈ LU(U,E, IE)

and Y
′ ∈ LU(U,D,JD) satisfying X ⊂ X

′ ⊆ Y and
X ⊂ Y

′ ⊆ Y . Therefore, “K → H” is a maximal rule
of (U,E, IE ,D,JD).

From Theorem 3, we know that, if Y ∈ ΦC,X ∈
TA(Y ), then “X∗A → Y ∗C” is a maximal rule in
(U,A, I,C,J). Thus, it can be seen that “X∗A →Y ∗C”
and “K → H” are derived based on the same condi-
tion extensions and decision extensions. However,
compared with “X∗A → Y ∗C”, the rule “K → H” is
more concise and accurate.

Furthermore, if (X ,K) ∈ L(U,E, IE),(Y,H) ∈
L(U,D,JD), then K = X∗A ∩ E,H = Y ∗C ∩D. We
can see that the maximal rule “K → H” in the re-
duced decision formal context (U,E, IE ,D,JD) can
be obtained based on the original maximal rule
“X∗A →Y ∗C”, the condition consistent set E and the
decision consistent set D. What is more, every orig-
inal maximal rule corresponds to a maximal rule in
the reduced decision formal context. For example, if
“X∗A →Y ∗C” is a maximal rule in (U,A, I,C,J), then
from Theorem 3, Y ∈ SC(X),X ∈ TA(Y ). E ⊆ A and
D ⊆C are the condition consistent set and the deci-
sion consistent set, thus X ∈ TA(Y ) = TE(Y ) and Y ∈
SC(X) = SD(X). Therefore, “X∗A ∩E →Y ∗C ∩D” is
a maximal rule in (U,E, IE ,D,JD).

In what follows, we only consider the reduction
method and attribute characteristics of decision at-
tributes in detail. As to condition attributes, we on-
ly give its discernibility matrix and the other related
problems can be discussed as the decision attributes.

4. Approaches to attribute reduction based on
maximal rules

In this section, inspired by the approaches to at-
tribute reduction in classical concept lattices, we
construct the discernibility matrix in the decision
formal context based on maximal rules, and then ob-
tain all the reducts via Boolean approach.

Definition 7. Let (U,A, I,C,J) be a decision formal
context. For all (Yi,Bi),(Yj,B j) ∈ L(U,C,J),

D((Yi,Bi),(Yj,B j)) ={
Bi△B j, i f Yi ∈ ΦC,Yi ⊂ Yjor Yj ∈ ΦC,Yj ⊂ Yi

/0, else
(5)
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is called the discriminable attribute set between
(Yi,Bi) and (Yj,B j). Here Bi△B j =Bi∪B j−Bi∩B j
and ΛFC = (D((Yi,Bi),(Yj,B j))|(Yi,Bi),(Yj,B j) ∈
L(U,C,J)) is called the discernibility matrix of the
decision attributes. Denote by

D0 = {D((Yi,Bi),(Yj,B j))|D((Yi,Bi),(Yj,B j)) ̸= /0} (6)

In what follows, some judgment theorems of the
decision consistent sets are proposed.

Theorem 5. Let (U,A, I,C,J) be a decision formal
context. For all D ⊆C (D ̸= /0), the following state-
ments are equivalent.

(1) D is a decision consistent set.
(2) ΦC ⊆ LU(U,D,JD).
(3) For (Yi,Bi),(Yj,B j) ∈ L(U,C,J), if Yi ∈

ΦC,Yi ⊂ Yj (or Yj ∈ ΦC,Yj ⊂ Yi), then Bi ∩ D ̸=
B j ∩D.

(4) D∩D((Yi,Bi),(Yj,B j)) ̸= /0 (∀ D((Yi,Bi),(Yj,
B j)) ̸= /0).

(5) For all B ⊆C, if B∩D = /0, then B ̸∈ D0.

Proof.
(1)⇔ (2) It follows immediately from the defi-

nition of decision consistent set.
(2)⇒ (3) For (Yi,Bi),(Yj,B j)∈ L(U,C,J), with-

out loss of generality, we assume that Yi ∈ ΦC and
Yi ⊂ Yj. Since ΦC ⊆ LU(U,D,JD), then there exists
(Yi,B

′
i) ∈ L(U,D,JD) with B

′
i = Bi ∩D. Assume that

Bi ∩D = B j ∩D, then Yj ⊆ (B j ∩D)∗ = (Bi ∩D)∗ =
Yi ⊂ Yj, which contradicts to the fact that Yj = Yj.
Therefore, Bi ∩D ̸= B j ∩D.

(3) ⇒ (2) For (Y,B) ∈ ΦC, we need to prove
(Y,B∩D) ∈ L(U,D,JD).

On the one hand, it is easy to see that Y ∗D =
B∩D.

On the other hand, assume that (B ∩ D)∗ ̸= Y ,
then (B ∩ D)∗ ⊃ Y . Since ((B ∩ D)∗,(B ∩ D)∗∗)
∈ L(U,C,J), (B∩D)∗∗∩D ̸= B∩D holds by (3). S-
ince B∩D ⊆ B ⇒ (B∩D)∗ ⊇ B∗ =Y ⇒ (B∩D)∗∗ ⊆
Y ∗ = B ⇒ (B ∩ D)∗∗ ∩ D ⊆ B ∩ D, and B ∩ D ⊆
(B∩D)∗∗ ⇒B∩D⊆ (B∩D)∗∗∩D, we conclude that
B∩D = (B∩D)∗∗∩D, which contradicts to the fact
that B∩D ̸= (B∩D)∗∗∩D. Therefore, (B∩D)∗ =Y .

(3) ⇒ (4) For (Yi,Bi),(Yj,B j) ∈ L(U,C,J), if
D((Yi,Bi),(Yj,B j)) ̸= /0, which implies that Yi ∈
ΦC,Yi ⊂Yj or Yj ∈ ΦC,Yj ⊂Yi, thus Bi ∩D ̸= B j

∩
D

holds by (3). And further, Bi ∩ D − B j ∩ D =
D
∩

Bi
∩

B j ̸= /0, or B j ∩D−Bi ∩D = D∩B j
∩

Bi ̸=
/0. Therefore, we have that

D∩D((Yi,Bi),(Yj,B j)) = D∩ (Bi ∪B j −Bi ∩B j)
= D∩ (Bi ∪B j)

∩
(Bi ∪B j)

= (D∩Bi
∩

B j)∪ (D∩Bi
∩

B j)
̸= /0.

(4) ⇒ (3) For (Yi,Bi),(Yj,B j) ∈ L(U,C,J),
if Yi ∈ ΦC,Yi ⊂ Yj or Yj ∈ ΦC,Yj ⊂ Yi, then
D((Yi,Bi), (Yj,B j)) ̸= /0 holds by Definition 7, thus
D
∩

D((Yi,Bi),(Yj,B j)) ̸= /0. Therefore, there exist-
s d ∈ D

∩
D((Yi,Bi),(Yj,B j)), which implies d ∈ Bi

or d ∈ B j, and d ̸∈ Bi ∩B j. If d ∈ Bi and d ̸∈ B j,
then d ∈ D ∩ Bi and d ̸∈ D ∩ B j; If d ∈ B j and
d ̸∈ Bi, then d ∈ D∩B j and d ̸∈ D∩Bi. Therefore,
Bi ∩D ̸= B j ∩D.

(4)⇔ (5) It follows immediately from the defi-
nition of D0.

From Theorem 5, we know that the decision
reduct of the decision formal context (U,A, I,C,J)
is a minimal subset D of C such that D ∩
D((Yi,Bi),(Yj,B j)) ̸= /0 (∀ D((Yi,Bi),(Yj,B j)) ̸= /0).

Furthermore, the discernibility function is given
based on its discernibility matrix.

f (D0) =
∧

H∈D0

(
∨

h∈H

h). (7)

By the absorption law and the distributive law,
f (D0) can be translated to the minimal disjunctive
normal form. From Theorem 5 and the definition of
the minimal disjunctive normal form, it follows im-
mediately that the components of conjunctive nor-
mal forms are all the decision reducts of the decision
formal context (U,A, I,C,J).

The discernibility matrix of the condition at-
tributes is given as follows and its reducts can be
computed as the procedure of the decision reducts.

Definition 8. Let (U,A, I,C,J) be a decision formal
context. For all (Xi,Ki),(X j,K j) ∈ L(U,A, I),

D((Xi,Ki),(X j,K j)) ={
Ki△K j, i f Xi ∈ ΨA,Xi ⊂ X j or X j ∈ ΨA,X j ⊂ Xi

/0, else.
(8)

is called the discriminable attribute set between
(Xi,Ki) and (X j,K j). Here Ki△K j = Ki ∪K j −Ki ∩
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K j and ΛFC = (D((Xi,Ki),(X j,K j))|(Xi,Ki),(X j,K j)
∈ L(U,A, I)) is called the discernibility matrix of the
condition attributes.

The following example illustrates our idea of at-
tribute reduction based on maximal rules in further.

Example 1. A decision formal context S =
(U,A, I,C,J) is shown in Table 1, where the con-
dition attributes set A = {a,b,c,d,e, f} and the de-
cision attributes set C = {g,h,k, l,m,n}).

Table 1. A decision formal context S = (U,A, I,C,J)

a b c d e f g h k l m n
1 1 1 1 0 0 1 1 1 1 0 1 1
2 1 0 1 1 1 1 0 0 1 0 0 0
3 0 0 0 1 0 0 0 1 0 1 0 1
4 0 1 1 0 1 1 1 0 0 0 1 0
5 1 0 1 1 0 1 0 0 0 0 1 1
6 0 0 0 0 0 1 0 1 0 1 0 1

In what follows, the condition concept lattice
(Figure 1) and the decision concept lattice (Figure
2) are presented .

(U,∅ )

({2,3,5},{d}) ({1,2,4,5,6},{f})

({1,2,4,5},{c,f})

({1,2,5},{a,c,f}) ({2,4},{c,e,f}) ({1,4},{b,c,f})

({2,5},{a,c,d,f})

({2},{a,c,d,e,f}) ({1},{a,b,c,f}) ({4},{b,c,e,f})

(∅ ,A)

Fig.1. condition concept lattice

(U,∅ )

({1,3,5,6},{n}) ({1,4,5},{m})

({1,5},{m,n}) ({1,2},{k}) ({1,4},{g,m})

({1},{g,h,k,m,n})

(∅ ,C)

({1,3,6},{h,n})

({3,6},{h,l,n})

Fig.2. decision concept lattice

Clearly:
LU(U,A, I) = {X1 = U,X2 = {1,2,4,5,6},X3 =

{2,3,5},X4 = {1,2,4,5},X5 = {1,2,5},X6 =
{2,5},X7 = {2,4},X8 = {1,4},X9 = {4},X10 =
{2},X11 = {1},X12 = /0};

LU(U,C,J) = {Y1 = U,Y2 = {1,3,5,6},Y3 =
{1,4,5},Y4 = {1,3,6},Y5 = {1,5},Y6 = {1,2},Y7 =
{1,4},Y8 = {3,6},Y9 = {1},Y10 = /0}.

Thus SC(X1) = {Y1},SC(X2) = {Y1},SC(X3) =
{Y1},SC(X4) = {Y1},SC(X5) = {Y1},SC(X6) =
{Y1},SC(X7) = {Y1},SC(X8) = {Y7},SC(X9) =
{Y7},SC(X10) = {Y6},SC(X11) = {Y9},SC(X12) =
{Y10}.

Consequently, ΦC = {Y1,Y6,Y7,Y9,Y10}.
Furthermore, TA(Y1)= {X1},TA(Y6)= {X10},TA(

Y7) = {X8},TA(Y9) = {X11},TA(Y10) = {X12}.
Therefore, ΨA = {X1,X8,X10,X11,X12}.
Then the maximal rules in the decision formal

context S = (U,A, I,C,J) can be given as follows:
(1) if b∧ c∧ f , then g∧m;
(2) if a∧ c∧d ∧ e∧ f , then k;
(3) if a∧b∧ c∧ f , then g∧h∧ k∧m∧n.
Based on ΨA and ΦC, the discernibility matrixs

of the condition attributes and the decision attributes
are presented as Tables 2 and 3, respectively.

Then the discernibility function of the condition
attributes is
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Table 2: Discernibility matrix of condition attributes
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

X1 /0

X2 /0 /0

X3 /0 /0 /0

X4 /0 /0 /0 /0

X5 /0 /0 /0 /0 /0

X6 /0 /0 /0 /0 /0 /0

X7 /0 /0 /0 /0 /0 /0 /0

X8 {bcf} {bc} /0 {b} /0 /0 /0 /0

X9 /0 /0 /0 /0 /0 /0 /0 /0 /0

X10 {acdef} {acde} {acef} {ade} {de} {e} {ad} /0 /0 /0

X11 {abcf} {abc} /0 {ab} {b} /0 /0 {a} /0 /0 /0

X12 A {abcde} {abcef} {abde} {bde} {be} {abd} {ade} {ad} {b} {de} /0

Table 3: Discernibility matrix of decision attributes
Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Y1 /0

Y2 /0 /0

Y3 /0 /0 /0

Y4 /0 /0 /0 /0

Y5 /0 /0 /0 /0 /0

Y6 {k} /0 /0 /0 /0 /0

Y7 {gm} /0 {g} /0 /0 /0 /0

Y8 /0 /0 /0 /0 /0 /0 /0 /0

Y9 {ghkmn} {ghkm} {ghkn} {gkm} {ghk} {ghmn} {hkn} /0 /0

Y10 C {ghklm} {ghkln} {gklm} {ghkl} {ghlmn} {hkln} {gkm} {l} /0

△1 = (b∨ c∨ f )∧ (b∨ c)∧ (b)∧ (a∨ c∨d ∨ e
f )∨∧(a∨ c∨d ∨ e)∧ (a∨ c∨ e∨ f )∧ (a
∨d ∨ e)∧ (d ∨ e)∧ (e)∧ (a∨d)∧ (a∨b∨
c∨ f )∧ (a∨b∨ c)∧ (a∨b)∧ (a)∧ (a∨b
∨ c∨d ∨ e∨ f )∧ (a∨b∨ c∨d ∨ e)∧ (a∨
b∨d ∨ e)∧ (b∨d ∨ e)∧ (b∨ e)∧ (a∨b∨
d)∧ (a∨b∨ c∨ e∨ f )

= a∧b∧ e.
Therefore, E = {a,b,e} is the unique condition
reduct of the decision formal context (U,A, I,C,J).

The discernibility function of the decision at-

tributes is
△2 = (k)∧ (g∨m)∧ (g)∧ (g∨h∨ k∨m∨n)∧

(g∨h∨ k∨m)∧ (g∨h∨ k∨n)∧ (g∨ k∨
m)∧ (g∨h∨ k)∧ (g∨h∨m∨n)∧ (h∨ k
∨n)∧ (g∨h∨ k∨ l ∨m∨n)∧ (g∨h∨ k
∨ l ∨m)∧ (g∨h∨ k∨ l ∨n)∧ (g∨ k∨ l∨
m)∧ (g∨h∨ k∨ l)∧ (g∨h∨ l ∨m∨n)∧
(h∨ k∨ l ∨n)∧ (l)

= g∧ k∧ l.
Therefore, D = {g,k, l} is the unique decision

reduct of the decision formal context (U,A, I,C,J).
It is easy to see that ΦC ⊆ L(U,D,JD) and ΨA ⊆

L(U,E, IE) in (U,E, IE ,D,JD).
The maximal rules in the reduced decision for-

mal context (U,E, IE ,D,JD) can be obtained based
on the original maximal rules, the condition reduct
and the decision reduct. They are given as follows:

(1
′
) if b, then g;
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(2
′
) if a∧ e, then k;

(3
′
) if a∧b, then g∧ k.

These maximal rules are derived from the condi-
tion extensions and the decision extensions related
to the original maximal rules. However, it can be
seen that they are more concise and accurate.

5. Attribute characteristics based on maximal
rules

Based on maximal rules, the significance of the de-
cision attributes in a given decision formal contex-
t may be different and they play different roles in
the decision reduct. These decision attributes can be
classified into three types: the absolutely necessary
decision attributes, the relatively necessary decision
attributes, and the absolutely unnecessary decision
attributes. In this section, we provide the character-
istics of these types of attributes.

Definition 9. Let S = (U,A, I,C,J) be a decision
formal context and Di ⊆C, with i ∈ ϒ, are the deci-
sion reducts of S, then the attributes in C are classi-
fied into three types:

(1) Absolutely necessary decision attribute set:
L =

∩
i∈ϒ

Di.

(2) Relatively necessary decision attribute set:
M =

∪
i∈ϒ

Di −
∩

i∈ϒ
Di.

(3) Absolutely unnecessary decision attribute
set: N =C−

∪
i∈ϒ

Di.

It should be noted that the method of classifying
the attributes has been proposed in 36 and it is gener-
alized to classify the attributes based on the maximal
rules in this paper.

Denote by ΦC = {B|(Y,B) ∈ L(U,C,J) and Y ∈
ΦU}, we get the following theorem.

Theorem 6. Let S = (U,A, I,C,J) be a decision for-
mal context. D ⊆ C is a decision consistent set of S
if and only if for all B ∈ ΦC, B∗ = (B∗∗∩D)∗ holds.

Proof. ⇒) If D is a decision consistent set, then
ΦU ⊆ LU(U,D,JD). Since for all B ∈ ΦC we have
B∗ ∈ ΦU , then B∗ ∈ LU(U,D,JD), which means that
(B∗,B∗∗∩D) ∈ L(U,D,JD), thus, B∗ = (B∗∗∩D)∗.

⇐) For all Y ∈ ΦU , we have B ∈ ΦC such that
B∗ = Y . On the other hand, B∗ = (B∗∗ ∩ D)∗ ∈

LU(U,D,JD), thus ΦU ⊆ LU(U,D,JD). Therefore,
D is a decision consistent set.

Theorem 7. Let S = (U,A, I,C,J) be a decision
formal context, d ∈C. Then

(1) d is an absolutely necessary decision at-
tribute iff there exists B ∈ ΦC satisfying (B∗∗ −
{d})∗ ̸= B∗.

(2) d is a relatively necessary decision attribute
iff for all B ∈ ΦC, satisfying (B∗∗−{d})∗ = B∗ and
there exists Di0 , with i0 ∈ ϒ, and K ∈ ΦC satisfying
(K∗∗∩(Di0 −{d}))∗ ̸= K∗.

(3) d is an absolutely unnecessary decision at-
tribute iff for all B ∈ ΦC, satisfying (B∗∗−{d})∗ =
B∗ and for all Di, with i ∈ ϒ, satisfying (B∗∗∩(Di −
{d}))∗ = B∗.

Proof. (1) d ∈ C is an absolutely necessary deci-
sion attribute of S if and only if C−{d} is not con-
sistent set. It is equivalent to the fact that there exists
B ∈ ΦC satisfying (B∗∗−{d})∗ ̸= B∗ by Theorem 6.

(2) d ∈ C is a relatively necessary decision at-
tribute of S if and only if d is not a core attribute
and there exists a reduct Di0 , with i0 ∈ ϒ, satisfying
d ∈ Di0 . Therefore the conclusion can be obtained
from (1) and Theorem 6.

(3) It follows immediately from (1) and (2).

Example 2. In the decision formal context S =
(U,A, I,C,J) shown in Table 1, by Theorem 7, we
can verify that {a,b,e} are the absolutely necessary
condition attributes set and {c,d, f} are the abso-
lutely unnecessary condition attributes set; {g,k, l}
are the absolutely necessary decision attributes set,
and {h,m,n} are the absolutely unnecessary deci-
sion attributes set.

6. Conclusions

Attribute reduction in the decision formal contex-
t is one of the important problems in knowledge
discovery. In this paper, we propose the condition
reduct and the decision reduct based on maximal
rules. The reducts preserve all the condition exten-
sions and decision extensions related to the original
maximal rules. After eliminating the superfluous at-
tributes, the depiction of the maximal rule becomes
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more concise and accurate. It is proven that the
maximal rules in the reduced decision formal con-
text can be obtained based on the original maximal
rules, the condition consistent set and the decision
consistent set. The related discernibility matrix is
constructed to compute all the reducts via Boolean
approach. Based on the maximal rules, all the at-
tributes are classified into three types. The char-
acteristics of these types of attributes are also ana-
lyzed. Our further work is to study attribute reduc-
tion method based maximal rules in the fuzzy deci-
sion formal concept lattices and explore its mathe-
matical property.
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