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Abstract

In this work, using the identification between implication operators and aggregation functions, we study
the implication operators that are recovered from overlap functions. In particular, we focus in which
properties of implication operators are preserved. We also study how negations can be defined in terms of
overlap functions.
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1. Introduction

The concept of implication operator was introduced

in 1982 by Dombi15. It arises from the minimal set

of properties that the operators usually used in ag-

gregation or data fusion procedures must fulfill.

From the works of Bandler and Kohout3 in 1980

and of Trillas and Valverde24 in 1981, Klir and Fol-

ger in 198819 settle that the logic operation of im-

plication is as essential for approximate reasoning

as it is for reasoning within classical two-valued

logic. In general, a fuzzy implication I is a func-

tion I : [0,1]2 → [0,1] such that for every two pos-

sible truth values a and b of propositions p and q
respectively, I(a,b) represents the truth value of the

conditional proposition if p, then q.

Implication operators have been widely studied

and used in different fields1,2,20. For instance, in im-

age processing they have been used to build mea-

sures for image comparison6,8 when we are working

with algorithms which allow us to extract objects

from the considered image7. In order to use such

algorithms in an image composed of a single object

and the background, the first thing to do is to repre-

sent both the object and the background by means of

a fuzzy set.

Moreover, it is well-known that implication op-

erators can be recovered from aggregation functions

and vice-versa14. In particular, certain properties of

implication operators can be directly translated into

the aggregation function setting, and properties of

aggregation functions admit a straight interpretation

in terms of implication operators.

It has been proved that in multiclass problems the

difficulty in providing an optimal solution is directly

proportional to the overlapping that exists between

the considered classes. This fact, together with the

idea of consistency index for fuzzy rules given by
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Zadeh26, led to the introduction of the concept of

overlap function10. Overlap functions are mappings

[0,1]2 → [0,1] that measure the degree of overlap-

ping between the membership degree of an element

to two fuzzy sets. Moreover, duality allows to de-

fine also the concept of grouping function13 in such

a way that some of the most relevant properties de-

manded to triplets in terms of t-norms and t-conorms

are preserved. However, neither overlap nor group-

ing functions need to be associative, which is an ad-

vantage in some fields of application where associa-

tivity is not a natural property to be demanded.

Since overlap (and grouping) functions are par-

ticular instances of aggregation functions, in this

work we aim at the following objectives:

1. To study how negations can be recovered from

overlap functions.

2. To analyze the properties of implication oper-

ators obtained from overlap functions.

This paper is organized as follows. After re-

calling some preliminaries notions in Section 2, we

study in Section 3 those negations constructed from

overlap functions. In Section 4, the relationship be-

tween implication operators and overlap functions is

investigated. We finish in Section 5 with some con-

clusions and acknowledgments.

2. Preliminaries

In this section we recall some well-known concepts

in order to fix the notations used further on. A refer-

ence for these concepts is17.

Definition 1. An automorphism on the unit inter-

val is an increasing, continuous bijection ϕ : [0,1]→
[0,1].

Definition 2. A negation is a decreasing function

N : [0,1]→ [0,1] such that N(0) = 1 and N(1) = 0.

A negation is called:

• frontier if N(x) ∈ {0,1} if and only if x ∈ {0,1}.

• strict if N is continuous and strictly decreasing.

• strong if N is involutive, that is, N(N(x)) = x for

all x ∈ [0,1].

Example 1. The least negation N∗ is defined by

N∗(x) =

{
1 if x = 0 ;

0 otherwise.

The greatest negation N∗ is given by

N∗(x) =

{
0 if x = 1 ;

1 otherwise.

The most used negation is the standard (or

Zadeh’s) negation NZ(x) = 1 − x. Notice that NZ
is strong. The following characterization of strong

negations was proven by Trillas.

Theorem 1. 23 A function N : [0,1] → [0,1] is a
strong negation if and only if there exists an auto-
morphism ϕ : [0,1]→ [0,1] such that

N(x) = ϕ−1(1−ϕ(x))

for all x ∈ [0,1].
That is, a strong negation can be seen as a pertur-

bation, via an automorphism ϕ , of Zadeh’s negation.

Definition 3. An (n-ary) aggregation function is

an increasing mapping A : [0,1]n → [0,1] such that

A(0, . . . ,0) = 0 and A(1, . . . ,1) = 1.

In the present work, we mainly deal with binary

(n = 2) aggregation functions.

Example 2.

• The greatest aggregation function A∗ is defined by

A∗(x,y) =

{
0 if x = 0 and y = 0 ;

1 otherwise.

• The least aggregation function A∗ is defined by

A∗(x,y) =

{
1 if x = 1 and y = 1 ;

0 otherwise.

Given a mapping ϕ : [0,1]→ [0,1] and an aggre-

gation function A : [0,1]2 → [0,1], we denote by Aϕ
the mapping defined by

Aϕ(x,y) = A(ϕ(x),ϕ(y)) .
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If ϕ is increasing, ϕ(0) = 0 and ϕ(1) = 1, then

Aϕ is also an aggregation function.

Definition 4. An aggregation function A is called

associative if the identity

A(A(x,y),z) = A(x,A(y,z))

holds for all x,y,z ∈ [0,1].

Definition 5. Let A be a binary aggregation func-

tion.

(i) An element eA ∈ [0,1] is said to be a neutral

element for A if A(x,eA) = A(eA,x) = x for all

x ∈ [0,1].

(ii) An element x0 ∈ ]0,1] is called a zero-divisor for

A if there exists x ∈ ]0,1] such that A(x,x0) =
A(x0,x) = 0.

(iii) An element a ∈ [0,1] is said to be an annihilator

for A if A(a,x) = A(x,a) = a for all x ∈ [0,1].

Several studies have focused on specific classes

of aggregation operators, from both a theoretical and

a practical point of view. Two of the classes receiv-

ing more attention are those of t-norms and overlap

functions.

Definition 6. A t-norm is an associative symmet-

ric aggregation function T : [0,1]2 → [0,1] such that

T (x,1) = (1,x) = x for all x ∈ [0,1] (that is, 1 is a

neutral element for T ).

Definition 7. An overlap function is a function

GO : [0,1]2 → [0,1] such that:

(O1) GO is symmetric;

(O2) GO(x,y) = 0 if and only if xy = 0;

(O3) GO(x,y) = 1 if and only if xy = 1;

(O4) GO is increasing;

(O5) GO is continuous.

A deep study on overlap functions can be found

in10.

Example 3.

1. Any continuous t-norm without divisors of

zero is an example of overlap function.

In particular, both GO(x,y) = min(x,y) and

GO(x,y) = xy are t-norms and consequently

overlap functions.

2. The function GO(x,y) = (xy)p for p > 0 is an

overlap function. Notice that for p �= 1 GO is

not associative.

3. The function GO(x,y) = min(xp,yp)q for

p,q > 0 is an overlap function. Notice that

for p,q < 1, GO(x,y)� min(x,y).

Another key concept for our work is that of im-

plication operator3,24. We start recalling its defini-

tion (in the sense of Fodor16) and the main proper-

ties that can be demanded to such an operator.

Definition 8. An implication operator is a function

I : [0,1]2 → [0,1] such that

(FA) If x � z then I(x,y) � I(z,y) for all y ∈ [0,1]
(decreasing in the first variable).

(SI) If y � z then I(x,y)� I(x,z) for all x ∈ [0,1] (in-

creasing in the second variable).

(DF) I(0,x) = 1 for all x ∈ [0,1] (dominance of fal-

sity).

(DT ) I(x,1) = 1 for all x ∈ [0,1] (dominance of truth

of consequent).

(BC) I(1,0) = 0 (the boundary condition).

Definition 8 recalls the minimal properties of im-

plication operators. Nevertheless, their study has led

to several other properties which further characterize

their behaviour.

Definition 9. 1,4 The following properties can be

used to outline the behaviour of an implication op-

erator I.

(NP) I(1,x) = x for all x ∈ [0,1] (neutrality of truth).

(EP) I(x, I(y,z)) = I(y, I(x,z)) for all x,y,z ∈ [0,1]
(exchange principle).

(OP) I(x,y) = 1 if and only if x � y (ordering prop-

erty).

(SN) N(x) = I(x,0) is a strong negation.

(IP) I(x,x) = 1 for all x ∈ [0,1] (identity principle).

(CP) I(x,y) = I(N(y),N(x)) for some strong nega-

tion N and for all x,y ∈ [0,1] (contrapositive prop-

erty).

(IA) I(x,y)� y for all x,y ∈ [0,1].

(IB) I is continuous.
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(IC) I(x,N(x)) = N(x) for some strong negation N
and for all x ∈ [0,1].

Apart from the properties in the previous defini-

tion, two other conditions are of great relevance for

specific applications12.

(P1) I(x,y) = 1 if and only if x = 0 or y = 1.

(P2) I(x,y) = 0 if and only if x = 1 and y = 0.

3. Overlap functions and negations

In this section we stablish the relationship of the

concepts of overlap functions and negations.

Proposition 2. Let F : [0,1]→ [0,1] be a function.
Then the following statements are equivalent.

(a.) F is a negation.

(b.) For every overlap function GO : [0,1]2 → [0,1]
the function

NGO(x) = GO(1,F(x))

is a negation.

Proof. If F is a negation and GO : [0,1]2 → [0,1] is

an overlap function, then NGO is decreasing. More-

over

NGO(0) = GO(1,F(0)) = GO(1,1) = 1

and

NGO(1) = GO(1,F(1)) = GO(1,0) = 0,

so NGO is a negation.

Let us assume statement (b.) holds for every

overlap function GO. If GO is an overlap function

with neutral element 1, then

NGO(x) = GO(1,F(x)) = F(x),

and since NGO is a negation, the result follows. �
Corollary 3. Let F : [0,1] → [0,1] be a function.
Then the following statements are equivalent.

(a.) F is a frontier negation.

(b.) For every overlap function GO, NGO defined as
in Proposition 2 is a frontier negation.

Proof. It is straight from the boundary conditions in

the definition of overlap function. �
Example 4. Let be p > 0 and GO(x,y) = (xy)p.

1. If F = N∗

NGO(x) = GO(1,N∗(x)) =

{
1 if x = 0

0 otherwise,

and we recover N∗.

2. If F = N∗

NGO(x) = GO(1,N∗(x)) =

{
0 if x = 1

1 otherwise,

and we recover N∗.

3. However, if we consider F(x) = 1 − xq for

some q > 0, we see that

N(x) = GO(1,F(x)) = (1− xq)p

which is different from F as long as p �= 1.

From the previous results we characterize nega-

tions through aggregation functions that satisfy suit-

able boundary conditions. We can also recover any

negation from these aggregation functions using one

fixed strong negation.

Lemma 4. Let ϕ : [0,1] → [0,1] be an increasing
continuous function such that ϕ(x) = 0 if and only if
x = 0 and ϕ(x) = 1 if and only if x = 1. The function
G, given by

G(x,y) = ϕ(x)ϕ(y)

is an overlap function.
Proof. Straight. �
Remark 1. Note that, in fact, the same result holds

if we define

G(x,y) = GO(ϕ(x),ϕ(y))

for some overlap function GO.

Then we can state the main result.

Theorem 5. Let N0 be a strict negation and F :

[0,1]→ [0,1] a mapping. Then the following state-
ments are equivalent.
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(a.) F is a continuous frontier negation.
(b.) There exists an overlap function GO : [0,1]2 →

[0,1] such that

F(x) = GO(1,N0(x))

for all x ∈ [0,1]. Moreover, this overlap function
is given by

GO(x,y) = F(N−1
0 (x))F(N−1

0 (y)) .

Proof. The fact that statement (b.) implies statement

(a.) follows from Corollary 3 because GO is contin-

uous and every strict negation is a frontier negation.

If (a.) holds, and F is a continuous frontier nega-

tion, we define

ϕ(x) = F(N−1
0 (x)),

which satisfies the properties in the statement of

Lemma 4. If

GO(x,y) = ϕ(x)ϕ(y)

then we have that

NGO(x) = GO(1,N0(x)) = F(N−1
0 (N0(x))) = F(x)

and the result follows. �
In particular, if we fix N0 as the standard nega-

tion, namely, N0 = NZ , we arrive at the following

result.

Corollary 6. A function F : [0,1]→ [0,1] is a con-
tinuous frontier negation if and only if there exists
an overlap function GO : [0,1]2 → [0,1] such that
F(x) = GO(1,1− x) for all x ∈ [0,1]. This overlap
function is given by GO(x,y) = F(1 − x)F(1 − y).
Proof. Straight. �

Notice that, in general, the overlap function GO
needs not be unique. For instance, observe that the

standard negation N(x) = 1− x can be recovered by

any overlap function which has neutral element 1.

4. Implication operators and overlap functions

For the development of this section the following re-

sult is crucial.

Proposition 7. 14 Let N be a negation and A a binary
aggregation function such that A(0,1)=A(1,0)= 0.
Then, the function IA : [0,1]2 → [0,1] given by

IA(x,y) = N(A(x,N(y)))

is an implication operator.
Proof. Straight. �

Recall that an overlap function GO is a par-

ticular instance of aggregation function such that

GO(0,1) =GO(1,0) = 0. So we could start just writ-

ing a corollary of Proposition 7. However, we can

provide a slightly more general result.

Proposition 8. If GO : [0,1]2 → [0,1] is an overlap
function and N1 and N2 are strong negations, then
I(x,y) = N1(GO(x,N2(y))) is a continuous implica-
tion operator.
Proof. Straight. �
Remark 2. The restriction of N1 and N2 being

strong negations can be relaxed, and the same re-

sult holds if we demand that both are only strict (and

hence continuous), and even if N1 and N2 are just

continuous negations.

Even if they are negations, without any other ad-

ditional requirement, we recover an implication op-

erator, although not necessarily continuous.

In any case, involution has an impact in the sub-

sequent examples.

Taking into account the already known methods

for constructing overlap functions in terms of auto-

morphisms, as well as Trillas’ characterization theo-

rem of strong negations, we can state the following.

Example 5. If ϕ,ϕ1,ϕ2 : [0,1]→ [0,1] are automor-

phisms, and GO(x,y) = ϕ−1(ϕ(x)ϕ(y)) then

I(x,y)=ϕ−1
1 (1−ϕ1(ϕ−1(ϕ(x)ϕ(ϕ−1

2 (1−ϕ2(y))))))

is an implication operator.

Example 6.

• Let ϕ1(x) = ϕ2(x) = ϕ(x) = x and GO(x,y) =
ϕ−1(ϕ(x)ϕ(y)). Then N1(x) = N2(x) = 1− x and

GO(x,y) = ϕ−1(ϕ(x)ϕ(y)) = xy. The expression

of I is I(x,y) = N1(GO(x,N2(y))) = N1(GO(x,1−
y)) = N1(x(1− y)) = 1− x(1− y) = 1− x+ xy.
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• Consider now the automorphisms ϕ1(x) = x2,

ϕ(x) = ϕ2(x) = x, and the overlap function

GO(x,y) = ϕ−1(ϕ(x)ϕ(y)). Then N1(x) = (1 −
x2)1/2, N2(x) = 1 − x and GO(x,y) = xy. The

expression of I is I(x,y) = N1(GO(x,N2(y))) =
N1(GO(x,1 − y)) = N1(x(1 − y)) = (1 − x2(1 −
y)2)1/2.

Proposition 9. If N1, N2 are strong negations and
for i = 1, . . . ,n, GO,i(x,y) are overlap functions and
wi ∈ [0,1] are such that ∑n

i=1 wi = 1, then

I(x,y) = N1

(
n

∑
i=1

(wiGO,i(x,N2(y)))

)

is an implication operator.
Proof. In18 it was proven that the convex combina-

tion of overlap function is also an overlap function

so the result is straight by Proposition 8.

Remark 3. Notice that the previous theorem does

not hold for every class of aggregation functions, an

example being the t-norms, which convex combina-

tion does not necessarily yield another t-norm.

From the construction method of overlap func-

tions by means of rational functions10 we can also

state the following example.

Example 7. If N1 and N2 are strong negations and

GO(x,y) =
f (x,y)

f (x,y)+h(x,y)

for some f ,h : [0,1]2 → [0,1] such that

1. f and h are symmetric;

2. f is non decreasing and h is non increasing;

3. f (x,y) = 0 if and only if xy = 0;

4. h(x,y) = 0 if and only if xy = 1;

5. f and h are continuous;

then

I(x,y) = N1

( f (x,N2(y))
f (x,N2(y))+h(x,N2(y))

)
(1)

is an implication operator.

Remark 4. As in Remark 2 strong negations are not

required, since the result holds for strict negations.

Example 8. If f (x,y) = (xy)α , h(x,y) = 1− (xy)α

and N(x) = N1(x) = N2(x) = (1−xw)1/w for α,w >
0, then eq. (1) yields the following implication op-

erator

I(x,y) =
(

1− xαw(1− yw)α
)1/w

.

In this situation I does not necessarily verify the

properties of Definition 9.

In the remainder of this section we study the re-

strictions to be imposed to overlaps in order Propo-

sition 8 to yield implications fulfilling specific prop-

erties.

Corollary 10. Let N1 and N2 be strong nega-
tions and let GO be an overlap function. Then, if
I(x,y) = N1(GO(x,N2(y)), the following statements
hold:

1 I satisfies (SN) with N1 if and only if
GO(x,1) = x for all x ∈ [0,1].

2 I(x,N2(x)) = N1(x) if and only if GO(x,x) = x
for all x ∈ [0,1].

Proof. Straight. �
Proposition 11. Let N1 and N2 be strong nega-
tions and let GO be an overlap function. Then,
I(x,y) = N1(GO(x,N2(y)) does not satisfy neither
(OP) nor (IP) with respect to N2.
Proof. As x � N2(x) or x > N2(x) for all x ∈ [0,1], if

I verifies the property (OP) then:

I(x,N2(x)) = 1 = N1(GO(x,x))
if and only if GO(x,x) = 0

or

I(N2(x),x) = N1(GO(N2(x),N2(x))) = 1

if and only if GO(N2(x),N2(x)) = 0.

But this is a contradiction with the fact that

GO(x,y) = 0 if and only if xy = 0.

If I verifies the property (IP) then 1 = I(x,x) =
N1(GO(x,N2(x))), hence GO(x,N2(x)) = 0 for all

x ∈ [0,1]. But this is also a contradiction with

GO(x,y) = 0 if and only if xy = 0. �
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The following result10 characterizes associative

overlap functions.

Proposition 12. 10 If GO is an overlap function sat-
isfying

GO(x,GO(y,z)) = GO(y,GO(x,z))

for all x,y,z ∈ [0,1], then the following items hold.

1. GO is associative;

2. If GO has neutral element 1, then

3. If GO has neutral element 1, then GO is a con-
tinuous t-norm.

Theorem 13. If N is a strong negation, GO(x,y) is
an overlap function and

I(x,y) = N(GO(x,N(y)), (2)

then:

1. I(x,y) satisfies (CP).

2. I(x,y) is a continuous function; namely, (IB)
is satisfied.

Proof. Straight. �
In the following example we provide counterex-

amples for the properties of Definition 9 to impli-

cation operators which are built from overlap func-

tions.

Example 9. Consider the family of overlap func-

tions GO(x,y) = (xy)p for p > 0. From Eq. (2), let

Ip be the implication operator constructed through

GO with exponent p using N(x) = 1− x.

1. If p = 2, then I2(1,x) = 1−12(1−x)2 = 2x−
x2 �= x, so I2 does not satisfy property (NP).

2. If p = 2, then

I2(1/2, I(1/3,1/4)) = I2(1/2,15/16)

= 1023/1024 �= I2(1/3, I2(1/2,1/4))

= I2(1/3,55/64) = 4087/4096,

so I2 does not satisfy (EP).

3. If p = 1, then I1(x,x) = 1−x(1−x) = 1−x+
x2 �= 1 for all x ∈]0,1[ , so I1 does not satisfy

(IP).

4. If p = 1 I1(1/3,1/2) = 1 − 1/3 · 1/2 = 1 −
1/6 = 5/6 �= 1, so I1 does not satisfy (OP).

5. If p = 2, then NI(x) = I2(x,0) = 1−x2. Hence

NI is a negation, but it is not a strong negation

because NI(NI(x)) = NI(1 − x2) = 1 − (1 −
x2)2 �= x. So I2 does not satisfy (SN).

6. Let p = 1
3
, I 1

3
(1,7/8) = 1 − (1 · 1/8)1/3 =

1− 1/2 = 1/2 < 7/8, so I 1
3

does not satisfy

(IA).

Example 10. Let be I an implication operator con-

structed as eq. (2). Then:

1. If GO(x,y) = (xy)p, for p > 0 and

N(x) =
1− x

1+λx
,

with λ >−1 then

I(x,y) =
1−
(

x−xy
1+λy

)p

1+λ
(

x−xy
1+λy

)p .

This implication function does not necessarily

verify the properties of Definition 9.

2. If G(x,y) = 2xy
x+y , then

I(x,y) = N
( 2xN(y)

x+N(y)

)
.

verifies the property (IC) because

I(x,N(x)) = N(G(x,x)) = N(x).

However, it does not necessarily verify any

other property of Definition 9.
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5. Conclusions

In this work we have studied the construction of

negations and implication operators through a par-

ticular class of aggregation functions, namely, over-

lap functions. The analysis that we have carried out

can be extended to the dual of overlap functions,

grouping functions, and most of the results will just

need a rephrasing.

However, this is only the first step of a more am-

bitious program. Since overlap and grouping func-

tions can provide, in some situations (where asso-

ciativity is not required), a replacement of t-norms

and t-conorms, it seems natural to develop an exten-

sive study on both residual implications and (S,N)-

implications defined in terms of overlap and group-

ing functions, with an eye kept on possible applica-

tions, specially in the field of image processing.
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