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Abstract

Multiple attributes group decision making problems aim to find the best alternative for the experts from a
solution set of alternatives. Because the attribute value and decision-makers evaluation with respect to the
alternatives are usually vague and imprecise, fuzzy multiple attributes group decision making have been
widely investigated, in which, ordering fuzzy evaluation results in fuzzy decision making is an important
method to find the best alternative for the experts, difference fuzzy expressions for evaluation in fuzzy
decision making problems correspond with difference aggregation operator and ranking method. In this
paper, we analyze some algebraic properties of a kind of ranking method in fuzzy multiple attributes
group decision-making, and prove that the ranking method is pre-ordering, its’drawback in fuzzy decision
making is no unique alternative to be best alternative. Then, we provide an equivalence relation on fuzzy
evaluation values based on the ranking method, and propose a linearly ordering on equivalence classes of
fuzzy evaluation values. Based on the linearly ordering, we propose an improve method to handle fuzzy
multiple attributes group decision-making when its ordering is pre-ordering. Some numerical examples
illustrate that our method can be used to improve the best alternative of fuzzy decision making when its
ordering is pre-ordering.

Keywords: Fuzzy multiple attributes group decision making, Aggregation operator, Ordering, Equiva-
lence relation

1. Introduction

In many cases, decision making problems must
deal with vague and imprecise information that
usually involves uncertainty in their decision mak-
ing frameworks 9,11,13,19. Different proposals to
tackle and manage the uncertainty have been de-
veloped 15,16,17,22, such as fuzzy sets and its’ ex-
tensions, interval-valued fuzzy set, intuitionistic
fuzzy set and interval-valued intuitionistic fuzzy set
1,6,7,18,23,27,28,29. For their advantage of coping with
more imprecise information, fuzzy sets and its’ ex-
tensions have been adequately applied in various
fields, particularly in decision-making 2,5,11.

In decision making analysis, the problems are
associated with: (1) The choice of expressions for
evaluation in a decision making problem; (2) The
choice of the aggregation operator of evaluation val-
ues of attributes in the decision making; (3) The
choice of the best alternatives. In the above men-
tioned three steps, the aim of (1) consists of estab-
lishing the suitable formal framework or expression
domain with a view to provide the performance val-
ues in uncertain environment of decision making. In
practice, fuzzy numbers or an ordered structure of
linguistic values can be used to explain their seman-
tic 8,14. The aim of (2) is to carry out the aggre-
gation of evaluation values, there are many numeric
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or linguistic aggregation operators 3,4,20,21,24,25,26 to
process them. The aim of (3) consists of obtaining
a collective performance value over each alternative
and finding a solution set of alternatives. The solu-
tion set of alternatives is the best alternative that is
the most satisfied alternative for the experts.

Generally, ordering is an important method to
find the best alternative for the experts. In decision
making using the 2-tuple fuzzy linguistic represen-
tation model 8, i.e., let S = {s0,s1, · · · ,sg} be a set
of linguistic term set and β ∈ [0,g] a value support-
ing the result of a symbolic aggregation operation.
Then the linguistic 2-tuple that expresses the equiv-
alent information to β is obtained with the function
∆ : [0,g]→ S× [−0.5,0.5) such that △(β ) = (si,α)
with i = round(β ) and α = β − i ∈ [−0.5,0.5),
where si has the closest index label to β and α is
the value of the symbolic translation, round(·) is the
usual rounding operation, ordering of linguistic in-
formation is processed by the linear ordered struc-
ture of linguistic values, and its natural number in-
dexes is used to explain the ordering, which can be
expressed as follows: for any 2-tuple linguistic val-
ues (si,αi) and (s j,α j), (si,αi)6 (s j,α j) if and only
if ∆−1(si,αi) = i+αi 6 ∆−1(s j,α j) = j+α j. Based
on the above mentioned ordering, any decision re-
sults represented by 2-tuple linguistic values is or-
dered, and the best alternative for the experts can be
selected. In decision making using Atanassov’s in-
tuitionistic fuzzy sets, Li developed a methodology
for solving multiattribute decision making problems
based on intuitionistic fuzzy sets 12, in which, de-
cision results are represented by intuitionistic fuzzy
sets, and ordering is depended on score and accuracy
functions, i.e., let C = ⟨µC,νC⟩ be an intuitionistic
fuzzy set, then the score function s and the accuracy
function a of C may be expressed by s(C) = µC −νC
and a(C) = µC + νC. Ranking two intuitionistic
fuzzy sets B = ⟨µB,νB⟩ and C = ⟨µC,νC⟩ is as fol-
lows 10:

1. If s(B)> s(C), then B >C;

2. If s(B) = s(C), then

(a) If a(B) = a(C), then B =C;

(b) If a(B)< a(C), then B <C;

(c) If a(B)> a(C), then B >C.

Recently, Chen and Niou proposed a method for
fuzzy multiple attributes group decision-making 3,
in which, evaluation values and decision results are
represented by fuzzy sets on a finite and ordered lin-
guistic term set U called initial evaluation linguis-
tic values, ranking decision results P̃1 and P̃2 repre-
sented by fuzzy sets on U is depended on the score
S(P̃1 ⊖ P̃2) of the weighted difference of their mem-
bership values.

A bird’s eye view in the recent specialized litera-
ture about decision making problems, ranking meth-
ods are an important aspect to select the best alterna-
tive for the experts, difference expressions for evalu-
ation in a decision making problem correspond with
difference aggregation operator and ranking method.
From the algebraic point of view, ranking methods
is to order decision results to obtain the best alterna-
tive for the experts, some of them is linearly ordered,
the others is pre-ordering. Theoretically, there is no
unique alternative to be best in pre-ordered set, this
is drawback of decision making approach when its
ordering is pre-ordering. In this paper, we aim to
analyze some algebraic properties of the score pro-
posed in 3. Then we provide an equivalence relation
on decision results to order aggregation values in de-
cision making, the new ordering method can over-
come drawback of decision making approach when
its ordering is pre-ordering, example shows that the
method is an alternative decision making method
when its ordering is pre-ordering. The paper is orga-
nized as follows: In Section 2, we briefly review the
decision making method and the score proposed in 3.
In Section 3, we analyze some algebraic properties
of the score. In Section 4, we devote to discuss an
equivalence relation on fuzzy sets based on the score
and provide a new method to handle multi-criteria
decision-making when its ordering is pre-ordering.
In Section 5, we use two examples to illustrate the
proposed method. We conclude in Section 6.

2. Preliminaries

There are different approaches to select linguistic
descriptors and different ways to define their seman-
tics in fuzzy multi-criteria decision making prob-
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lems. The selection of linguistic descriptors in 3

can be performed as follows: Assume that U =
{s−m, · · · ,s0, · · · ,sm} is a finite and ordered linguis-
tic term set, and linguistic descriptors are fuzzy
sets on U , e.g., P̃1 = a1/sB1 + a2/sB2 + · · ·+ an/sBn

and P̃2 = b1/sB1 + b2/sB2 + · · · + bn/sBn , where
{sB1 ,sB2 , · · · ,sBn} ⊆ U , integer values B1 < B2 <
· · ·< Bn and sB1 < sB2 < · · ·< sBn , ai ∈ [0,1] denotes
the grade of membership of sBi in the fuzzy set P̃1,
b j ∈ [0,1] denotes the grade of membership of sB j in
the fuzzy set P̃2, 1 6 i, j 6 n.

Some operations of fuzzy sets defined on U are
shown as follows: The addition operation between
two fuzzy sets is

P̃1 ⊕ P̃2 = (a1/sB1 + · · ·+an/sBn)⊕ (b1/sB1

+ · · ·+bn/sBn)

= (a1 +b1)/sB1 + · · ·+(an +bn)/sBn .

The multiplication operation between α and P̃1 is

α ⊗ P̃1 = α ⊗ (a1/sB1 + · · ·+an/sBn)

= (α ×a1)/sB1 + · · ·+(α ×an)/sBn .

Based on the above mentioned operations,
FIOWA operator can be defined as follows: Let
{⟨u1, P̃1⟩,⟨u2, P̃2⟩, · · · ,⟨un, P̃n⟩} be OWA pairs 26 and
W = (w1,w2, · · · ,wn) a weighting vector, where ui

in the OWA pair ⟨ui, P̃i⟩ is called the order inducing
variable, P̃i is called the uncertain linguistic argu-
ment variable, wi denotes the ith weight such that
wi ∈ [0,1] and ∑n

i=1 wi = 1, 1 6 i 6 n.

FFIOWA(⟨u1, P̃1⟩, · · · ,⟨un, P̃n⟩) = w1P̃b1 ⊕·· ·⊕wnP̃bn .

In which, P̃b j
(1 6 j 6 n) is the value of the OWA

pair ⟨ui, P̃i⟩ having the jth largest order inducing ui
value.

The score S(P̃1 ⊖ P̃2) of the weighted difference
of the membership values between P̃1 and P̃2 is

S(P̃1 ⊖ P̃2) = (a1/sB1 + · · ·+an/sBn)⊖ (b1/sB1 + · · ·
+bn/sBn) = B1 × (a1 −b1)+ · · ·+Bn × (an −bn). (1)

Formally, S(P̃1 ⊖ P̃2) provides an order relation be-
tween two fuzzy sets on U defined as follows.

Definition 1. 3 Let P̃1, P̃2 and P̃3 be three fuzzy
sets in the universe of discourse U , where U =
{sB1 ,sB2 , · · · ,sBn}.

1. If S(P̃1 ⊖ P̃1)> S(P̃1 ⊖ P̃2), then P̃1 6 P̃2;

2. If S(P̃1 ⊖ P̃2)> S(P̃1 ⊖ P̃3), then P̃2 6 P̃3;

3. If S(P̃1 ⊖ P̃1) > S(P̃1 ⊖ P̃2) and S(P̃1 ⊖ P̃2) >
S(P̃1 ⊖ P̃3), then P̃1 6 P̃2 6 P̃3.

Based on FIOWA operator and the score S(P̃i ⊖
P̃j) between fuzzy sets P̃i and P̃j, the proposed
method for fuzzy multiple attributes group decision-
making based on FIOWA operators is as follows:
Assume that there are n alternatives {x1,x2, · · · ,xn},
m attributes { f1, f2, · · · , fm} and g decision-makers
{D1,D2, · · · ,Dg}. Let H = [h1,h2, · · · ,hg]

T be the
weighting vector of the decision-makers, where hk
denotes the weight of decision-maker Dk, 1 6 k 6 g
and ∑g

k=1 hk = 1. Let V = [v1,v2, · · · ,vm]
T be the

weighting vector of the attributes, where vi denotes
the weight of attribute fi, 1 6 i 6 m and ∑m

i=1 vi = 1.
The fuzzy evaluating matrix F̃k for decision-

maker Dk with respect to attributes of alternatives
is as follows:

F̃k =



x1 x2 · · · xn

f1 f̃ k
11 f̃ k

12 · · · f̃ k
1n

f2 f̃ k
21 f̃ k

22 · · · f̃ k
2n

...
...

...
...

...
fm f̃ k

m1 f̃ k
m2 · · · f̃ k

mn

.

In which, every f̃ k
i j is a fuzzy set on linguistic term

set U , 1 6 k 6 g.
By using FIOWA operator, the fuzzy evaluating

value of all decision-makers with respect to the at-
tribute fi of the alternative x j is as follows

Z̃i j = FFIOWA(⟨h1, f̃ 1
i j⟩, · · · ,⟨hk, f̃ k

i j⟩)

= w1 f̃ ′1
i j ⊕·· ·⊕wk f̃ ′k

i j . (2)

In which, W =(w1,w2, · · · ,wk) is a weighting vector

of { f̃ 1
i j, f̃ 2

i j, · · · , f̃ k
i j}.
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The score Ẽ j of each alternative x j represented
by fuzzy set on U is as follows:

Ẽ j = FFIOWA(⟨v1, Z̃1 j⟩, · · · ,⟨vm, Z̃m j⟩)

= r1Z̃1 j

′

⊕ r2Z̃2 j

′

⊕·· ·⊕ rmZ̃m j

′

. (3)

In which, ⟨vi, Z̃i j⟩ is the OWA pair, R =
(r1,r2, · · · ,rm) is a weighting vector of
{Z̃1 j, Z̃2 j, · · · , Z̃m j}, 1 6 i 6 m,1 6 j 6 n.

To obtain the better alternative as the final deci-
sion, the score of S(Ẽ j1 ⊖ Ẽ j2) for any j1 and j2 is
needed, the smaller the value of S(Ẽ j1 ⊖ Ẽ j2) is , the
better alternative x j2 is.

Example 1. Let U = {s−4 = extremely poor,s−3 =
very poor,s−2 = poor,s−1 = slightly poor,s0 =
f air,s1 = slightly good,s2 = good,s3 = very
good,s4 = extremely good}, P̃1, P̃2, P̃3 and
P̃4 be the score of alternatives x j (1 6 j 6
4), which are fuzzy sets on U , i.e., P̃1 =
0.045/s−1+0.165/s0+0.4/s1+0.25/s2+0.14/s3,
P̃2 = 0.14/s0 + 0.17/s1 + 0.315/s2 + 0.285/s3 +

0.09/s4, P̃3 = 0.08/s−2 + 0.06/s−1 + 0.225/s0 +

0.35/s1 + 0.14/s2 + 0.1/s3 + 0.045/s4, and P̃4 =
0.1/s−1 + 0.165/s0 + 0.275/s1 + 0.195/s2 +
0.2/s3 + 0.065/s4. According to (1), we have
S(P̃1 ⊖ P̃1) = S((0.045/s−1 + 0.165/s0 + 0.4/s1 +
0.25/s2 + 0.14/s3) ⊖ (0.045/s−1 + 0.165/s0 +
0.4/s1 + 0.25/s2 + 0.14/s3)) = (−1) × (0.045 −
0.045) + 0 × (0.165 − 0.165) + 1 × (0.4 − 0.4) +
2 × (0.25 − 0.25) + 3 × (0.14 − 0.14)) = 0. Sim-
ilarly, S(P̃1 ⊖ P̃2) = −0.74, S(P̃1 ⊖ P̃3) = 0.37 and
S(P̃1 ⊖ P̃4) =−0.15.

Due to S(P̃1 ⊖ P̃1) > S(P̃1 ⊖ P̃2), S(P̃1 ⊖ P̃3) >
S(P̃1 ⊖ P̃1) and S(P̃1 ⊖ P̃1) > S(P̃1 ⊖ P̃4), we have
P̃1 6 P̃2, P̃3 6 P̃1 and P̃1 6 P̃4. On the other hand,
S(P̃1 ⊖ P̃2) 6 S(P̃1 ⊖ P̃4), we have P̃4 6 P̃2. Finally,
we have P̃3 6 P̃1 6 P̃4 6 P̃2, i.e., x2 is the best alter-
native.

3. Properties of the score

In this section, we analyze some algebraic proper-
ties of the score S(P̃i ⊖ P̃j). We show that the order
relation decided by S(P̃1⊖ P̃2) is a pre-order relation
of fuzzy sets on U .

Proposition 1. For any fuzzy sets P̃i, P̃j and P̃k on
U = {sB1 ,sB2 , · · · ,sBn}.

1. S(P̃i ⊖ P̃i) = 0;

2. S(P̃i ⊖ P̃j) =−S(P̃j ⊖ P̃i);

3. S(P̃i ⊖ P̃k) = S(P̃i ⊖ P̃j)+S(P̃j ⊖ P̃k);

4. If S(P̃i ⊖ P̃j) > 0 and S(P̃j ⊖ P̃k) > 0, then
S(P̃i ⊖ P̃k)> 0.

Proof. Let P̃i = c1/sB1 +c2/sB2 + · · ·+cn/sBn , P̃j =

d1/sB1 + d2/sB2 + · · ·+ dn/sBn and P̃k = e1/sB1 +
e2/sB2 + · · ·+ en/sBn .

1. According to (1), S(P̃i ⊖ P̃i) = 0 is obvious;

2. S(P̃i ⊖ P̃j) = B1 × (c1 −d1)+B2 × (c2 −d2)+
· · ·+Bn×(cn−dn) =−[B1×(d1−c1)+B2×
(d2−c2)+ · · ·+Bn×(dn−cn)] =−S(P̃j⊖ P̃i);

3. Because S(P̃i ⊖ P̃j) = B1 × (c1 − d1) + B2 ×
(c2 − d2) + · · ·+ Bn × (cn − dn) and S(P̃j ⊖
P̃k) = B1 × (d1 − e1)+B2 × (d2 − e2)+ · · ·+
Bn × (dn − en). Hence, S(P̃i ⊖ P̃j) + S(P̃j ⊖
P̃k) = [B1 × (c1 −d1)+B2 × (c2 −d2)+ · · ·+
Bn × (cn −dn)]+ [B1 × (d1 − e1)+B2 × (d2 −
e2)+ · · ·+Bn × (dn −en)] = [B1 × (c1 −d1)+
B1 × (d1 − e1)]+ [B2 × (c2 −d2)+B2 × (d2 −
e2)]+ · · ·+[Bn×(cn−dn)+Bn×(dn−en)] =
B1 × (c1 − e1) + B2 × (c2 − e2) + · · ·+ Bn ×
(cn − en) = S(P̃i ⊖ P̃k);

4. If S(P̃i⊖ P̃j)> 0 and S(P̃j⊖ P̃k)> 0, according
to (3), S(P̃i⊖ P̃k) = S(P̃i⊖ P̃j)+S(P̃j⊖ P̃k)> 0.

In the rest of the paper, P̃i 6 P̃j is denoted by
P̃i 6s P̃j. Based on Proposition 1, Definition 1 can
be modified as follows.

Definition 2. For any two fuzzy sets P̃i and P̃j

on U = {sB1 ,sB2 , · · · ,sBn}, P̃i 6s P̃j if and only if
S(P̃i ⊖ P̃j)6 0.

According to Definition 2, 1) if S(P̃1 ⊖ P̃1) >
S(P̃1 ⊖ P̃2), i.e., 0 > S(P̃1 ⊖ P̃2), then P̃1 6s P̃2; 2)
If S(P̃1 ⊖ P̃2) > S(P̃1 ⊖ P̃3), i.e., S(P̃1 ⊖ P̃3)−S(P̃1 ⊖
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P̃2)6 0, according to Proposition 1(3), S(P̃1 ⊖ P̃3)−
S(P̃1 ⊖ P̃2) = S(P̃2 ⊖ P̃3) 6 0, then P̃2 6s P̃3; 3) If
S(P̃1⊖ P̃1)> S(P̃1⊖ P̃2) and S(P̃1⊖ P̃2)> S(P̃1⊖ P̃3),
i.e., S(P̃1 ⊖ P̃2)6 0 and S(P̃2 ⊖ P̃3)6 0, hence, P̃1 6
P̃2 and P̃2 6 P̃3, i.e., P̃1 6 P̃2 6 P̃3.

The following proposition show that “ 6s ” is
a pre-order relation of fuzzy sets on U = {sB1 ,
sB2 , · · · ,sBn}.

Proposition 2. For any fuzzy sets P̃i, P̃j and P̃k on U,
“ 6s ” satisfies reflexivity and transitivity, i.e.,

1. Reflexivity: P̃i 6s P̃i;

2. Transitivity: If P̃i 6s P̃j, P̃j 6s P̃k, then P̃i 6s P̃k.

Proof. Let P̃i = c1/sB1 +c2/sB2 + · · ·+cn/sBn , P̃j =

d1/sB1 + d2/sB2 + · · ·+ dn/sBn and P̃k = e1/sB1 +
e2/sB2 + · · ·+ en/sBn .

Due to S(P̃i ⊖ P̃i) 6 S(P̃i ⊖ P̃i) = 0, reflexivity
P̃i 6s P̃i is obvious.

Due to P̃i 6s P̃j if and only if S(P̃i⊖P̃j)6 0, P̃j 6s

P̃k if and only if S(P̃j ⊖ P̃k)6 0. According to Propo-
sition 1 (3), S(P̃i⊖ P̃k) = S(P̃i⊖ P̃j)+S(P̃j ⊖ P̃k)6 0,
i.e., P̃i 6s P̃k, transitivity holds.

The following example means that “ 6s ” is not
satisfied anti-symmetry.

Example 2. Let P̃1, P̃2 be two fuzzy sets on U =
{s−4,s−3, · · · ,s4}, i.e., P̃1 = 0.1/s−1 + 0.165/s0 +

0.275/s1 + 0.195/s2 + 0.2/s3 + 0.065/s4, P̃2 =
0.045/s−4 + 0.11/s−2 + 0.06/s−1 + 0.15/s0 +
0.305/s1 +0.4/s2 +0.1/s3 +0.12/s4. According to
(3), we have S(P̃1 ⊖ P̃2) = S((0.1/s−1 + 0.165/s0 +
0.275/s1 + 0.195/s2 + 0.2/s3 + 0.065/s4) ⊖
(0.045/s−4 + 0.11/s−2 + 0.06/s−1 + 0.15/s0 +
0.305/s1 + 0.4/s2 + 0.1/s3 + 0.12/s4)) = (−4)×
(0 − 0.045) + (−2)× (0 − 0.11) + (−1)× (0.1 −
0.06)+ 0× (0.165− 0.15)+ 1× (0.275− 0.305)+
2× (0.195− 0.4) + 3× (0.2− 0.1) + 4× (0.065−
0.12)) = 0. Clearly, S(P̃1 ⊖ P̃2) = 0 and P̃1 ̸= P̃2.
Proposition 2 and Example 2 mean that “ 6s ” is not
partially ordered relation.

Proposition 3. For any fuzzy sets P̃i, P̃j on U, we al-
ways have P̃i 6s P̃j or P̃j 6s P̃i.

Proof. For any fuzzy sets P̃i, P̃j on U , accord-
ing to (1), we can calculate S(P̃i ⊖ P̃j). Accord-
ing to Definition 1, if S(P̃i ⊖ P̃j) 6 0, then P̃i 6s P̃j.
Else S(P̃i ⊖ P̃j) > 0, according to Proposition 1 (2),
S(P̃j ⊖ P̃i) =−S(P̃i ⊖ P̃j)6 0, i.e., P̃j 6s P̃i.

Proposition 3 means that for any fuzzy sets P̃i and
P̃j on U , if S(P̃j ⊖ P̃k) ̸= 0, then P̃i and P̃j is compa-
rable, i.e., P̃i >s P̃j or P̃i 6s P̃j. Proposition 2 and
Proposition 3 show that we can not rank fuzzy sets
P̃i and P̃j on U when S(P̃i ⊖ P̃j) = 0.

Example 3. Let P̃1, P̃2, P̃3 and P̃4 be four scores of al-
ternative x j, 1 6 j 6 4, which are fuzzy sets on U =

{s−4,s−3, · · · ,s4}, i.e., P̃1 = 0.08/s−2 + 0.06/s−1 +
0.225/s0 + 0.35/s1 + 0.14/s2 + 0.1/s3 + 0.045/s4,
P̃2 = 0.1/s−1 + 0.165/s0 + 0.275/s1 + 0.195/s2 +

0.2/s3 + 0.065/s4, P̃3 = 0.045/s−4 + 0.11/s−2 +
0.06/s−1 + 0.15/s0 + 0.305/s1 + 0.4/s2 + 0.1/s3 +

0.12/s4, and P̃4 = 0.16/s−4 + 0.08/s−3 +
0.13/s−1+0.21/s0+0.28/s1+0.17/s2+0.225/s4.
According to (1), we have S(P̃1 ⊖ P̃2) = −0.535,
S(P̃1 ⊖ P̃3) = −0.535, S(P̃1 ⊖ P̃4) = 0.38, S(P̃2 ⊖
P̃3) = 0, S(P̃2 ⊖ P̃4) = 0.915, S(P̃3 ⊖ P̃4) = 0.915.

So, we have P̃4 6s P̃1 6s P̃2, P̃4 6s P̃1 6s P̃3,
P̃2 6s P̃3 and P̃3 6s P̃2 due to S(P̃2 ⊖ P̃3) = 0, i.e.,
P̃4 6s P̃1 6s {P̃2, P̃3}. Hence, we can not choose the
better alternative from x2 and x3.

4. An improved ordering method based on the
score

In this section, we discuss an equivalence relation
on fuzzy sets based on the score S(P̃i ⊖ P̃j), and pro-
vide an improved ordering method to handle fuzzy
decision making problems when S(P̃i ⊖ P̃j) = 0.

4.1. An equivalence relation on fuzzy sets

Definition 3. For any two fuzzy sets P̃i and P̃j

on U = {sB1 ,sB2 , · · · ,sBn}, P̃i ∼s P̃j if and only if
S(P̃i ⊖ P̃j) = 0.

the following properties show that ∼s is an
equivalence relation of fuzzy sets on U = {sB1 ,
sB2 , · · · ,sBn}.
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Proposition 4. For any fuzzy sets P̃i, P̃j and P̃k on U,
“ ∼s ” is an equivalence relation on fuzzy sets, i.e.,
“ ∼s ” satisfies

1. Reflexivity: P̃i ∼s P̃i;

2. Symmetry: If P̃i ∼s P̃j, then P̃j ∼s P̃i;

3. Transitivity: If P̃i ∼s P̃j and P̃j ∼s P̃k, then
P̃i ∼s P̃k.

Proof. Let P̃i = c1/sB1 +c2/sB2 + · · ·+cn/sBn , P̃j =

d1/sB1 + d2/sB2 + · · ·+ dn/sBn and P̃k = e1/sB1 +
e2/sB2 + · · ·+ en/sBn .

(1) For any fuzzy set P̃i on U , according to Propo-
sition 1 (1), S(P̃i ⊖ P̃i) = 0, i.e., P̃i ∼s P̃i.

(2) If P̃i ∼s P̃j, then S(P̃i ⊖ P̃j) = 0. According
to proposition 1 (2), S(P̃j ⊖ P̃i) = −S(P̃i ⊖ P̃j) = 0,
hence, P̃j ∼s P̃i.

(3) If P̃i ∼s P̃j and P̃j ∼s P̃k, then S(P̃i ⊖ P̃j) = 0
and S(P̃j ⊖ P̃k) = 0. According to Proposition 1
(3), S(P̃i ⊖ P̃k) = S(P̃i ⊖ P̃j)+S(P̃j ⊖ P̃k) = 0, hence,
P̃i ∼s P̃k.

Let F(U) = {P̃1, P̃2, · · · , P̃i, · · · , P̃m} (i =
1,2, · · · ,m). ∼s is an equivalence relation on
fuzzy sets F(U), F(U)/ ∼s is the quotient set
of F(U) relative to ∼s, the equivalence classes
of F(U) is denoted by [P̃i], that is, ∀P̃i ∈ F(U),
[P̃i] = {P̃j | P̃j ∈ F(U)∧ P̃i ∼s P̃j}.

Proposition 5. For any equivalence classes [P̃i] and
[P̃j] of F(U)/ ∼s, if P̃i 6s P̃j, then ∀P̃k ∈ [P̃i] and
∀P̃t ∈ [P̃j], P̃k 6s P̃t .

Proof. If P̃i 6s P̃j, i.e., S(P̃i ⊖ P̃j) 6 0. ∀P̃k ∈ [P̃i]

and ∀P̃t ∈ [P̃j], we have S(P̃k ⊖ P̃i) = S(P̃j ⊖ P̃t) = 0.
According to proposition 1 (3), S(P̃k ⊖ P̃t) = S(P̃k ⊖
P̃i)+S(P̃i⊖ P̃t) = S(P̃i⊖ P̃t) = S(P̃i⊖ P̃j)+S(P̃j ⊖ P̃t)

= S(P̃i ⊖ P̃j)6 0, i.e., P̃k 6s P̃t .

Definition 4. Assume [P̃1], [P̃2], · · · , [P̃i], · · · , [P̃m] be
m equivalence classes of F(U)/∼s. For any equiva-
lence classes [P̃i] and [P̃j] of F(U)/∼s, [P̃i]6∼s [P̃j]

if and only if P̃i 6s P̃j.
According to Proposition 5, [P̃i]6∼s [P̃j] is inde-

pendent of the choice of the element P̃i in [P̃i] and P̃j

in [P̃j], hence, Definition 4 is well defined. The fol-
lowing properties show that “ 6∼s ” is an partially
ordered relation on F(U)/∼s.

Proposition 6. For any equivalence classes [P̃i], [P̃j]

and [P̃k] of F(U)/∼s, “6∼s ” is an partially ordered
relation on equivalence classes, i.e., “6∼s ” satisfies

1. Reflexive: [P̃i]6∼s [P̃i];

2. Anti-symmetry:If [P̃i] 6∼s [P̃j] and [P̃j] 6∼s

[P̃i], then [P̃i] = [P̃j];

3. Transitivity: If [P̃i]6∼s [P̃j], [P̃j]6∼s [P̃k], then
[P̃i]6∼s [P̃k].

Proof. (1) For any fuzzy set P̃i on U , according to
Proposition 4 (1), P̃i 6s P̃i, i.e., [P̃i]6∼s [P̃i].

(2) If [P̃i]6∼s [P̃j], then P̃i 6s P̃j, i.e., S(P̃i⊖ P̃j)6
0. If [P̃j]6∼s [P̃i], then P̃j 6s P̃i, i.e., S(P̃j ⊖ P̃i)6 0.
According to proposition 1, S(P̃i ⊖ P̃j) = −S(P̃j ⊖
P̃i), i.e, S(P̃i⊖P̃j)= 0. Since P̃i ∼s P̃j, i.e., [P̃i] = [P̃j].

(3) If [P̃i]6∼s [P̃j] and [P̃j]6∼s [P̃k], then P̃i 6s P̃j

and P̃j 6s P̃k. According to proposition 2 (3), P̃i 6s

P̃k, hence, [P̃i]6∼s [P̃k].

Furthermore, for any equivalence classes [P̃i] and
[P̃j] of F(U)/ ∼s, we have [P̃i] 6∼s [P̃j] or [P̃j] 6∼s

[P̃i] according to Proposition 3 and Definition 4.
Therefore, “ 6∼s ” is a linear ordering relation on
F(U)/∼s.

Example 4. Let P̃1, P̃2, P̃3, P̃4 and P̃5 be
five scores of alternative x j (1 6 j 6 5), which
are fuzzy sets on U = {s−4,s−3, · · · ,s4}, where
P̃1 = 0.045/s−1 + 0.165/s0 + 0.4/s1 + 0.25/s2 +

0.14/s3, P̃2 = 0.14/s0 + 0.17/s1 + 0.315/s2 +

0.285/s3 + 0.09/s4, P̃3 = 0.005/s−3 + 0.06/s−2 +
0.105/s−1+0.28/s0+0.85/s1+0.11/s2+0.06/s3,
P̃4 = 0.08/s−4+0.105/s−3+0.145/s−1+0.16/s0+

0.18/s1 + 0.11/s2 + 0.31/s3 + 0.115/s4 and P̃5 =
0.08/s−3+0.1/s−1+0.08/s0+0.06/s1+0.26/s2+
0.385/s3 +0.155/s4.

According to (1), we have S(P̃1 ⊖ P̃2) =
S((0.045/s−1 + 0.165/s0 + 0.4/s1 + 0.25/s2 +
0.14/s3) ⊖ (0.14/s0 + 0.17/s1 + 0.315/s2 +
0.285/s3 + 0.09/s4)) = (−1)× (0.045 − 0) + 0 ×
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(0.165 − 0.14) + 1 × (0.4 − 0.17) + 2 × (0.25 −
0.315) + 3 × (0.14 − 0.285) + 4 × (0 − 0.09) =

−0.74. Similarly, S(P̃1 ⊖ P̃3) = 0.265, S(P̃1 ⊖ P̃4) =

0.265, S(P̃1 ⊖ P̃5) = −0.74, S(P̃2 ⊖ P̃3) = 1.005,
S(P̃2 ⊖ P̃4) = 1.005, S(P̃2 ⊖ P̃5) = 0, S(P̃2 ⊖ P̃5) =

0, S(P̃3 ⊖ P̃4) = 0, S(P̃3 ⊖ P̃5) = −0.1005 and
S(P̃4 ⊖ P̃5) =−0.1005.

Accordingly, we get three equivalence class of
F(U)/ ∼s, i.e., [P̃1] = {P̃1}, [P̃2] = {P̃2, P̃5}, [P̃3] =

{P̃3, P̃4}. Based on S(P̃1⊖ P̃2) =−0.74, S(P̃1⊖ P̃3) =

0.265 and S(P̃2 ⊖ P̃3) = 1.005, we have

[P̃3]6∼s [P̃1]6∼s [P̃2].

The following Proposition 7 shows that the
equivalence classes of F(U)/ ∼s is closed for
weighted aggregation operator.

Proposition 7. For any equivalence class [P̃i] of
F(U)/ ∼s, if P̃i1, · · · , P̃im ∈ [P̃i], then (w1 ⊗ P̃i1)⊕
·· · ⊕ (wm ⊗ P̃im) ∈ [P̃i], where wi ∈ [0,1] and
Σm

i=1wi = 1, (i = 1, · · · ,m).

Proof. Let P̃i1 = a1/sB1 + a2/sB2 + · · ·+ an/sBn ,
P̃i2 = b1/sB1 + b2/sB2 + · · · + bn/sBn , · · · , P̃im =

l1/sB1 + l2/sB2 + · · ·+ ln/sBn and P̃t = (w1 ⊗ P̃i1)⊕
·· ·⊕ (wn ⊗ P̃im) = [w1a1 +w2b1 + · · ·+wnl1]/SB1 +
[w1a2 + w2b2 + · · · + wml2]/SB2 + · · · + [w1an +

w2bn + · · ·+ wnln]/SB1 . If P̃i1, · · · , P̃im ∈ [P̃i], ac-
cording to Definition 3, ∀P̃i j, P̃ik ∈ [P̃i] ( j,k =

1,2, · · · ,m), we have S(P̃i j ⊖ P̃ik) = 0. Since,
S(P̃t ⊖ P̃i1) = B1 × [(w1 − 1)a1 + w2b1 + w3c1 +
· · · + wml1] + B2 × [(w1 − 1)a2 + w2b2 + w3c2 +
· · ·+wml2]+ · · ·+Bn× [(w1−1)an+w2bn+w3cn+
· · · + wmln] = B1 × [(−w2 − w3 − ·· · − wm)a1 +
w2b1 + w3c1 + · · · + wml1] + B2 × [(−w2 − w3 −
·· ·−wm)a2+w2b2+w3c2+ · · ·+wml2]+ · · ·+Bn×
[(−w2 − w3 − ·· · − wm)an + w2bn + w3cn + · · · +
wmln] = B1 × [w2(b1 − a1) + w3(c1 − a1) + · · · +
wm(l1 − a1)] + B2 × [w2(b2 − a2) + w3(c2 − a2) +
· · ·+wm(l2−a2)]+ · · ·+Bn× [w2(bn−an)+w3(cn−
an)+ · · ·+wm(ln −an)] = w2[B1(b1 −a1)+B2(b2 −
a2)+ · · ·+Bn(bn − an)+w3[B1(c1 − a1)+B2(c2 −
a2) + · · · + Bn(cn − an) + · · · + wm[B1(l1 − a1) +

B2(l2 − a2) + · · ·+ Bn(ln − an) = w2S(P̃i2 ⊖ P̃i1) +

w3S(P̃i3⊖ P̃i1)+ · · ·+wmS(P̃im⊖ P̃i1) = 0, i.e., (w1⊗
P̃i1)⊕·· ·⊕ (wn ⊗ P̃im) ∈ [P̃i].

In practical decision-making, we always find
more than one alternatives have the same effect,
such as in Example 4, [P̃2] = {P̃2, P̃5} is maxi-
mum equivalence class. According to Proposition 7,
we adopt the following method to understand why
{x2,x5} is the better choose, assume that the weight-
ing vector W = [w1,w2]

T = [0.3,0.7]T , according
to Proposition 7, P̃6 = (w1 ⊗ P̃2) ⊕ (w2 ⊗ P̃5) =
[0.3⊗ (0.14/s0 + 0.17/s1 + 0.315/s2 + 0.285/s3 +
0.09/s4)]⊕ [0.7⊗ (0.08/s−3 +0.1/s−1 +0.08/s0 +
0.06/s1 + 0.26/s2 + 0.385/s3 + 0.155/s4)] =
0.056/s−3 + 0.07/s−1 + 0.098/s0 + 0.093/s1 +

0.2765/s2 + 0.355/s3 + 0.1355/s4. P̃6 is the final
evaluation value about x2 and x5.

4.2. An improve method of fuzzy group
decision-making

Assume that there are n alternatives {x1,x2, · · · , xn},
m attributes { f1, f2, · · · , fm} and g decision-makers
{D1,D2, · · · ,Dg}. Let H = [h1,h2, · · · ,hg]

T be the
weighting vector of the decision-makers, where hi
denotes the weight of decision-maker Di, 1 6 i 6 g
and ∑g

i=1 hi = 1. Let V = [v1,v2, · · · ,vm]
T be the

weighting vector of the attributes, where vi denotes
the weight of attribute fi, 1 6 i 6 m and ∑m

i=1 vi = 1.
The proposed algorithm for fuzzy group decision-
making is presented as follows:

Step1: Construct the fuzzy evaluating matrix F̃k
for decision- maker Dk with respect to attribute fi of
the alternative x j,

F̃k =



x1 x2 · · · xn

f1 f̃ k
11 f̃ k

12 · · · f̃ k
1n

f2 f̃ k
21 f̃ k

22 · · · f̃ k
2n

...
...

...
...

...
fm f̃ k

m1 f̃ k
m2 · · · f̃ k

mn


Step2: Assume that the weighting vector W = [w1,
w2, · · · ,wg]

T . Based on weighting vector W and the
fuzzy evaluating matrix F̃k, the weight Z̃i j of the at-
tribute fi of the alternative x j is calculated by the
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FIOWA operators, i.e.,

Z̃i j = FFIOWA(⟨h1, f̃ 1
i j⟩, · · · ,⟨hk, f̃ k

i j⟩)

= w1 f̃ ′1
i j ⊕·· ·⊕wk f̃ ′k

i j ,

where, 1 6 i 6 m, 1 6 j 6 n, 1 6 k 6 g, hk denotes
the weighting vector of decision-maker Dk, f̃ ′k

i j is the
value of the OWA pair having the kth largest order
inducing h value.

Step3: Assume that the weighting vector R =
[r1, r2, · · · ,ri]

T . Based on weighting vector R and
the weighted value Z̃i j, the score Ẽ j of alternative x j
is calculated as follows:

Ẽ j = FFIOWA(⟨v1, Z̃1 j⟩, · · · ,⟨vi, Z̃i j⟩)

= r1Z̃1 j

′

⊕·· ·⊕ riZ̃i j

′

.

where 16 i6m, 16 j 6 n, vi denotes the weight

of attribute fi, Z̃i j

′

is the value of the OWA pair hav-
ing the kth largest order inducing v value.

step4: Based on (1), the score S(Ẽi ⊖ Ẽ j) of the
weighted difference of membership values between
Ẽi and Ẽ j is calculated, where 1 6 j 6 n.

step5: All evaluations of alternatives are classi-
fied by the equivalence relation ∼s.

step6: The order of sort {[Ẽ1], [Ẽ2], · · · , [Ẽm]}
can be obtained by Definition 4.

step7: Assume [Ẽi] = max{[Ẽ1], [Ẽ2], · · · , [Ẽm]}.
If |[Ẽi]| = 1, then the better choose of the alterna-
tive is xi. Else |[Ẽi]|> 1, we used weighted average
operator to aggregation element of equivalence class
[Ẽi]. The result of aggregation Ẽ j ∈ [Ẽi] is the final
evaluation value of better alternatives.

5. Numerical examples

In this section, we use two examples to illustrate the
proposed method for handling fuzzy group decision-
making problems.

Example 5. Assume that there are five alternative
x1, x2, x3, x4 and x5 and three decision-makers D1,
D2 and D3 who want to choose the best alterna-
tive among x1, x2, x3, x4 and x5. Assume that there
are four attributes, i.e., the risk analysis (denoted by

f1), the growth analysis (denoted by f2), the social-
political impact analysis (denoted by f3) and the en-
vironmental impact analysis (denoted by f4). As-
sume that the weighting vector H of the decision-
makers is shown as follows: H = [h1,h2,h3]

T =
[0.2,0.5,0.3]T , where hi denotes the weight of the
decision-maker Di and 1 6 i 6 3. Assume that
weighting vector V of the four attributes is shown
as follows: V = [v1,v2,v3,v4]

T = [0.3,0.4,0.2,0.1]T ,
where vi denotes the weight of the attribute fi and
1 6 i 6 4. Assume that there are nine linguis-
tic terms s−4,s−3,s−2,s−1,s0,s1,s2,s3 and s4, where
s−4 = extremely poor, s−3 = very poor, s−2 = poor,
s−1 = slightly poor, s0 = fair, s1 = slightly good,
s2 = good, s3 = very good, s4 = extremely good.
Assume that the fuzzy evaluating values of the alter-
natives given by the decision-makers with respect to
different attributes as following:

Step1: Construct the fuzzy evaluating matrix F̃k
for decision- maker Dk with respect to attribute fi
of the alternative x j, where 1 6 k 6 3, 1 6 i 6 4,
1 6 j 6 5 shown as follows:

F̃1 =



x1 x2 x3 x4 x5

f1 f̃ 1
11 f̃ 1

12 f̃ 1
13 f̃ 1

14 f̃ 1
15

f2 f̃ 1
21 f̃ 1

22 f̃ 1
23 f̃ 1

24 f̃ 1
25

f3 f̃ 1
31 f̃ 1

32 f̃ 1
33 f̃ 1

34 f̃ 1
35

f4 f̃ 1
41 f̃ 1

42 f̃ 1
43 f̃ 1

44 f̃ 1
45

,

F̃2 =



x1 x2 x3 x4 x5

f1 f̃ 2
11 f̃ 2

12 f̃ 2
13 f̃ 2

14 f̃ 2
15

f2 f̃ 2
21 f̃ 2

22 f̃ 2
23 f̃ 2

24 f̃ 2
25

f3 f̃ 2
31 f̃ 2

32 f̃ 2
33 f̃ 2

34 f̃ 2
35

f4 f̃ 2
41 f̃ 2

42 f̃ 2
43 f̃ 2

44 f̃ 2
45

,

F̃3 =



x1 x2 x3 x4 x5

f1 f̃ 3
11 f̃ 3

12 f̃ 3
13 f̃ 3

14 f̃ 3
15

f2 f̃ 3
21 f̃ 3

22 f̃ 3
23 f̃ 3

24 f̃ 3
25

f3 f̃ 3
31 f̃ 3

32 f̃ 3
33 f̃ 3

34 f̃ 3
35

f4 f̃ 3
41 f̃ 3

42 f̃ 3
43 f̃ 3

44 f̃ 3
45

,

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

889



     Selecting the best alternative in Decision Making

where f̃ 1
11 = 0.1/s−1 + 0.5/s0, f̃ 1

12 = 0.5/s0 +

0.4/s2, f̃ 1
13 = 0.05/s−3 +0.3/s0 +0.9/s1 +0.45/s2,

f̃ 1
14 = 0.6/s0 + 0.5/s3 + 0.1/s4, f̃ 1

15 = 0.85/s2 +

0.9/s3, f̃ 1
21 = 0.5/s0+0.7/s1, f̃ 1

22 = 0.7/s3+0.5/s4,

f̃ 1
23 = 0.4/s0 + 0.7/s1, f̃ 1

24 = 0.1/s−4 + 0.32/s−1 +

0.15/s3, f̃ 1
25 = 0.5/s−3 + 0.2/s3, f̃ 1

31 = 0.1/s1 +

0.9/s2, f̃ 1
32 = 0.3/s2 + 0.2/s4, f̃ 1

33 = 0.05/s−3 +

0.5/s−1 + 0.6/s0 + 0.9/s1, f̃ 1
34 = 0.5/s1 + 0.1/s2 +

0.9/s3 + 0.85/s4, f̃ 1
35 = 0.5/s−1 + 0.3/s1 + 0.1/s3,

f̃ 1
41 = 0.9/s0 + 0.6/s2, f̃ 1

42 = 0.6/s2 + 0.15/s4,

f̃ 1
43 = 0.5/s−2 + 0.5/s1, f̃ 1

44 = 0.5/s0 + 0.5/s1 +

0.5/s2 + 0.85/s3, f̃ 1
45 = 0.8/s2 + 0.7/s3 + 0.1/s4,

f̃ 2
11 = 0.1/s0 + 0.7/s1, f̃ 2

12 = 0.6/s0 + 0.4/s2,

f̃ 2
13 = 0.1/s0 + 0.9/s1 + 0.4/s3, f̃ 2

14 = 0.5/s−3 +

0.5/s−1, f̃ 2
15 = 0.8/s2 + 0.9/s3 + 0.6/s4, f̃ 2

21 =

0.8/s1 + 0.3/s3, f̃ 2
22 = 0.3/s1 + 0.8/s3, f̃ 2

23 =

0.11/s−2 +0.84/s1, f̃ 2
24 = 0.2/s0 +0.3/s1 +0.1/s3,

f̃ 2
25 = 0.2/s−3 + 0.11/s0, f̃ 2

31 = 0.9/s2 + 0.11/s3,

f̃ 2
32 = 0.2/s0 + 0.4/s2, f̃ 2

33 = 0.5/s−1 + 0.6/s0 +

0.9/s1 + 0.2/s2, f̃ 2
34 = 0.1/s0 + 0.5/s1 + 0.6/s2 +

0.9/s3 + 0.6/s4, f̃ 2
35 = 0.8/s−1 + 0.4/s0, f̃ 2

41 =

0.3/s−1 + 0.7/s0 + 0.68/s2, f̃ 2
42 = 0.7/s1 + 0.7/s2,

f̃ 2
43 = 0.2/s−2 + 0.1/s−1 + 0.1/s0 + 0.86/s1, f̃ 2

44 =
0.3/s−3 + 0.3/s−1 + 0.2/s0 + 0.2/s1 + 0.84/s3,
f̃ 2
45 = 0.8/s2 +0.3/s3 f̃ 3

11 = 0.1/s−1 +0.5/s1, f̃ 3
12 =

0.9/s2 + 0.5/s3, f̃ 3
13 = 0.9/s1 + 0.3/s0 + 0.7/s2,

f̃ 3
14 = 0.6/s0 + 0.1/s4, f̃ 3

15 = 0.1/s2 + 0.9/s3 +

0.7/s4, f̃ 3
21 = 0.2/s1 + 0.5/s3, f̃ 3

22 = 0.5/s1 +

0.2/s3, f̃ 3
23 = 0.15/s−2 + 0.4/s0 + 0.8/s1, f̃ 3

24 =

0.6/s−4 + 0.12/s−1, f̃ 3
25 = 0.15/s0 + 0.2/s3, f̃ 3

31 =

0.1/s1 + 0.9/s2 + 0.15/s3, f̃ 3
32 = 0.8/s2 + 0.2/s4,

f̃ 3
33 = 0.5/s−1 + 0.6/s0 + 0.9/s1, f̃ 3

34 = 0.5/s1 +

0.6/s2 + 0.9/s3 + 0.1/s4, f̃ 3
35 = 0.8/s1 + 0.6/s3,

f̃ 3
41 = 0.5/s−1 + 0.9/s0 + 0.8/s2, f̃ 3

42 = 0.5/s1 +

0.1/s2, f̃ 3
43 = 0.5/s0 + 0.9/s1, f̃ 3

44 = 0.5/s−3 +

0.5/s−1 +0.3/s3, f̃ 3
45 = 0.8/s2 +0.2/s3.

Step2: Assume that the weighting vector W =
[w1,w2,w3]

T = [0.5,0.3,0.2]T . The weight Z̃i j of the
attribute fi of the alternative x j is calculated by the
FIOWA operators, i.e.,

Z̃i j = FFIOWA(⟨h1, f̃ 1
i j⟩,⟨h2, f̃ 2

i j⟩,⟨h3, f̃ 3
i j⟩)

= w1 f̃ ′1
i j ⊕w2 f̃ ′2

i j ⊕w3 f̃ ′3
i j ,

where hk denotes the weighting vector of decision-
makers Dk, 1 6 i 6 4, 1 6 j 6 5, 1 6 k 6 3. f̃ ′k

i j is the
value of the OWA pair having the kth largest order
inducing h value. The results are shown as follows:
Z̃11 = 0.05/s−1 + 0.15/s0 + 0.5/s1, Z̃21 = 0.1/s0 +

0.6/s1 + 0.3/s3, Z̃31 = 0.05/s1 + 0.9/s2 + 0.1/s3,
Z̃41 = 0.3/s−1 + 0.8/s0 + 0.7/s2, Z̃12 = 0.4/s0 +

0.55/s2 + 0.15/s3, Z̃22 = 0.3/s1 + 0.6/s3 + 0.1/s4,
Z̃32 = 0.1/s0 + 0.5/s2 + 0.1/s4, Z̃42 = 0.5/s1 +

0.5/s2+0.3/s4, Z̃13 = 0.01/s−3+0.2/s0+0.9/s1+

0.3/s2 + 0.2/s3, Z̃23 = 0.1/s−2 + 0.2/s0 + 0.8/s1,
Z̃33 = 0.01/s−3 + 0.5/s−1 + 0.6/s0 + 0.9/s1 +

0.1/s2, Z̃43 = 0.2/s−2+0.05/s−1+0.2/s0+0.8/s1,
Z̃14 = 0.25/s−3 + 0.25/s−1 + 0.3/s0 + 0.1/s3 +

0.05/s4, Z̃24 = 0.2/s−4 + 0.1/s−1 + 0.1/s0 +

0.15/s1 + 0.08/s3, Z̃34 = 0.05/s0 + 0.5/s1 +

0.5/s2+0.9/s3+0.5/s4, Z̃44 = 0.3/s−3+0.3/s−1+

0.2/s0 + 0.2/s2 + 0.1/s2 + 0.68/s3, Z̃15 = 0.6/s2 +

0.9/s3 + 0.51/s4, Z̃25 = 0.2/s−3 + 0.1/s0 + 0.1/s3,
Z̃35 = 0.5/s−1 + 0.2/s0 + 0.3/s1 + 0.2/s3, Z̃45 =
0.8/s2 +0.35/s3 +0.02/s4.

Step3: Assume that the weighting vector R =
[r1,r2,r3,r4]

T = [0.4,0.3,0.2,0.1]T , we get the eval-
uations value Ẽ j of alternative x j by using FIOWA
operator, i.e.,

Ẽ j = FFIOWA(⟨v1, Z̃1 j⟩,⟨v2, Z̃2 j⟩,⟨v3, Z̃3 j⟩,⟨v4, Z̃4 j⟩)

= r1Z̃1 j

′

⊕ r2Z̃2 j

′

⊕ r3Z̃3 j

′

⊕ r4Z̃4 j

′

,

vi denotes the weight of attribute fi, Z̃i j

′

is
the value of the OWA pair having the ith
largest order inducing v value, 1 6 i 6 4,
1 6 j 6 5. The results are shown by Ẽ1 =
FFIOWA(⟨v1, Z̃11⟩,⟨v2, Z̃21⟩,⟨v3, Z̃31⟩,⟨v4, Z̃41⟩)=
r1Z̃11

′

⊕ r2Z̃21

′

⊕ r3Z̃31

′

⊕ r4Z̃41

′

= 0.4 ⊗ (0.1/s0 +

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

890



Bin Zhou, Zheng Pei, Xinzi Ma

0.6/s1 + 0.3/s3) ⊕ 0.3 ⊗ (0.05/s−1 +0.15/s0 +
0.5/s1) ⊕ 0.2 ⊗ (0.05/s1 + 0.9/s2 +0.1/s3) ⊕
0.1 ⊗ (0.3/s−1 + 0.8/s0 + 0.7/s2) = 0.045/s−1 +
0.165/s0 + 0.4/s1 + 0.25/s2 + 0.14/s3. Similarly,
Ẽ2 = 0.14/s0 + 0.17/s1 + 0.315/s2 + 0.285/s3 +

0.09/s4, Ẽ3 = 0.005/s−3 +0.06/s−2 +0.105/s−1 +

0.28/s0 + 0.85/s1 + 0.11/s2 + 0.06/s3, Ẽ4 =
0.08/s−4 + 0.105/s−3 + 0.145/s−1 + 0.16/s0 +

0.18/s1 + 0.11/s2 + 0.31/s3 + 0.115/s4 and Ẽ5 =
0.08/s−3+0.1/s−1+0.08/s0+0.06/s1+0.26/s2+
0.385/s3 +0.155/s4.

Step4: Based on (1), the score S(Ẽi ⊖ Ẽ j)
of the weighted difference of membership val-
ues between Ẽi and Ẽ j is calculated, where
1 6 j 6 5, 1 6 i 6 5. The results are
shown by S(Ẽ1 ⊖ Ẽ2) = S((0.045/s−1 +0.165/s0 +
0.4/s1 +0.25/s2 +0.14/s3)⊖ (0.14/s0 +0.17/s1 +
0.315/s2+0.285/s3+0.09/s4)) = (−1)×(0.045−
0) + 0 × (0.165 − 0.14) + 1 × (0.4 − 0.17) + 2 ×
(0.25 − 0.315) + 3 × (0.14 − 0.284) + 4 × (0 −
0.09) = −0.74. Similarly, S(Ẽ1 ⊖ Ẽ3) = 0.265,
S(Ẽ1 ⊖ Ẽ4) = 0.265, S(Ẽ1 ⊖ Ẽ5) = −0.74, S(Ẽ2 ⊖
Ẽ3) = 1.005, S(Ẽ2 ⊖ Ẽ4) = 1.005, S(Ẽ2 ⊖ Ẽ5) = 0.
S(Ẽ3 ⊖ Ẽ4) = 0, S(Ẽ3 ⊖ Ẽ5) = −0.1005 and S(Ẽ4 ⊖
Ẽ5) =−0.1005.

Step5: All evaluations of alternatives are clas-
sified by the equivalence relation ∼s, therefore, we
have [Ẽ1] = {Ẽ1}, [Ẽ2] = {Ẽ2, Ẽ5}, [Ẽ3] = {Ẽ3, Ẽ4}.

Step6: Sort the equivalence class [Ẽ1], [Ẽ2] and
[Ẽm] in ascending sequence, i.e., [Ẽ3] 6∼s [Ẽ1] 6∼s

[Ẽ2].
Step7: Due to | [Ẽ2] |= 2 > 1, we used weighted

average operator to aggregation element of equiva-
lence class [Ẽ2]. Assume that the weighting vector
T = [t1, t2]T = [0.4,0.6], we can get fuzzy set,

Ẽ6 = 0.4Ẽ2⊕0.6Ẽ5 = 0.4⊗(0.14/s0+0.17/s1+
0.315/s2+0.285/s3+0.09/s4)⊕0.6⊗(0.08/s−3+
0.1/s−1+0.08/s0+0.06/s1+0.26/s2+0.385/s3+
0.155/s4) = 0.048/s−3 + 0.06/s−1 + 0.104/s0 +
0.104/s1 +0.282/s2 +0.345/s3 +0.129/s4.

According to Proposition 7, Ẽ6 ∈ [Ẽ2]. Since, we
show that the better alternative is x2 and x5, Ẽ6 is the
final evaluation value of the better alternatives.

Example 6. Assume that there are five signals x1,

x2, x3, x4 and x5, which are represented by five at-
tributes, i.e., the average value analysis (denoted by
f1), the variance analysis (denoted by f2), the peak
one analysis (denoted by f3), the peak two analy-
sis (denoted by f4) and the peak three analysis (de-
noted by f5) (shown in Table 1). There are three
experts D1, D2 and D3 who want to find which on
of them is more representative of radar signals. As-
sume that the weighting vector H of experts is shown
as H = [h1,h2,h3]

T = [0.3,0.4,0.3]T , where hi de-
notes the weight of the expert Di and 1 6 i 6 3. The
weighting vector V of the five attributes is shown as
V = [v1,v2,v3,v4,v5]

T = [0.3,0.2,0.25,0.1,0.15]T ,
where vi denotes the weight of the attribute fi and
1 6 i 6 5.

Table 1. Attribute values of five signals

f1 f2 f3 f4 f5
x1 6.81945 208.086 72.86 34.48 33.09
x2 -5.04713 10.3867 21.06 10.01 7
x3 -6.68135 4.06517 15.95 -2.8 -2.81
x4 -4.84008 9.57476 21.27 8.99 6.03
x5 -4.48531 41.6989 19.34 18.73 18.15

Experts use five linguistic terms {s−2,s−1,s0,s1,
s2} to evaluate every signal according to every corre-
sponding to attribute, where s−2 = extremely unlike,
s−1 = unlike, s0 = fair, s1 = like, s2 = extremely
like. Formally, to find which on of signals is more
representative of radar signals is transformed into a
fuzzy multi-criteria decision making problem.

Step1: Construct the fuzzy evaluating matrix F̃k
for decision- maker Dk with respect to attribute fi of
the signal x j, where 1 6 k 6 3, 1 6 i 6 5, 1 6 j 6 5
shown as follows:

F̃1 =



x1 x2 x3 x4 x5

f1 f̃ 1
11 f̃ 1

12 f̃ 1
13 f̃ 1

14 f̃ 1
15

f2 f̃ 1
21 f̃ 1

22 f̃ 1
23 f̃ 1

24 f̃ 1
25

f3 f̃ 1
31 f̃ 1

32 f̃ 1
33 f̃ 1

34 f̃ 1
35

f4 f̃ 1
41 f̃ 1

42 f̃ 1
43 f̃ 1

44 f̃ 1
45

f5 f̃ 1
51 f̃ 1

52 f̃ 1
53 f̃ 1

54 f̃ 1
55


,
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F̃2 =



x1 x2 x3 x4 x5

f1 f̃ 2
11 f̃ 2

12 f̃ 2
13 f̃ 2

14 f̃ 2
15

f2 f̃ 2
21 f̃ 2

22 f̃ 2
23 f̃ 2

24 f̃ 2
25

f3 f̃ 2
31 f̃ 2

32 f̃ 2
33 f̃ 2

34 f̃ 2
35

f4 f̃ 2
41 f̃ 2

42 f̃ 2
43 f̃ 2

44 f̃ 2
45

f5 f̃ 2
51 f̃ 2

51 f̃ 2
51 f̃ 2

51 f̃ 2
51


,

F̃3 =



x1 x2 x3 x4 x5

f1 f̃ 3
11 f̃ 3

12 f̃ 3
13 f̃ 3

14 f̃ 3
15

f2 f̃ 3
21 f̃ 3

22 f̃ 3
23 f̃ 3

24 f̃ 3
25

f3 f̃ 3
31 f̃ 3

32 f̃ 3
33 f̃ 3

34 f̃ 3
35

f4 f̃ 3
41 f̃ 3

42 f̃ 3
43 f̃ 3

44 f̃ 3
45

f5 f̃ 3
51 f̃ 3

51 f̃ 3
51 f̃ 3

51 f̃ 3
51


,

where f̃ 1
11 = 0.9/s−2 + 0.6/s−1 + 0.2/s0, f̃ 1

12 =

0.6/s−2 + 0.1/s−1 + 0.3/s2, f̃ 1
13 = 0.9/s−2 +

0.8/s−1 + 0.4/s0, f̃ 1
14 = 0.2/s0 + 0.2/s1 + 0.1/s2,

f̃ 1
15 = 0.8/s−2 + 0.8/s−1 + 0.6/s0 + 0.4/s1, f̃ 1

21 =

0.6/s−2+0.8/s0+0.8/s1, f̃ 1
22 = 0.2/s−1+0.8/s1+

0.9/s2, f̃ 1
23 = 0.6/s−2 + 0.2/s0 + 0.2/s1 + 0.4/s2,

f̃ 1
24 = 0.6/s0 + 0.9/s1 + 0.8/s2, f̃ 1

25 = 0.4/s−2 +

0.4/s0+0.8/s1+0.9/s2, f̃ 1
31 = 0.8/s−2+0.6/s−1+

0.8/s0, f̃ 1
32 = 0.2/s−1 + 0.2/s0 + 0.9/s2, f̃ 1

33 =

0.6/s−2 + 0.2/s0 + 0.2/s1 + 0.4/s2, f̃ 1
34 = 0.2/s0 +

0.8/s1 + 0.4/s2, f̃ 1
35 = 0.8/s−2 + 0.8/s−1 + 0.5/s1,

f̃ 1
41 = 0.8/s−2 + 0.6/s−1 + 0.3/s1, f̃ 1

42 = 0.3/s0 +

0.8/s1 + 0.9/s2, f̃ 1
43 = 0.3/s−2 + 0.2/s−1, f̃ 1

44 =

0.5/s0 + 0.9/s1 + 0.9/s2, f̃ 1
45 = 0.6/s−1 + 0.8/s1 +

0.4/s2, f̃ 1
51 = 0.8/s−2 + 0.9/s−1 + 0.8/s0, f̃ 1

52 =

0.8/s−2 + 0.2/s2, f̃ 1
53 = 0.8/s−2 + 0.7/s−1, f̃ 1

54 =

0.4/s−2+0.8/s1, f̃ 1
55 = 0.2/s−2+0.3/s−1+0.2/s1,

f̃ 2
11 = 0.9/s−2 + 0.1/s2, f̃ 2

12 = 0.4/s0 + 0.8/s1 +

0.7/s2, f̃ 2
13 = 0.9/s−2 + 0.8/s−1, f̃ 2

14 = 0.2/s−2 +

0.8/s1, f̃ 2
15 = 0.8/s−2 + 0.8/s−1 + 0.6/s0 + 0.2/s2,

f̃ 2
21 = 0.6/s−2 + 0.4/s0 + 0.4/s1, f̃ 2

22 = 0.8/s0 +

0.9/s1 + 0.9/s2, f̃ 2
23 = 0.6/s−1 + 0.6/s1 + 0.2/s2,

f̃ 2
24 = 0.9/s1 + 0.8/s2, f̃ 2

25 = 0.8/s0 + 0.8/s1 +

0.9/s2, f̃ 2
31 = 0.8/s−2 + 0.4/s−1, f̃ 2

32 = 0.6/s0 +

0.8/s1 + 0.5/s2, f̃ 2
33 = 0.6/s−1 + 0.6/s1 + 0.2/s2,

f̃ 2
34 = 0.8/s1 + 0.6/s2, f̃ 2

35 = 0.6/s−2 + 0.8/s−1 +

0.5/s1, f̃ 2
41 = 0.4/s−2 + 0.7/s1 + 0.6/s2, f̃ 2

42 =

0.7/s0 + 0.8/s1 + 0.9/s2, f̃ 2
43 = 0.5/s−2 + 0.6/s0,

f̃ 2
44 = 0.9/s0 + 0.9/s1 + 0.9/s2, f̃ 2

45 = 0.8/s0 +

0.8/s1 + 0.6/s2, f̃ 2
51 = 0.8/s−2 + 0.7/s−1 + 0.8/s1,

f̃ 2
52 = 0.6/s0 + 0.8/s1 + 0.8/s2, f̃ 2

53 = 0.8/s−2 +

0.9/s−1 + 0.6/s0, f̃ 2
54 = 0.8/s0 + 0.6/s1, f̃ 2

55 =

0.5/s−1, f̃ 3
11 = 0.9/s−2 + 0.5/s−1 + 0.1/s2, f̃ 3

12 =

0.4/s0+0.3/s1+0.7/s2, f̃ 3
13 = 0.9/s−2+0.3/s−1+

0.5/s2, f̃ 3
14 = 0.2/s−2 + 0.8/s1, f̃ 3

15 = 0.8/s−2 +

0.3/s−1+0.6/s0+0.7/s2, f̃ 3
21 = 0.1/s−2+0.4/s0+

0.9/s1 + 0.5/s2, f̃ 3
22 = 0.8/s0 + 0.9/s1 + 0.9/s2,

f̃ 3
23 = 0.1/s−1 + 0.5/s0 + 0.1/s1 + 0.7/s2, f̃ 3

24 =

0.5/s0 + 0.9/s1 + 0.8/s2, f̃ 3
25 = 0.5/s−1 + 0.3/s0 +

0.3/s1 + 0.4/s2, f̃ 3
31 = 0.8/s−2 + 0.9/s−1 + 0.5/s2,

f̃ 3
32 = 0.6/s0 + 0.8/s1, f̃ 3

33 = 0.1/s−1 + 0.5/s0 +

0.1/s1 + 0.7/s2, f̃ 3
34 = 0.5/s0 + 0.8/s1 + 0.1/s2,

f̃ 3
35 = 0.2/s−2 + 0.8/s−1 + 0.5/s0, f̃ 3

41 = 0.9/s−2 +

0.7/s1 + 0.1/s2, f̃ 3
42 = 0.7/s0 + 0.8/s1 + 0.4/s2,

f̃ 3
43 = 0.1/s0 + 0.5/s1 + 0.5/s2, f̃ 3

44 = 0.4/s0 +

0.9/s1 + 0.9/s2, f̃ 3
45 = 0.3/s0 + 0.8/s1 + 0.6/s2,

f̃ 3
51 = 0.8/s−2 + 0.7/s−1 + 0.8/s1, f̃ 3

52 = 0.1/s0 +

0.8/s1 + 0.3/s2, f̃ 3
53 = 0.8/s−2 + 0.9/s−1 + 0.1/s0,

f̃ 3
54 = 0.8/s0 + 0.1/s1 + 0.5/s2, f̃ 3

55 = 0.2/s−2 +
0.5/s−1 +0.5/s1.

Step2: Assume that the weighting vector W =
[w1,w2,w3]

T = [0.5,0.3,0.2]T . The weight Z̃i j of
the attribute fi of the signal x j is calculated by the
FIOWA operators, i.e.,

Z̃i j = FFIOWA(⟨h1, f̃ 1
i j⟩,⟨h2, f̃ 2

i j⟩,⟨h3, f̃ 3
i j⟩)

= w1 f̃ ′1
i j ⊕w2 f̃ ′2

i j ⊕w3 f̃ ′3
i j ,

where hk denotes the weighting vector of decision-
makers Dk, 1 6 i 6 5, 1 6 j 6 5, 1 6 k 6
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3, f̃ ′k
i j is the value of the OWA pair having the

kth largest order inducing h value. The re-
sults are shown by Z̃11 = 0.9/s−2 + 0.4/s−1 +

0.1/s0+0.05/s2, Z̃21 = 0.5/s−2+0.6/s0+0.7/s1+

0.1/s2, Z̃31 = 0.8/s−2 + 0.6/s−1 + 0.4/s0 + 0.1/s2,
Z̃41 = 0.7/s−2 + 0.3/s−1 + 0.5/s1 + 0.2/s2, Z̃51 =
0.8/s−2 +0.8/s−1 +0.4/s0 +0.4/s1,

Z̃12 = 0.3/s−2 + 0.05/s−1 + 0.2/s0 + 0.3/s1 +

0.5/s2, Z̃22 = 0.1/s−1 + 0.4/s0 + 0.85/s1 + 0.9/s2

Z̃32 = 0.1/s−1 + 0.4/s0 + 0.4/s1 + 0.6/s2, Z̃42 =

0.5/s0 + 0.8/s1 + 0.8/s2, Z̃52 = 0.4/s−2 + 0.2/s0 +
0.4/s1 +0.4/s2,

Z̃13 = 0.9/s−2 + 0.7/s−1 + 0.2/s0 + 0.1/s2,
Z̃23 = 0.3/s−2+0.2/s−1+0.2/s0+0.3/s1+0.4/s2,
Z̃33 = 0.8/s−2 +0.6/s−1 +0.2/s0, Z̃43 = 0.3/s−2 +

0.1/s−1+0.2/s0+0.1/s1+0.1/s2, Z̃53 = 0.8/s−2+

0.8/s−1+0.2/s0, Z̃14 = 0.1/s−2+0.1/s0+0.5/s1+

0.05/s2, Z̃24 = 0.4/s0 + 0.9/s1 + 0.8/s2, Z̃34 =

0.2/s0 + 0.8/s1 + 0.4/s2, Z̃44 = 0.6/s0 + 0.9/s1 +

0.9/s2, Z̃54 = 0.2/s−2 + 0.4/s0 + 0.6/s1 + 0.1/s2,
Z̃15 = 0.8/s−2+0.7/s−1+0.6/s0+0.2/s1+0.2/s2,
Z̃25 = 0.2/s−2+0.1/s−1+0.5/s0+0.7/s1+0.8/s2,
Z̃35 = 0.6/s−2 + 0.8/s−1 + 0.4/s0 + 0.2/s1, Z̃45 =

0.3/s−1+0.3/s0+0.8/s1+0.6/s2, Z̃55 = 0.2/s−2+
0.4/s−1 +0.2/s1.

Step3: Assume that the weighting vec-
tor R = [r1,r2,r3,r4,r5]

T= [0.3,0.25,0.15,0.1]T ,
by using FIOWA operator, we get the eval-
uation value Ẽ j of signal x j, i.e., Ẽ j =

FFIOWA(⟨v1, Z̃1 j⟩,⟨v2, Z̃2 j⟩,⟨v3, Z̃3 j⟩,⟨v4, Z̃4 j⟩,⟨v5, Z̃5 j⟩)
= r1Z̃1 j

′

⊕ r2Z̃2 j

′

⊕ r3Z̃3 j

′

⊕ r4Z̃4 j

′

⊕ r5Z̃5 j

′

, vi de-

notes the weight of attribute fi, Z̃i j

′

is the value
of the OWA pair having the ith largest order in-
ducing v value, 1 6 i 6 5, 1 6 j 6 5. The re-
sults are shown by Ẽ1 = 0.76/s−2 + 0.42/s−1 +

0.31/s0 + 0.25/s1 + 0.08/s2, Ẽ2 = 0.15/s−2 +

0.06/s−1 + 0.32/s0 + 0.47/s1 + 0.62/s2, Ẽ3 =
0.68/s−2 + 0.53/s−1 + 0.2/s0 + 0.07/s1 + 0.12/s2,
Ẽ4 = 0.06/s−2 + 0.28/s0 + 0.71/s1 + 0.38/s2 and
Ẽ5 = 0.46/s−2 + 0.52/s−1 + 0.41/s0 + 0.36/s1 +
0.28/s2.

Step4: Based on (1), the score S(Ẽi ⊖ Ẽ j) of the
weighted difference of membership values between

Ẽi and Ẽ j is calculated, where 1 6 j 6 5. The results
are shown by S(Ẽ1 ⊖ Ẽ2) = −2.88, S(Ẽ1 ⊖ Ẽ3) =

0.05, S(Ẽ1 ⊖ Ẽ4) = −2.88, S(Ẽ1 ⊖ Ẽ5) = −1.11,
S(Ẽ2 ⊖ Ẽ3) = 2.93, S(Ẽ2 ⊖ Ẽ4) = 0, S(Ẽ2 ⊖ Ẽ5) =

1.87, S(Ẽ3 ⊖ Ẽ4) = −2.93, S(Ẽ3 ⊖ Ẽ5) = −1.06,
S(Ẽ4 ⊖ Ẽ5) = 1.87.

Step5: All evaluations of alternatives are clas-
sified by the equivalence relation ∼s, therefore, we
have [Ẽ1] = {Ẽ1}, [Ẽ2] = {Ẽ2, Ẽ4}, [Ẽ3] = {Ẽ3},
[Ẽ4] = {Ẽ5}.

Step6: Sort the equivalence class [Ẽ1], [Ẽ2], [Ẽ3]

and [Ẽ4] in ascending sequence, [Ẽ3] 6∼s [Ẽ1] 6∼s

[Ẽ4]6∼s [Ẽ2].
Step7: Due to | [Ẽ2] |= 2 > 1, we used weighted

average operator to aggregation element of equiv-
alence class [Ẽ2] and average operator to aggrega-
tion each feature of signals x2 and x4, which are
shown in Table 2. Assume that the weighting vector
T = [t1, t2]T = [0.5,0.5]. We can get the new sig-
nal x6 which can be used to instead of signals x2
and x4, Its evaluation value is the fuzzy set Ẽ6, i.e.,
Ẽ6 = 0.5Ẽ2⊕0.5Ẽ4 = 0.5⊗(0.15/s−2+0.06/s−1+
0.32/s0 + 0.47/s1 + 0.62/s2)⊕ 0.5 ⊗ (0.06/s−2 +
0.28/s0 + 0.71/s1 + 0.38/s2) = 0.105/s−2 +
0.03/s−1 +0.3/s0 +0.59/s1 +0.5/s2.

Table 2. Attribute values of the signal x6

f1 f2 f3 f4 f5
x6 -4.943605 9.98073 21.165 9.5 6.515

According to Proposition 7, Ẽ6 ∈ [Ẽ2]. x6 is rep-
resentative of radar signals.

6. Conclusion

In this paper, we analyze some algebraic properties
of the score S(P̃i ⊖ P̃j) and prove that the order re-
lation decided by the score is a pre-order relation of
fuzzy sets on U . Then, we provide an equivalence
relation on fuzzy sets based on S(P̃i ⊖ P̃j) and pro-
pose a new method to handle fuzzy group decision-
making. Some numerical example illustrates our
method can be used to improve the best alternative
of fuzzy group decision-making when its ordering is
pre-ordering.
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