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Abstract 

Designing a wearable driver assist system requires extraction of relevant features from physiological signals like 
galvanic skin response and photoplethysmogram collected from automotive drivers during real-time driving. In the 
discussed case, four stress-classes were identified using cascade forward neural network (CASFNN) which performed 
consistently with minimal intra- and inter-subject variability. Task-induced stress-trends were tracked using  

-based regression model with CASFNN configuration. The proposed framework will enable 
proactive initiation of rescue and relaxation procedures during accidents and emergencies.  
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1. Introduction 

Road accidents are one of the major causes of deaths around 
the world. Over 1.2 million people die each year on the 

-
fatal injuries, amounting to an estimated loss of US$ 518 
billion due to road traffic injuries and costs governments 
between 1%-3% of their gross national product (GNP) 
globally1. Over 90% of the world's fatalities occur on the 
roads of low-income and middle-income countries1. Among 
the 37,261 fatalities and 2.35 million injuries in USA in 
2008,  64% were drivers, 27% passengers and remaining 
others (4% motorcyclists, 3% pedestrians and 2% 
pedalcyclists)2. In USA, over 95% single vehicle run-off-
road (ROR) crashes between 2005 and 2007, critical reasons 
were attributed to drivers including driver performance 
errors (27.7%), followed by driver decision errors (25.4%), 
critical non-performance errors (22.5%) and recognition 
errors (19.8%)3. Crashes attributed to vehicles were only 1% 
and due to environment only 1.1%. The findings also 
showed that driver's inattention, fatigue and hurriedness 
were the most influential factors3. 

In real-life traffic situations, driving becomes stressful 
due to the frequent occurrence of events and incidents, 
thereby affecting the concentration of drivers4. These events 
are sequential maneuvers (like stopping for a light, changing 

lanes, putting on the brakes), whereas the incidents are 
frequent but unpredictable (like near misses, frustration due 
to overtaking or not getting a pass etc.). These events and 
incidents are sources of physiological responses attributed 
due to extreme physiological reactions, emotional reactions 
and irrational thoughts leading to stress4. Unacceptable 
levels of stress, fatigue and on-road distractions deteriorate 

5 and may lead to temporal loss of 
concentration, risk assessment capability and vehicular 
control, often inviting road accidents. 

Lisetti and Nasoz5 in their study showed that there exists 
a strong relationship between the galvanic skin response 
(GSR) signal and frustration whereas heart rate is more 
related to anger and fear. The GSR increased for a frustrated 
person whereas the heart rate increased for a feared person 
while it decreased for an angry participant. Katsis et al. used 
support vector machines (SVMs) and adaptive neuro-fuzzy 
inference system (ANFIS) to classify emotions as high 
stress, low stress, disappointment and euphoria and attained 
79.3% and 76.7% classification rates for SVM and ANFIS 
respectively6. Healey and Picard7 collected biosignal data to 
monitor the driver's stress during real on-road experiments. 
They recommended that future vehicles should have 
provision to integrate vehicular infrastructure along with 
body-worn sensor configuration for on-road driver stress 
monitoring. 
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To address this issue, our work is a part of a research 
initiative which aims to enhance driver safety by designing a 
custom wearable computing fabric as a component of a 
context-aware driver assistant system which can save loss of 
precious lives by the way of providing fast yet credible real-
time alerts to the drivers and their coupled cars8. It is 
proposed that in such systems if the decision making 
modules were trained on the basis of naturalized data 
collected from real-time driving scenarios, machines will be 
able to adapt and detect the stressful and alarmable 
situations effectively.  

Therefore we decided to include affective state (also 
called emotional state or the sentic state to assess the mental 
and physical stress10) and stress-trend11 (discrete events and 
incidents observed during drive4) detection approaches for 
the stress level assessment of drivers. The salient features of 
our stress level detection approach includes: (a) first work to 
the best of our knowledge focusing a developing country 
like India in terms of scenario design, subject population 
and road settings, (b) physiological data collected in real-
time driving scenarios modeled the stress contributing 
factors into a multiclass problem instead of a binary class9, 
(c) an exhaustive set of physiological features (39 statistical, 
syntactic and spectral) were extracted representing driver's 
current physiological state, (d) instead of less number of 
subjects and a one-fold classification[6-7], we used more 
subjects and performed analysis on single as well multi-turn 
drive data, and (e) six neural network 4-class classifiers 
were evaluated instead of generalizing a single classifier.  

2. Data Collection Methodologies  

In the present work, we collected data from 20 drivers, 
majorly belonging to Pilani in Shekhawati region of 
Rajasthan, India using body-mounted physiological sensors 
during multiple fixed route segmented on-road driving 
experiments.  

2.1. Participants 

The chosen drivers form a representative population ranging 
from novice to professional, with an average age (at the time 
of data collection) of 33.65 ± 9.93 years (Min. 21 and Max. 
58) and with a mean experience of 11.60 ± 8.39 years (Min. 
3 and Max. 37) Among them, 15% were casual, 55% (11 
drivers) with short distance and remaining 30% drivers with 
long distance driving experience. Predominantly male 
drivers were considered because of non-availability of 
female professional drivers in Pilani who volunteered for the 
study and also due to the low representation of women in the 
Indian professional vehicle driver workforce (less than 3%) 
and exposure to roads12. It was hence decided that it is better 
to adopt a custom design approach targeting the men driver 

population. Design factors to be adopted for female drivers 
will be incorporated in the future experiments.

2.2. Physiological Signals, Sensors and Experimental 
Setup 

Physiological features have been extracted from signals like 
electrocardiogram (ECG / EKG), electromyogram (EMG), 
galvanic skin response (GSR), respiration and 
electrocardiogram (EKG / ECG) and classified for detecting 
stress level or emotions of automotive drivers[5,6,7]. The 
mostly used physiological parameters have been (a) heart 
rate (HR) and heart rate variability (HRV), both derived 
from ECG and (b) skin conductance responses (SCR) and 
other related features which account for sudden stress 
responses, derived from GSR. The photoplethysmogram 
(PPG) signal has been established as an alternate for ECG to 
derive several features including HR, HRV, percentage 
oxygen saturation (SpO2) and Respiration Rate13.

We employed the Mind medi -10 device14

alongwith Biotrace+ software for data acquisition. Initially, 
fours sensors viz. a II lead ECG sensor, a body-worn clip-on 
Nonin Pulse Oximeter for PPG and SpO2 signals, an 
abdominal respiration belt and GSR Velcro electrodes, as 
shown in Figure 1(a), attached to one of the four channels of 
the device to collect the physiological data. During data 
collection in driving scenarios in several of the driving 
sessions it was noticed that ECG and respiration signals 
were corrupted beyond recovery which may have happened 
due to the dynamic chest movement. Therefore we 
concentrated on PPG and GSR signals for the analysis. PPG 
signal is a permanent signal15, which can be used to extract 
multiple parameters13 like HR, SpO2, Respiration  Rate etc. 
GSR signal is an induced signal, as certain derived feature 
responses directly correlates due to triggering of stressful 
events15. During stimulus morphological changes are 
observed and the signal has a tendency to gradually deviate 
the baseline, which is suitable for identifying stress16. The 
PPG signals were collected at a sampling frequency of 128 
Hz and GSR at 32 Hz. PPG was further down sampled to 32 
Hz for inter-signal compatibility during the offline 
processing stage. 

2.3. Data Collection Scenarios 

The total data acquisition time-line is segmented into five 
scenarios comprising of two relaxed scenarios and three 
driving scenarios as shown in Table 1. In the two relaxed 
scenarios, Pre-driving (Pr-dr) and Post-driving (Po-dr), data 
was collected in laboratory setup while drivers were relaxed,
depicted in Figure 1 (b). In the three driving scenarios the 
data was collected, in university campus named Relaxed-
driving (Rx-dr), on city roads and highway named  
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Figure 1. Experimental Setup: (a) Typical Sensor Placement Locations and Data Acquisition (b) Pre-driving Data Collection Scenario. 

Busy-driving (By-dr), and in university campus named Post-
driving (Po-dr). The total drive time for each driver lasted 
for nearly 24 minutes covering a distance of approximately 
11.5 kilometers. The advantages of on-road uncontrolled 
data collection in different driving scenarios over simulated 
environments may include (a) training classifier on real-time 
data makes it robust to noise, motion artefacts, device errors 

considered (c) correlation of stressful events will be more 
accurate than in simulated conditions11. During preliminary 
analysis presented in our previous work it has been 
successfully established using multivariate analysis of 
variance (MANOVA) that the choice of data collection 
scenarios are significant and raw signals like GSR, 
Respiration and %SpO2 were also found to be statistically 
important17. 

Drivers have to maneuver through several right-turns,  
left-turns, sharp turns (left, right and circular) immediate 
stops, busy market areas with high vehicle and pedestrian 
density, handling bad stretches of streets, negotiating ill-
designed or non-marked speed breakers, abrupt lane change 
by a neighboring vehicle, jaywalkers etc. These maneuvers 
and stressful events lead to repeated distractions, thereby 
increasing the cognitive workload on drivers leading to 
stress and fatigue4. In this paper such on-road events would 
henceforth be referred as stress-trends and their automatic 
detection would enable the wearable computer to activate 
and respond in accident prone spells of driving. Therefore, 
stress-trend time marker based annotation was carried on 
simultaneously by a secondary experimenter during real-
time data collection. The data collected under these 
scenarios was converted into a compatible data format for 
necessary signal processing procedures in an offline 
workstation using MATLAB®. 

Table 1. Data Collection Scenarios 
Scenarios Location Route

Length
Time 
(min.)

Speed-Limit
(Kmph)

Stress-
Trends

Traffic Density
Ped. 2-Wh./Bi. 4-Wh.

Pr-dr Lab. - 10 - - - - -
Rx-dr Driving ~4.2 kms 7 - 9 35 (Max. 40) 18 - 22 0 - 6 / 10 m2 0 - 3 / 10 m2 0 - 2 / 20 m2

By-dr Driving ~5.5 kms 7 - 10 40-45 15 - 25 6 - 10 / 10 m2 3 - 6/ 10 m2 2 - 4 / 20 m2

Rt-dr Driving ~2.5 kms 3 - 4 30 - 35 10 - 15 0 - 4 / 10 m2 0 - 2 / 10 m2 0 - 1 / 20 m2

Po-dr Lab. - 5 - - - - -
Legends: Pr-dr: Pre-driving; Rx-dr: Relax Driving; By-dr: Busy Driving; Rt-dr: Return Driving; Po-dr: Post Driving; 
                 Lab.: Laboratory; min: Minutes; Kmph: Kilo meters per hour; Ped.: Pedestrian Count; 2-Wh.: Two Wheeler  
                 Count; Bi.: Bicycle Count; 4-Wh.: Four Wheeler Count
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2.4. Annotation of Scenarios based Data
Inferring from the driving scenarios and routes followed for 
data collection we annotated the data in two categories (a) 
affective state data and (b) stress-trends data. We sought 
feedback from drivers and based on their perceptions about 
the routes and the expected level of stress experienced by 
them, assigned affective state data into four different stress 
classes and annotated them as Level-1, Level-2, Level-3 and 
Level-4. The Level-1 stress level here refers to the data 
collected during pr-dr and po-dr driving scenarios. The other 
three classes have been shown as underlined numbers (2, 3
and 4) in the Figure 2 depending on the likelihood of a 
particular affective state level. The routes with minimum 
pedestrian density and driving effort were given a scale of 2 

whereas a scale of 3 was given to the routes with a slightly 
higher traffic and pedestrians. Since the scenarios belonged 
to a semi-urban setup, we assigned a scale of 4 for the routes 
with busy driving scenario. Due to the semi-urban 
demography, the Level-5 class of Very High stress level was 
not considered, which the drivers would have experienced 
while driving on a very busy highway with voluminous 
traffic for longer duration or typically in a metropolitan city. 
The stress-trend data has been annotated according to the 
event markers encountered during drive only and has been 
presented in Table 2 alongwith their weight scores as well as 
in Figure 2 at appropriate locations with their abbreviated 
names.

Figure 2. Driving Scenarios Route Map. 
Table 2. Stress-Trend Markers and their Weights (Inset: Road route map for Rx-dr, By-dr and Rt-dr) 

Stress-Trend 
Markers

Abbreviations Weight Score

Left Turn LT 1 = less (low); 2 =  more than 1 (medium) and 3 = greater than 2 ( slightly high effort) 
Right Turn RT 2 =  approx. same as 2 of LT (medium) and 4 = slightly higher effort required than the 3 of LT
Left-to-Right 
Circle

LRC 1 = less (low); 2 =  approx. same as 2 of LT (medium) and 4 = slightly higher effort required than the 3 of LT 

Speed Breaker SB 1 = less (low); 2 =  more than 1 (medium) and 3 = greater than 2 ( slightly high effort) 
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3. Data Analysis Methodologies  

3.1.  Signal Processing: Pre-processing and 
Normalization 

GSR and PPG biosignals are often associated with 
instantaneous body response to startle, sudden shocks and 
excitatory stimuli like events often experienced during real-
time driving. The dynamic nature of the scenario of data 
acquisition and changes in sensor orientation/tissue interface 
results in motion artifacts, impulse noise, sensor baseline-
drifts (low frequency errors) and sensor noise (high 
frequency error). These effects are undesirable and have to 
be corrected for in physiological signals prior to their 
applicability in feature extraction for describing the subject's 
stress level. A time window of 10 seconds (320 samples) 
was chosen and due care was taken to compensate for the 
overlaps between the current, preceding and succeeding 
windows. The choice of the window size is motivated by the 
observation that a typical GSR response waveform has a 
time span of about 10 seconds. Such a typical waveform is 
illustrated in Figure 3. The collected signals were median 
filtered with a filter of order 3 (for GSR) and order 4 (for 
PPG) for removal of spikes and impulse noise and baseline 
drift corrected by de-trending.  

GSR and PPG signals are influenced by life-style 
parameters and their base-line DC value during the 
experiment is subjected to their activity prior to the 
experiment. However, since incremental changes are often 
associated with only changes in the signal response and not 
its absolute value, signal normalization is often advocated as 
a reliable pre-processing stage prior to feature extraction. 
Thus, the filtered physiological signals are min-max 
normalized using the minima and maxima extracted from 
the 30-60 second signal window of the Pr-dr scenario 
(Lowest Stress). 

3.2. Signal Processing: GSR

In particular, GSR signal is associated with the 
physiological response controlled by the sympathetic 
nervous system and is measured as function of sweat gland 
activity. The GSR signal is decomposed into constituent 
tonic and phasic components which correspond to response 
over an extended duration of time and short duration of time 
respectively16. The tonic component is extracted by low pass 
filtering the normalized GSR signal using a Butterworth 3rd 
Order Low-pass filter with a cutoff frequency of 0.16 Hz. 
The phasic component, on the other hand, is extracted using 
band-pass filtering using a Butterworth 3rd order filter with 
a pass-band of 0.16 Hz to 2.1 Hz. The features extracted 
from each of these decomposed signal components is 
discussed and tabulated in Table 3. Further, the feature 
extraction process entails peak and point of onset detection 

which are extracted from the GSR signal using a 
combination of Central Difference 1st Derivative and 
Ktonas' 7-point Lagrangian 2nd derivative as illustrated by 
Zhai et al.18. Signal points corresponding to zero-crossing in 
the first derivative and minima in the second derivative were 
considered as possible peak coordinates. The minimum 
peak-to-peak interval is 0.5 seconds and multiple peaks 
within this interval were eliminated in favor of the GSR 
peak with the highest signal amplitude. 

Figure 3. GSR and PPG Syntactic Features during Busy Driving.

3.3. Signal Processing: PPG  

For signal analysis associated with PPG, the signal peaks 
lost due to motion artifacts are corrected using geometric 
reconstruction of lost peaks by sub-segment replacement 
using cross-correlation detection method as used by Weng 
et.al.19.  This is followed by peak and trough detection in the 
reconstructed PPG signal for calculation of the 
instantaneous heart rate and the corresponding NN interval 
for feature extraction from HRV (Table 3). The peaks in 
PPG signal correspond to local maxima and troughs 
correspond to local minima and these values have been 
associated with the occurrence of systole and diastole in the 
heart beat. The minimum peak-to-peak and trough-to-trough 
interval is 0.5 seconds and peaks and troughs within this 
interval is eliminated in favor of peak with absolute 
maximum value and trough with the absolute minimum 
value. These peaks and troughs were finally utilized to 
extract instantaneous heart rate (HR) and HRV Linder et 
al.20. These direct and derived signals were used to extract 
physiological features as described in the next subsection. 
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3.4. Feature Extraction and Selection 

Since in our study, we are relying on the features derived 
from the sensed physiological signals due to their clinical 
significance and established use in identifying stressful 
events. We extracted features categorized as (a) statistical 
characterizes stochastic nature of physiological signals  
(b) syntactic  derived from geometry of signals and provide 
contextual structural information and (c) transform based 
derived using signal transformation techniques21. This 
resulted in a total of 39 features shown in Table 3 with their 
mathematical formulae. The syntactic features extracted 
from GSR and PPG signals have been shown in Figure 3.  

The extraction algorithms involved have been discussed 
in Singh et al.11. The importance of statistical features in 
physiological signal processing was reported by Lessard22. 
The feature extraction methodology and clinical significance 
of GSR features was investigated by Healey and Picard7,
Schmidt and Walach16 and Soleymani et al.23.
Researchers[19,20,24,25,26] have discussed the importance of

   Figure 4. Feature Selection Techniques Adopted. 
PPG features and reported about their suitability in such 
applications. Certain clinically significant parameters like 
pulse, heart rate (HR) and heart rate variability (HRV) etc. 
have been successfully extracted by[13,20] from the 
morphology of the pulsatile component of PPG signal. 
These features were found by[18,27,28], to be as reliable 
parameters, useful in mental health monitoring of a subject. 
After these feature extraction routines, each signal segment 
produced an array of 39 features which constitute the feature
vector for that particular time segment.  

To select attributes from the feature set that are critical 
and relevant to represent the problem in a regression or 
classification model, we adopted the techniques depicted in 
Figure 4. The feature vector was passed to a variance filter 
and an entropy filter separately, their combination is known 
as filter based feature selection. The cutoff for feature 

selection was fixed at greater than 15 percentile for entropy 
filter and 10 percentile for variance filter. The output of 
these two filters were ANDed to obtain a new feature set 
resulting in total 26 features whose score were equal and 
above 70%.  

The wrapper based feature selection method is a 
combination of sequential forward selection (SFS) and 
sequential backward selection (SBS) where features are 
added and removed in sequence to meet an objective 
criterion respectively. The SFS and SBS also resulted in a 
number of features which were again compared with the 26 
features computed from filter based approach and finally we 
were able to select 27 features which had a score of again 
70% and above. Finally, we added an ad-hoc feature mask 
based on our literature survey to ensure that no clinically 
significant feature was lost. We obtained a total of 30 
features after ORing the ad-hoc feature mask with that of the 
filter and wrapper based methods, tabulated in Table 3. 
 Extracting only the selected features ensures reduced time 
overhead and optimal usage of computing resources.
Further, this hybrid combined approach ensures maximal 
preservation of information (both clinical and classifier-
performance driven) as the removed features are redundant 
and noisy. Table 3 shows the 30 selected features which 
were found to be significant after the feature selection 
routine (in the abbreviations column as italicized and 
boldface), also the individual features selected by each 
algorithm is shown in columns A-D, whereas F shows the 
final selection. The concatenated matrix (feature vector 
matrix) of these 30 feature vectors was used for further 
classification. 

3.5. Artificial Neural Network (ANN)  

Artificial Neural Networks (ANNs) are mathematical 
models based on biological network model of a human brain 
used to solve pattern classification problems by providing an 
input pattern as a feature vector to one of the target classes29.
In applications where training features exhibit non-linearity 
and the decision boundaries are modeled as a non-linear 
function in the feature space, ANNs would be a preferred 
classifier30. ANNs also works reliably with noisy data and 
can model both categorical and continuous features31,32.
Since it is possible that there may still be some noise present 
even with required signal processing and due to the non-
linear nature of data collection, selection of ANN classifiers 
is justified. The observations and interactions of the 
experimenter with the drivers led to model the present 
stress-classification problem as a multiclass classification 
problem33, (Level-1 to Level-4 as discussed in Section 2.4) 
instead of a binary class of just low or high stress class. 
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Table 3: Extracted Features and Formulae

No. Feature Name Abbreviation Description/Formula A B C D F

GSR Statistical Features
1 GSR Mean22 GM ; where xi is signal value and N is number of samples
2 GSR Energy22 GE ; where fs is signal sampling frequency

3 GSR Time Duration22 GTD × ×

4 GSR Bandwidth22 GB × ×

5 GSR Time Bandwidth 
Product22

GTBP × × × ×

6 GSR Dimensionality22 GD × ×
GSR Syntactic Features

7 GSR Peak Rise Time 
Sum16

GPRTS Peak Rise time = Time of Occurrence of Peak - Time of Point of Onset

8 GSR Peak Amplitude 
Sum16

GPAS Peak-Amplitude = GSR value at Peak- GSR value at Point of Onset × × ×

9 GSR Peak Energy Sum7 GPES Peak Energy = 0.5 * Peak Amplitude * Peak Rise Time ×
10 GSR Half Recovery Sum16 GHRS Half-Recovery Time =  Time of Occurrence of Half Amplitude- Time 

of  occurrence of Peak
× × × × ×

11 GSR First Derivative 
Average7

GFDA Average First Derivative= Average of the First Derivative observed in 
the given segment

× × ×

12 GSR Rise Rate Average23 GRRA Average Rise Rate = Sum Average of 1st derivative of points with 1st

derivative > Positive Threshold (0.025)
× × ×

13 GSR Decay Rate 
Average23

GDRA Average Decay Rate = Sum Average of 1st derivative of points with 1st

derivative < Negative Threshold (-0.025)
× × × ×

14 GSR  % Decay23 GPD GSR Percentage Decay = Percentage of Time samples in given 
segment with 1st derivative < Zero (0).

×

15 GSR No. of Peaks GNP Number of peaks in a given segment. × ×
PPG Syntactic Features

16 PPG Rise Time20 PPGRT Average of (Time of Peak- Time of Preceding Trough) in a segment ×
17 Pulse Height Min.24 PPGPHmin Maximum and Minimum  of  (Value of PPG peak- Value of PPG 

trough) in a segment18 Pulse Height Max.24 PPGPHmax
19 PPG Fall Time20 PPGFT Average of (Time of Trough- Time of Preceding Peak) in a segment ×
20 Cardiac Period20 PPGCP Average of Period of PPG signal in a segment × × × ×
21 Inst. HR[25-26] PPGIHR 60 / (Time Difference between two consecutive peaks) ×

HRV Spectral Features derived from PPG
22 PPG Spectral HR PPGSHR 60* Frequency maximum in range of 0.5-2.5 Hz in HRV spectrum
23 Respiration Rate27 RSP 60* Frequency maximum in range of 0.1-0.25 Hz in HRV spectrum ×
24 V. Low Freq. Power25 VLFP Power in range of 0.003-0.04 Hz in HRV spectrum × × × ×
25 Low Freq. Power25 LFP Power in range of 0.04-0.15 Hz in HRV spectrum ×
26 High Freq. Power25 HFP Power in range of 0.15-0.4 Hz in HRV spectrum ×
27 LF/HF Ratio25 LFHF LF Power/ HF Power

HRV Statistical Features derived from PPG
28 AVNN28 AVNN Mean of all NN intervals
29 SDNN28 SDNN Standard deviation of all NN intervals
30 rMSSD28 rMSSD RMS of the sequential differences of the IBI calculated for the whole 

trial
×

31 pNN2028 pNN20 % of the number of sequential IBI differences that are over 20 ms ×

32 pNN5028 pNN50 %  of the number of sequential IBI differences that are over 50 ms × × × ×
PPG  Statistical Features

33 PPG Mean22 PPGM Expression same as GM ×
34 PPG Energy22 PPGE Expression same as GE
35 PPG First Moment22 PPGFM PPG Mean (PPGM) about the origin × × × ×
36 PPG Time Duration22 PPGTD Expression same as GT ×
37 PPG Bandwidth22 PPGB Expression same as GB × × × × ×
38 PPG Time Bandwidth 

Product22
PPGTBP × × × ×

39 PPG Dimensionality22 PPGD × ×
Legend: GSR- Galvanic Skin Response; PPG- Photoplethysmography; IBI- Inter Beat Interval; A: Filter based method; B: SFS; C: SBS; D: Literature; 
F: Final Selection; cted; ×: Not Selected; The abbreviations shown as italicized indicate the features which were actually selected after the feature 
selection algorithm.
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The stress-classification neural network consists of an input 
layer, which takes in an input feature vector representing the 
affective state of drivers, a hidden layer to model the non-
linearities in data and an output layer to predict the target 
affective state class34. Such networks employ a connectionist 
approach to compute the interconnection weights and bias 
parameters which produce the most optimal configuration35. 

3.5.1. Neural Network (NN) Classifier Configurations 
Evaluated 

The classification of the annotated data into pre-defined 
affective states i.e. Level-1 to Level-4 is achieved using the 
six different NN classifiers as explained in Table 4. Besides 
the affective state, the stress-trends will have cumulative 
effect on stress level of the drivers. Therefore detection of 
annotated stress-trends with minimal false alarm is 
necessary. The proposed approach to perform an instant-by-
instant tracking of alarmable trends is discussed in Section 
3.7. The feature vector is divided in the ratio of 60:20:20 for 
training, cross-validation and testing respectively for 
training the NN. 

An activation function in a neural network calculates the 

subsequent layers as input34. The activation function used in 
the present application is the tan-sigmoid function. For a 
very high value of x, the node sends maximum excitation 
i.e. 1. 

Where x=combined input to node. 
The NN configurations enunciated above utilize back 

propagation technique for learning. This method utilizes the 
gradient of error criterion with respect to weights for a given 
input by propagating the error through the networks. The 
optimization scheme used is the Levenberg-Marquardt 
Optimization Scheme. It is a variation of gradient search 
which employs the least squares criterion for optimization. 
The neural networks were trained with a stopping criterion 
on 0.05 MSE with no restriction on the number of epochs. 
The classifier optimality is evaluated using the performance 
measures described in the following sub-section. 

3.5.2. Classifier Performance Measures  

The expected output of 4-class classifiers will result in 
confusion matrices of size 4x4. The confusion matrix of a 
binary classifier represents the number of true positives (tp), 
true negatives (tn), false positives (fp), and false negatives 
(fn). However for multiclass problems it is necessary to 
account for the individual class results for efficient 
interpretations. Therefore to understand the quality of 
classifications we consider an individual class Ci, where i =
1,2,3,....,n are the number of classes, and used macro-
averaging techniques33 to define the classifiers performance 
measures explained in Table 5. 

Table 4: Neural Network Classifiers Evaluated 
S. 
N.

Neural Network 
Classifier

Description

Feed-forward Neural Network: Provide one-way connection from input to output layers and are used in prediction and pattern recognition problems34.
1. Multi-Layer Perceptron 

(1-Hidden Layer) 
Neural Network 
(MLP1NN)

The MLP has a fully-connected network structure which enables the pattern of activation in a particular layer at each 
time step to influence its behavior in the next time step. We envisaged that there might be some inherent overlap 
between medium, moderate and high affective states data of drivers. Thus, the classifier should be capable of handling 
non-linearities. The MLP has been found to be capable of being trained in a highly non-linear separable classification 
problems like the present scenario provided sufficient number of neurons in the hidden layer34.

2. Cascade Forward 
Backpropagation Neural 
Network (CASFNN)

CASFNN has connections from the input layer to every previous layer with other characteristics similar to MLP. 
These networks are trained faster because each neuron is trained independently but may suffer from over fitting 
problems when the training data used is noisy36. The choice of this network for evaluation was made to achieve faster 
training time with acceptable classification rate.

3. Feed Forward Time-
Delay Neural Network 
(TDNN)

TDNNs are also similar to MLPs but the inputs to a node also contain some previous time steps realized using tapped-
delay lines besides the immediate outputs of previous nodes. These networks can learn precise weight patterns from 
imprecisely prepared training data37 and trains faster because the tapped delay line appears only at the input without 
any feedback loops. These networks were chosen because they are suitable for time series data prediction, which in 
this case are the selected features representing the present affective state of the driver. We evaluated two separate 
configurations of this network FFTD-D1NN and FFTD-D2NN with two separate time delays d1 and d2.

Dynamic or Recurrent Neural Network: Useful in time-series prediction and non-linear dynamic problems. They have dynamic neurons, memory and 
recurrent feedback connections making them suitable as context-aware NNs. 
4. Elman Back-

Propagation Neural 
Networks (ELMNN)

Elman Networks have a recurrent layer with feed-forward structure. Recurrence simplifies the learning process by 
allowing the networks to remember states from the past. The context layer copies the output of the layer and uses it as 
an extra input signal in the next time step in addition to the hidden layer38. In the present context it is necessary to 
check how the reduced complexity in the design affects the predictive ability. Therefore ELMNN was selected. 

5. Layer Recurrent Neural 
Networks (LRNN)

LRNNs are similar to ELMNNs but each recurrent layer has a tapped delay associated with it. LRNN is useful in 
evaluating the instances correctly because the outputs depend not only on the current inputs but also on previous states 
due to the feedback available which enables moving window analysis39. The recurrency facilitates the design of a 
dynamically stable stress classifier due to the presence of delay elements to model the latencies observed in stimuli 
during the driving process.
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Table 5: Classifier Performance Measures 

Evaluation Metric Formula Importance
Precision Measure of exactness or fidelity33 (correctly identified 

instances of a relevant subset)

Sensitivity The ability of a test to correctly identify positive results33

Specificity The ability of a test to correctly identify negative results33

Accuracy Overall classification accuracy33

Area Under the 
ROC Curve

Trade-off parameter between sensitivity and specificity. 
AUC value range between 0 and 1.040. For multiclass 
classification, averaged AUC is computed by considering 
the one-against-all configuration41 (i.e. a c-dimensional 
classifier as c 2-dimensional classifiers).

Kappa Statistics

Where:
P(a) = Relative observed agreement among the classes
P(e) = Probability that agreement is due to chance.

Measure of inter-observer reliability. 
kappa coefficient42 - 0.20 = slight, 0.21 -
0.40 = fair, 0.41 - 0.60 = moderate, 
0.61 - 0.80 = substantial, and 0.81 - 1.0 = almost perfect.

3.6. Affective State Classification  
While designing an affective state NN classifier, it is 
important to select a proper window size for optimal 
performance43. Another important aspect in designing such 
networks is selection of the number of hidden neurons. The 
"fixed" approach suggested by Kaastra and Boyd44 is best 
suitable for offline computation despite being time 
consuming, where a group of networks are trained using 
different number of neurons. The network satisfying the 
least error criterion is selected finally. It should be also 
noted that to avoid overfitting and since we wanted to 
compare a set of NN classifiers we stuck to just a single 
hidden layer44.

The concatenated matrix of feature vectors extracted 
earlier alongwith the target vector (representing the stress-
classes) were fed to the classifiers selected. The output of 
the classifiers was expected to be a confusion matrix 
representing interrelationships between the bio-signal 

stress-class. The real challenge while analyzing the results 
for such a multiclass classification problem lies in selecting 
(a) a proper window size (b) the number of neurons in the 
hidden layer and (c) an optimum classifier which best 
recognizes the given classes out of this data which is 
dependent on several parameters. To incorporate this, the 
training protocol for each NN classifier involved (a) varying 
non-overlapping window sizes (5 seconds - 30 seconds) (b) 
varying number of neurons (5 - 30) and (c) training the six 
selected network configurations and extracting evaluation 
metrics for each combination. Besides these requirements 
the classifiers should consistently provide a solution for a 
large population among the selected drivers. Therefore, a 
two-fold analysis was performed to meet this requirement. 
Out of the total 20 drivers, data from 14 drivers were used 

for single-turn analysis. This is because during the data
collection experiment, for 6 drivers either the physiological 
data was lost due to the machine errors or misinterpreted by 
the experimenter and also in some cases the stress-trend 
markers were not recorded which is important for 
correlating between affective state and stress-trend detection 
phases. 

3.6.1. Single- Turn Analysis 

The single-turn analysis aims at identifying the optimal 
network configuration with the least inter-observer 
variability and consistent performance. This method is 
proposed if the driver assist system designer aims to adopt a 

engine. The single-turn analysis was performed using the 
following steps: 

obtained the average of classifier performance 
measures (e.g. precision, sensitivity and specificity 
etc.) for each window size (5 to 30) against the six 
neurons values (5 to 30) selected for each of the six 
classifiers. 
obtained the individual desirability45 for each of the 
classifier performance measures using their 
averages obtained, for maximizing a response using 
the formula shown in Eqn. (1). 
the individual desirability so obtained were used to 
find the optimum window size, number of neurons 
in hidden layer and the classifier. Further, the 
individual desirabilities obtained for each window 
size were used to obtain an overall desirability  
Eq. (2). The maximum of the individual 
desirabilities is tabulated in Table 7. 
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                               (1)

     (2) 

____________________________________________________________________________________________________ 
where 

r = user defined value (r = 1, desirability increases linearly) 

3.6.2. Multi - Turn Analysis 

Multi-turn analysis was performed to assess whether drivers 
will have similar effect on their stress levels with same set 
of experimental protocol and scenarios if they drive multiple 
times. This analysis aims to identify the most optimal NN 
configuration for a particular driver which has the least 
intra-observer variability and high reliability. This analysis 
approach is to be adopted if the driver assist system designer 
decides to port driver-specific individualized classifiers into 

collected from six drivers depending upon their availability. 
This varied data acquisition states and times ensured the 
required variability which is necessary for an unbiased 
analysis. In this case since the number of turns each driver 
completed varied, desirability function approach can not be 
applied to get the optimum classifier. Therefore, individual 
feature vector for the respective multiple drives was trained 
as discussed earlier. The average values for four cardinal 
classifier performance measures (precision, sensitivity, 
specificity and classification accuracy) were computed for 
each window size (5 to 30) against the six neurons values (5 
to 30) for each of the six classifier configurations. To find a 
best fit among the classifiers used for affective state 
monitoring, we have compared variables such as window 
size and the number of neurons in the hidden layer against 
the classifier evaluation parameters. 

3.7. Stress-Trend Analysis 

During real-time driving, changes in physiological signal 
base level, morphology, frequency characteristics and 
statistical parameters are often attributed to instantaneous 
reflexes and stimuli caused due to stress-trends. Real-time 
detection of such stressful events would help the machine 

assess the effect of these stimuli on the accumulation of 
driver stress. Typical stress-trends observed in the driving 
route has been shown in Figure 2, whereas in Table 2 the 
annotation of stress-trend markers and the rationale behind 
the weighing methodology has been tabulated. 

For applications which require real-time monitoring of 

Variable (TTV) approach has been a very popular 
choice11,46,47. The TTV value is a signal detection index and 
is calculated using the difference between the actual value of 
a feature and the value predicted using the exponential 
weighted moving average of the previous values. The TTV 
value can be used to determine and track stress-trends in a 
feed-forward manner through online monitoring of 
variations in the observed signals as the absolute value 
indicates the significance of the change observed. TTV takes 
values between -1 to +1 which corresponds to 100% 
certainty of decreasing and increasing trends in the tracked 
feature48. The mathematical description of TTV calculation 
in the form of pseudocode algorithm is presented in Table 6. 

crucial which determines the time constant for exponential 

n =

in patterns while estimating the current value of 
observations. A tracking vector comprising of the TTV 
values of individual features is generated49 for 10 different 

changes in the physiological signal at different time-scales. 

analyzing the incremental changes. These individual 
tracking vectors adaptively track the incremental changes in 
the feature values and is used as the input vector to train the 
neural network classifiers selected for stress-trend detection. 
We evaluated four neural network classifiers using the 
similar approach followed for affective state detection by 
using six different numbers of neurons (5 - 30) in the hidden 

ere trained as a 
regression problem using a stopping criterion of the mean 
square error value (MSE) of 0.0.  

4. Results 

The results obtained from both the single-turn and multi-
turn analysis for affective state detection and for the stress-
trend detection has been discussed individually in the 
following subsections.  
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Table 6. Algorithm Pseudocode for TTV calculation
Algorithm ttv  :=
Inputs
Dt  := array of feature values observed

:= smoothing constant; between 0.0 and 1.0 which determines the time constant for exponential weighting.
Output
ttv 
Begin:
Initialization
ut-1 := vav                                                                   ; exponentially weighted avg. of 1st monitoring segment
st-1 := vav /100                                     ; initial error in prediction for the 1st segment 
madt-1:= vav /10                                  ; initial mean absolute deviation
Main Routine 
S1:ut := t+(1- t-1                                    ; predicted value for present segment
S2:et := dt-ut-1                                                     ; error in prediction
S3:st := t+(1- t-1                          ; smoothened error
S4:madt := t| + (1- t-1               ; mean absolute deviation 
S5 ttvt := st /madt                                              

th segment
Updation
ut-1:= ut;
st-1:= st;
madt-1:= madt;;

End  
4.1. Results: Single-Turn Affective State Analysis 
The output of the classifiers resulted in confusion matrices 
of size 4x4 for each window size and the neurons, which 
was used to calculate the classification performance 
measures for a particular NN configuration. It can be 
noticed from Table 7 that to get an optimum window size 
we can get a trade-off by considering all the variables and 
evaluation parameters. The degree of suitability of a 
classifier depends on its predictive ability (precision), 
identification of true positive rates (sensitivity) and true 
negative rates (specificity) which is satisfied in this case 
with a reasonable desirability criterion while maximizing a 
response. Although a higher percentage of specificity may 
sound unwarranted but it may be noted that identification of 
false alarm is as much important as the identification of true 

alarms. Hence we have two options (i) CASFNN (window 
size, WS = 25 and no. of neurons, N = 25) and (ii) MLP1NN 
(WS = 30 and N = 25). This selection is vindicated from the 
boxplot diagram (Figure 5) of performance measures for the 
selected classifier configurations from Table 7.  The 
interquartile ranges (IQR) for CASFNN  
(WS = 25 and N = 25) configuration is symmetric about the 
median for almost all performance measures except for the 
AUC. Additionally the median for this configuration is also 
above all the configurations. Whereas for the MLP1NN  
(WS = 30 and N = 25) configuration has inconsistency due 
to the variable IQRs and presence of outliers. 

Table 7. Optimum Window Size Selection for Single Turn Drives 

Window Size 
(Seconds)

Overall 
Desirability

No. of Neurons 
in

Hidden Layer

Optimum 
Classifier

Mean 
Precision

Mean 
Sensitivity

Mean 
Specificity

5 0.99957 30 CASFNN 71.20% 69.80% 91.35%
10 0.96078 30 FFTD-D1 72.58% 70.69% 91.90%
15 0.98911 25 CASFNN 72.94% 72.59% 92.10%
20 0.98248 30 MLP1NN 75.85% 72.83% 92.10%
25 0.98455 25 CASFNN 77.94% 78.20% 93.73%
30 0.97329 25 MLP1NN 76.01% 75.38% 92.96%
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4.2. Results: Multi-Turn Affective State Analysis 
Table 8 presents the results obtained by considering the 
individual averages for six drivers according to the number 
of turns completed. The maximum value of performance 
measures for each drivers is highlighted. Although, the 
results obtained can not be termed as unique but the 
observations from the multi-turn analysis can be 
summarized as below: 

the window size can be fixed between 15 to 30 with 25 
being most suitable. 
the number of neurons in hidden layers can be fixed as 
either 25 or 30. 

the CASFNN classifier performs better as compared to 
others with MLP1NN being the second choice. 
the effect of number of turns have a little effect on the 
results obtained as almost all the performance measures 
have standard deviation very close to their means.  
the classification accuracy is close to 80% which was 
also obtained for single-drive for the configuration  
CASFNN (WS = 25; N = 25). 

Considering only the overall cardinal performance 
measures it is clear that an appropriately configured and 
trained CASFNN classifier could be better choice in the 
proposed application. 

Table 8. Multi-Turn Analysis considering Individual Averages
Drivers
(No. of 
Turns)

Performance
Measures

CASFNN
(WS=5; N=30)

FFTDD1NN
(WS=10; N=30)

CASFNN 
(WS=15; N=25)

MLP1NN
(WS=20; N=30)

CASFNN
(WS=25; N=25)

MLP1FNN
(WS=30; N= 25)

Avg. STD Avg. STD Avg. STD Avg. STD Avg. STD Avg. STD

D1
(5)

Precision 68.21% 7.80 68.12% 9.70 65.81% 12.94 73.90% 7.72 75.10% 8.48 69.87% 16.65
Sensitivity 64.86% 9.28 66.64% 8.99 63.55% 15.86 71.61% 8.87 72.86% 12.86 69.61% 16.86
Specificity 90.25% 2.89 91.50% 2.47 89.57% 4.99 92.22% 2.41 92.24% 4.09 91.48% 5.31

Class. Accu. 76.80% 6.04 74.40% 7.36 75.50% 8.36 79.98% 7.26 78.38% 10.44 76.30% 15.99

D2
(5)

Precision 74.44% 11.51 72.27% 6.25 74.95% 9.29 81.52% 2.60 76.02% 2.86 74.62% 10.84
Sensitivity 73.04% 10.73 69.03% 9.25 74.46% 9.55 81.19% 2.93 76.38% 2.93 73.96% 12.50
Specificity 92.27% 3.42 91.47% 2.36 92.87% 2.69 94.57% 0.80 93.19% 0.84 92.16% 3.84

Class. Accu. 76.82% 9.91 74.88% 5.60 78.30% 7.84 83.25% 2.33 78.64% 2.50 76.17% 11.34

D3
(5)

Precision 71.71% 5.06 71.89% 3.57 77.63% 3.15 74.17% 5.18 74.93% 3.38 76.15% 3.96
Sensitivity 71.26% 5.37 70.65% 3.53 77.64% 3.71 73.18% 7.14 74.30% 3.55 74.40% 2.96
Specificity 91.77% 1.62 92.06% 0.75 93.40% 1.03 92.42% 2.04 92.74% 1.30 93.05% 0.94

Class. Accu. 75.03% 5.06 75.89% 2.42 80.01% 2.67 77.52% 5.17 77.86% 4.08 78.61% 2.67

D4
(4)

Precision 71.38% 7.59 71.89% 6.22 75.35% 3.02 78.66% 0.48 78.99% 4.77 74.06% 6.25
Sensitivity 69.20% 6.96 71.63% 7.24 75.63% 1.70 76.33% 1.19 77.82% 3.87 74.45% 7.27
Specificity 93.17% 3.60 92.05% 1.74 92.76% 0.32 93.03% 0.64 93.76% 1.11 92.99% 1.18

Class. Accu. 80.01% 12.18 75.97% 5.04 77.69% 1.12 79.79% 1.82 81.36% 3.37 78.16% 3.83

D5
(3)

Precision 63.13% 9.66 74.19% 3.84 74.49% 6.87 75.74% 2.94 68.71% 22.52 77.52% 14.29
Sensitivity 62.79% 9.31 72.72% 4.34 72.77% 8.83 75.17% 2.69 66.94% 26.33 78.32% 14.24
Specificity 89.20% 3.27 92.48% 1.53 91.81% 2.66 92.68% 0.95 89.85% 8.60 95.42% 4.53

Class. Accu. 67.28% 9.44 76.87% 4.22 75.30% 8.08 77.48% 3.08 68.57% 26.37 86.01% 14.25

D6
(2)

Precision 59.83% 9.29 63.14% 1.08 64.87% 15.79 73.56% 9.05 79.02% 0.12 77.16% 5.68
Sensitivity 59.01% 8.15 57.89% 6.75 65.32% 15.05 73.52% 8.15 79.66% 0.49 73.63% 5.09
Specificity 87.93% 3.28 87.26% 2.96 90.66% 3.89 92.39% 2.83 94.05% 0.06 92.56% 2.17

Class. Accu. 63.79% 10.81 65.07% 4.77 71.55% 11.43 76.70% 8.78 81.58% 0.20 78.43% 6.62

Legend: 1 = CASFNN (Window Size = 05; No. of Neurons = 30); 2 = FFTD-D1 (Window Size = 10; No. of Neurons = 30)
               3 = CASFNN (Window Size = 15; No. of Neurons = 25); 4 = MLP1NN (Window Size = 20; No. of Neurons = 30)
               5 = CASFNN (Window Size = 25; No. of Neurons = 25); 6 = MLP1NN (Window Size = 30; No. of Neurons = 25)

Figure 5: Boxplots of Performance Measures for Single Turn Drives
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Table 9. Optimum Classifier for Stress-Trend Detection 

S.N. Alpha
CASFNN

MSE
(R-Value)

MLP1NN
MSE

(R-Value)

FFTD-D1NN
MSE

(R-Value)

FFTD-D2NN
MSE

(R-Value)

No. of 
Neurons

Optimum 
Classifier

1. 0.6670 0.005505 
(0.997998)

0.011999
(0.995686)

0.007465 
(0.997007)

0.0084 
(0.996921) 25 CASFNN

2. 0.5000 0.012149
(0.995332)

0.00812 
(0.996949)

0.012331 
(0.995857)

0.010361 
(0.996349) 30 MLP1NN

3. 0.4000 0.005247 
(0.997968)

0.016963
(0.993788)

0.011403
(0.995845)

0.008055
(0.996903) 25 CASFNN

4. 0.3330 0.015521
(0.994667)

0.009856
(0.996518)

0.022055
(0.991536)

0.008408 
(0.997135) 25 FFTD-D2NN

5. 0.2850 0.009346 
(0.996387)

0.019854
(0.992524)

0.014407
(0.994964)

0.017403
(0.994163) 20 CASFNN

6. 0.2500 0.024556
(0.989857)

0.008048 
(0.996968)

0.015601
(0.994842)

0.010163
(0.996148) 25 MLP1NN

7. 0.2220 0.005128 
(0.998126)

0.01084
(0.996142)

0.015407
(0.994937)

0.012306
(0.996271) 30 CASFNN

8. 0.2000 0.008923 
(0.99697)

0.016781
(0.993525)

0.016469
(0.994497)

0.019968
(0.992459) 30 CASFNN

9. 0.1818 0.012568
(0.995154)

0.018661
(0.992761)

0.020861
(0.99242)

0.010468 
(0.99607) 30 FFTD-D2NN

10. 0.1667 0.011979
(0.995846)

0.01306
(0.994865)

0.024377
(0.990805)

0.02079
(0.992207) 25 CASFNN

4.3. Results: Stress-Trend Analysis 
It was observed that for all the classifiers the MSE values 
settled close to '0' for neurons greater than 15 and the 
CASFNN classifier has produced a trained data set with 
minimum MSE errors. However to obtain an optimum 
classifier, we compared the average values for MSE and R-

both the cases the CASFNN classifier gave best MSE and 
R-square values tabulated in the Table 9. The number of 
neurons in hidden layers can be either 25 or 30 for the 

can be used as the tuning parameter for stress-trend analysis. 
is inversely related to the time required to 

determine the stress-
has to be tuned higher (like in high stress scenario as 
inferred from affective state detection) and in a low stress 
scenario it has to be tuned down. Therefore it can be 
concluded that the CASFNN classifier alongwith a suitable 

5. Discussion and Concluding Remarks  

Design and development of a safety-critical wearable driver 
assist system needs an intelligent inference framework for 
assessment of stress experienced by the drivers under real-
time driving scenarios. This requires continuous monitoring 

-road stress-trends 
and cumulatively accounting for increasing stress level. 
Physiological signals viz. GSR and PPG were collected 
using a wearable signal acquisition unit. The driving 
scenarios were chosen to emulate a semi-urban driving 
setting with variability in the road structure, traffic 
composition and pedestrian density throughout the drive. 
 For the presented work, data was acquired and annotated 
from 20 drivers and a total of 38 driving turns, however 14 

driver's data was utilized for single-turn and stress-trend 
analysis whereas 6 driver's data (6+18 = 24) was analyzed 
for multi-turns. The overall methodology adopted in this 
work is summarized in the Figure 6. 

Figure 6. Driver Stress Level Analysis: The Complete Flow. 

A two-fold analysis approach viz. Single-Driving Turn 
Analysis and Multiple-Driving Turn Analysis was adopted 
to evaluate the classifier performance for affective state 
detection. These tested not only the accuracy of the 
classifier and inter-observer performance variability (single-
turn analysis) but also evaluated its potential to produce 
reproducible and reliable results i.e. intra-observer 
performance variability (multi-turn analysis). The single-
turn and multi-turn analyses are aimed at a universal design 
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and a driver-specific individualized design approaches 
respectively. The single-turn analysis established that the 
CASFNN configuration with 25 hidden neurons and a 
selected window size of 25 seconds performed most 
optimally minimizing the inter-observer variability with an 
overall accuracy of 80.61% with a standard deviation of 
4.15. The multi-turn analysis test for intra-observer 
variability reaffirmed that CASFNN configuration with the 
same configuration is the most optimal network 
configuration for designing individualized classifiers as 
well.  

To monitor instantaneous reflexes and stimuli 
experienced by the driver contributing to stress, we adopted 
a novel stress-trend analysis approach using Trigg's tracking 
variable. This stress-trend analysis was modeled as a NN 
regression problem and the observed results further 
established CASFNN configuration as the most consistent 
network with the least mean square error and maximal R-
value of over 95% for each of the identified stress trends. 
Porting and testing of this algorithm on a body-worn 
wearable computer can enable us to activate rescue and 
relaxation procedures in case of accidents and alarmable 
situations. 

The robustness of the developed algorithm will be 
further enhanced by training the WDAS using data collected 
from a larger representative population, by considering more 
hazard prone scenarios and longer real-time driving 
environments. For real-time testing and evaluation, this 
phase of work would be followed by porting of these 
algorithms on a wearable embedded test bed. Complexity 
minimization followed by resource optimization and 
ergonomic design would lead to a more economical and 
reliable compute-infrastructure for future wearable driver 
assist systems. 
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