
Received 13 March 2013

Accepted 29 March 2013

Software Fault Estimation Framework based on aiNet

Qian Yin
Image Processing and Pattern

Recognition Laboratory,
Beijing Normal University,Beijing,

China
yinqian@bnu.edu.cn

Ruiyi Luo
Image Processing and Pattern

Recognition Laboratory,
Beijing Normal University,Beijing,

China
luoruiyi2008@163.com

Ping Guo
Image Processing and Pattern
Recognition Laboratory,
Beijing Normal University,

Beijing, China
pguo@ieee.org

Abstract

Software fault prediction techniques are helpful in developing dependable software. In this paper, we proposed a
novel framework that integrates testing and prediction process for unit testing prediction. Because high fault prone
metrical data are much scattered and multi-centers can represent the whole dataset better, we used artificial immune
network (aiNet) algorithm to extract and simplify data from the modules that have been tested, then generated
multi-centers for each network by Hierarchical Clustering. The proposed framework acquires information along
with the testing process timely and adjusts the network generated by aiNet algorithm dynamically. Experimental
results show that higher accuracy can be obtained by using the proposed framework.

Keywords: software fault prediction, aiNet, testing, framework

1. Introduction

Software fault Prediction technology is very important
for software testing because it can effectively guide the
software testing and improve software quality. Lots of
techniques have been proposed to identify fault-prone
modules by classify the software modules1,2,3. The
classical prediction method is using software metrics
and fault data from a previous system or similar
software project developed previously4. The problem
arisen is that, the previous system or project has much
difference with the developing system, such as the
complexity, skill level of software engineers,
management level and so on. Therefore, some
researchers turn to use different methods to analyze the
developing system instead of previous system. However,
there are two problems for all researchers. One is how
to obtain higher accuracy; the other is how to obtain
prediction results earlier. In this paper, we propose a
novel prediction method to deal with those two
problems by introducing the artificial immune network
(aiNet) algorithm5 into the software fault estimation
framework. The compressed representation was chosen

from dataset to decrease computational complexity and
eliminate data redundancy, because the aiNet algorithm
does well in data expression. The prediction results can
be obtained in the very early stage of software life cycle,
because our framework can start prediction with little
prior data and the aiNet algorithm can adjust its network
dynamically with the data obtained increasing. The
experiment results show that higher accuracy can be
obtained by using the proposed framework.

The paper is organized as follows. In section 2, we
generally introduce the software fault prediction method.
In section 3, the framework using aiNet for software
prediction is introduced. In section 4, two experiments
are carried out on the dataset using this framework, and
the results obtained are also shown in this section.
Section 5 concludes this paper and gives some
suggestion for the future work.

2. Software fault Prediction

The software fault prediction technology can be divided
into static prediction and dynamic prediction. Static
prediction mainly predicts the fault distribution or
numbers based on software metrics data which relate to

International Journal of Computational Intelligence Systems, Vol. 7, No. 4 (August 2014), 715-723

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

715

fault. Dynamic prediction methods are mainly based on
the time to predict the fault distribution based on the
fault or defect generated time6,7,8,9. Our method belongs
to static prediction as we used software metrics for
prediction in our software prediction framework this
paper. Kitchenha, Basili, Khoshgoftaar have collected
and analyzed software fault data and software product
metrics, software technology (OO,Web) and other
metrics data relate with software progress and executed
process. They classify and using regression techniques
on those data. The result shows that the faults
distribution fits 2-8 principles. It needs classification
and regression technique to recognize and predict those
prediction prone modules. In learning problem,
classification belongs to pattern recognition problem,
which is to estimate indicator function (The indicator
function have the value only 0 and 1). However,
regression technique is used to solve regression function
estimation problem, that is, estimate real function.
Especially in software fault prediction, classify are
mainly used to verify whether the module are belong to
high-fault-prone or low-fault-prone. Regression
techniques are mainly used to estimate the fault number.

Those two technologies are used to guide the testing
process, to save the expensive time and review cost. In
this paper, like the classification method, we use
software metrics data for prediction, and our method
can also be improved to predict like regression
technique.

The most common classify technologies that we call
then qualitative classification are: linear discriminant
analysis(LDA)10, Boolean discriminant function(BDF)11,
classification and regression tree (CART)12, clustering
analysis(CA)13, support vector machine (SVM) and so
on. But unlike those classification methods, our method
starts earlier and using multi-centers drew by aiNet to
prediction.

3. The Estimation Framework based on aiNet

3.1 Review of aiNet Algorithm

Since the immune network theory has been proposed by
Jerne in 197414, and the colonel selection and affinity
maturation algorithms proposed by Burent, Ada &
Nossal in 198715, artificial immune systems(AIS) have
drawn much attention and inspired many interesting

Generate the Initial Network

Execute the Immune Response

Ag represent finished ?

Is finished the given iterations

N

output the memory network

Y

Persent next antigen

Replace the weakest
cells to rebuild the

network

N

Network suppression

Y

Clone the n% best antibody, the clone numbers
proportional to its affinity, delete others.

Calculate the affinity
between the antigen and all antibodies

Add the remain memory cells to the memory network
M = [M; m]

Mutation operation to the cloned antibodies
C = C - Cmi.*(C-Cag)

Re-calculate the affinity between the antigen and all
antibodies; Reselect the m% best antibodies

Clone suppression. Calculate the affinity between

memory cells, Delete those affinity inferior to s

Ag represent finished?

N

Delete the cells whoset affinity inferior to d
 The result cells are consider as memory cells

Fig. 1. Artificial Immune Network algorithm detail flowchart

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

716

algorithmic solutions in fields like clustering,
classification5,16, data mining, data compression etc.
aiNet algorithm, which is one branch of AIS, has the
general purpose of finding a compressed representation
of the input set, by eliminating redundancy of it. It
forms the network by considering the amount and
connectivity strength of antibodies and mirrors the
internal structure of the immune system17. In our
framework, the essence of the module metrics dataset is
drawn by aiNet continuously with the dataset growing
larger. Vectors that represent module metrics are
considered as foreign antigens here, and be gradually
present to stimulate the network.

During the stimulation process, some antibodies
owning the better ability in recognizing and eliminating
foreign antigens are transformed into long-life memory
antibodies. Because the immune system continually
produces novel antibodies and the set of memory cells
are continuously growing, to avoid the memory cells
increase without restrictions, non-stimulated and
self-reactive cells were eliminated along with the two
suppression process. Finally, certain worst individuals
will be replaced by novel randomly generated ones. And
more details about this algorithm have been described in
Refs. 5. There are also some variants18,19,20 of aiNet
have drawn and gain some achievements.

As shown in the figure 2 cited from Refs. 5, the
modules are considered as antigen, and each dim of the
software metrics are consider as the epitopes. We use
the modules to establish a memory cells’ immune
network. When a new module is generated, we judged it
belongs to the network that can recognize it mostly.
Also the real testing result will be considered as new
antigen and cause the immune response to adjust the

network. Epitopes, paratopes and idiotopes are related
with the suppression mechanism we also used. The
detail framework will be given in next section.

 Input: some exist models
 1. matrics(high-dimension).
 2. unit testing result of models.

Adjust or Generate
Sub aiNet Network
(high-fault-prone)

> degree_low

> degree_high

Y

Adjust or Generate
Sub aiNet Network

(medium-fault-prone)

Adjust or Generate
Sub aiNet Network
(low-fault-prone)

N

Y

N

Adjust aiNet threshold
 The sizes of three nets maintain a proper proportion

Get the metrics of
new developing class or models

Prediction (two method):
 1. suppose it belongs to the network with nearest
average dist of them.
 2. suppose it has a same category with the nearest
dist cells of the three network.

Get the actual testing result

Fig. 3. Prediction Framework Flowchart based on aiNet.

Fig. 2. B cell, antigen, antibody, epitopes, paratopes and idiotopes.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

717

3.2 Prediction Framework based on aiNet

Unlike the software reliability prediction with Elman
network21, the goal of software fault prediction contains
a high prediction precision, adjustable error rate which
predict low-risk module to high-risk module or on the
contrary, and the ability to adapt different software in
application. The framework we proposed tries to
achieve those goals.
As the flowchart shown in the figure 3, our framework
fits the real predicting and developing process. The
degree we defined in the figure related with fault prone
degree, the higher the degree, the more faults this
module may contain. Complete prediction framework is
as follows:

Generate three aiNet networks at first.
Initialize the network. Divide the first few modules

which have been developed and tested into three
classes based on testing result: low, medium, high
fault prone. Then, use them as antigens to initialize
the three networks respectively.
Predict which class the newly developed module
belongs to when a module is produced. The proper
testing resources can be assigned.
After obtaining the real testing result, feedback it to
the corresponding network timely and adjust the

network. Thus, it can be more accurate for the next
prediction

In the third step, there are two methods used to
predict the newly developed modules. One is Menu
Network Dist Prediction, which calculates the distance
between the new module and the three networks
respectively, like the Eq. (1). The new module belongs
to nearest class. The other is Cell Center Dist Prediction.
As the framework generate multi-centers for prediction
though aiNet, we calculate the distance to select the
nearest center. The new module has the same category
with the nearest center. This process is the Eq. (2).
Euclidean Distance is used in these two methods for
measure.

 (1)

 (2)

The last step of the framework is a learning and
feedback process which is along with the testing. Note
that testing and developing progress can be executed
parallel in software developing.

The second and fourth steps are used to adjust
network and the details are shown in figure 4. Firstly,
considering that higher degree modules are more
dangerous to software, we enhance the influence of
these modules by making copy_number(proportional to
its degree) copies of each antigen before we present
them to the networks. Then, generate some clusters for
each network using hierarchical clustering with the
given parameter dist. And centers are formed using the
mean value of the cluster. Finally, optimize those
centers by deleting the outliers.

aiNet algorithm has some parameters. How to adjust
them to obtain better prediction results will be discussed
in next section in detail.

3.3 Parameters control of aiNet for prediction

Parameters are very important to the aiNet algorithm
and greatly affect the result of our framework. Among

s is the most
important one. It influences the network structure and
size.

The smaller s, the more memory cells will be
generated, and the size of network will be larger.
According to the aiNet algorithm5, antibodies in input

Clustering the memory cells
by a given dist threshold

Make degree/10 number copies of every antigen

Present to the corresponding network
as the algorithm in part A, Section II

Produce center for each clusters

Optimize those centers

Fig. 4. Network adjust flowchart.

dim

1j jjcent csaff

netsizeagsaff netsize

i j ijjnet /
1

dim

1
2

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

718

set close (Euclidean distance) to antigens in the network
will be remained, and the cells whose distance between
each other are inferior to the threshold s in memory
cells set will be eliminated15. Therefore, the output set
only consists of cells that are departed from each other
with distance s. The finally remained cells are memory
cells and compose the memory networks. As the size of
output sets should be kept proportional to the three raw
testing result set, we suggest that s be assigned a value
proportional to the mean distance of the network.

dist greatly affect the centers
generated, and we used this to control the center
numbers of each network proportion to the center
number. Details about this parameter will be shown in
section 4.2.1.

3.4 An analysis of this framework

The framework receives a set of software metrics
(represented by the set S) as inputs, which are going to
be presented to the network. The si is a
multidimensional vector that represents the module
developed during the software development. And the
framework returns an immune network composed of a
set of memory cells and connections between them
(represented by the set M).

S = { , , … , , … } (3)

M = { , , … , , … } (4)

And S are divided into two or three subset S1 and S2 (or
S1, S2 and S3 if we want to predict three kinds: low,
medium, high fault prone) according to their degree.
The first step is to create two (or three) initial sets of
B-cells (represented by the set B, the subset is B1, B2).
After this, an iterative process is performed by
presenting the set of antigens to the network. For each
antigen si, the stimulations between it and the whole
B-cell set are calculated. S1 is interacted with B1 and S2

is interacted with B2. The procedure of S1 is interacted
with B1 is represented by the following function, and
others are the same with it:

M = f (s , B) (4)

The function is a rather complex process.
Its process is described in section 3.2. For each , it
generate a small memory set: M .

 M = (, … , …) (5)

The function collects the M generated by
Eq. (5). And suppress the set to generate a memory set
M.

The whole process will be repeated for some
interactions when the M reaches a stable status. Finally
there is an indictor function when the +1 is
developed:

s prone If closest one belong to High

s prone If closest one belong to Low

After the real testing result obtained. The s will

be simulated with the whole corresponding B-cell set to
generate its M . Also the suppression process will be
executed to maintain the memory set M which is also
the aiNet network.

4. Experiment

This part we will give out the experiment and the result
of our frame. The dataset we used will be first
introduced and two experiments especially about low
and high fault prone prediction and low, medium and
high fault prone prediction are designed. Note that all
the data used for showing in this paper have been
reduced the dimension by Principal Component
Analysis (PCA). However, we use high dimension data
during the progress because our model with aiNet can
deal it well.

4.1 Dataset Description

The data used in this paper is from the Medical Imaging
System (MIS) dataset23. This dataset represents the
results of an investigation of software for MIS system.
The system consists of approximately 4500 modules.
Amounting to about 400000 lines of code written in
Pascal, FORTRAN, assembler, and PL/M. What we
used for analysis in this paper is randomly selected from
the modules coding in Pascal or FORTRAN of the
program and consists of approximately 40000 lines of
codes which belongs to 390 modules. The dataset
consists of change recorded which is an indicator of
software development effort and 11 software
complexity metrics for each of the programs. The
metrics are shown in table 1.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

719

4.2 Evaluation Criteria

In this paper, the classification error rate is used to
estimate the experimental result. To classifying a
module to be fault-prone or non-fault-prone, there are
two types of prediction error can be made, Type I error
and Type II error. Type I error means that a program is
predicted with faults while in fact it is not. Type II error
means that when we believe that a program is relatively
fault-free but the fact is on the contrary. Type II error
rate is more important than Type I error rate in
considering the quality of a classification model.
Whereas, we also calculate Type I error in our
experiments. If Type I error rate is very high, software
managers will waste much time on testing
non-fault-prone modules. Type II error will cause lack
of testing with the high fault modules, and much
increase the workload and maintenance cost. The
strategy to have both Type I and II as balanced as
possible while keeping them as low as possible should
also be considered24,25. Their calculate process please
refer to table 226.

Here we used those measures to judge the result:
Type I error means that a program is predicted with
faults while in fact it is not. Type II error means that
when we believe that a program is relatively fault-free
but the fact is on the contrary. Generally, it is better to
make a Type I error of misclassification than to make a
Type II error. However, if the Type II error is too high,
a lot of testing will be wasted. Some research has been
done on how to balance the two error rate22,23. Besides
those two measures, the Global Correct Classification
Rate (GCCR) index is also used.

4.3 Experiment on high and low classification.

We use the dataset described in in section 3.2 to
simulate the real developing and testing process. Figure
5(a) shows the distribution of the first 90 modules using
to initialize the network. Blue points in the figure
represent the modules containing changes less than 2,
that is, its degree<2; similarly, the green ones,
2<=degree<10 and the red ones, degree>=10. Figure 5
(b) shows that the antigen with a higher degree are
enhanced as described in section 3.2. As a higher
recognition rate with the modules that contains more
faults are wanted, we enhanced those modules by
generating copy_number times of its copies. Such as, if
a module’s real fault degree is 23 after testing, 2 copies
will be present and stimulate the network. In this
experiment, we just consider the low fault prone
modules and the high fault prone modules as in
reference19. Figure 6(a) shows that the original metrics
distribution of the first 90 modules. Figure 6(b) shows
the centers generated by two networks after 90 modules.
we could see that the centers generated by high fault
prone modules are much more scattered. Those centers
represent the modules well with a proper scale and
distribution. We use those center to predict the new
developed modules.

Table 1. MIS software metrics

Metrics Description

LOC Coding lines(including comments)
CL Coding lines excluding comments
Tchar The number of characters
Mchar The number of character
Tcomm The number of comment character
Dchar The number of code characters
N Halstead program length
N^ Halstead’s estimated program length
NF Jensen’s estimator of program length
V(G) McCabe’s cyclomatic number
BW Belady’s bandwidth metric

Table 2. Type I and Type II misclassification.

 Module actually has defects
No Yes

Classifier predicts no defects No a b
Classifier predicts some defects Yes c d

Accuracy=(a+d)/(a+b+c+d)
Probability of detection=d/(b+d)

Probability of false alarm=c/(a+c)
Type I error of misclassification=c/(a+c)

Type II error of misclassification=b/(b+d)

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

720

(a)

(b)

Fig. 5. Data distribution of first 90 modules

Fig. 7. Hierarchical clustering tree of the low-fault-prone
network

(a)

(b)

Fig. 6. Original metrics data and centers generated

The formation of those centers contains two
processes have been described in figure 2: Firstly,
cluster the network cells which can be explained as
explained in the hierarchical cluster tree in figure 7.
From the leaves to root, we cut the tree at a certain
distances, which is dist. Leaves that are still connected
with each other will be grouped into a cluster. Secondly,
produce the centers of each cluster using the mean value.
And after centers generated, centers optimized process
is executed. We eliminated the outlier centers in the low
fault prone network especially and also eliminated the
centers that are too much close with the centers in the
other network based on the idea that the high default
prone modules are scattered and the low ones are more
centralized. Optimized step are important as the outliers
effect the result greatly.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

x

y

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4

0.5

1

1.5

2

2.5

x

y

16 17 6 9 10 14 5 2 21 19 20 15 3 7 11 12 13 1 4 18 8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
0

0.5

1

1.5

2

2.5

3

x

y

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

x

y

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

721

From the table 3 we conclude that with the
increasing number of modules, our method obtain better
results. The type II error rate is also much lower than
Ref. 19. In the process of prediction, the two methods
given in section 3.2 are all used. However, the Cell
Center Dist. Prediction method is about 20% more
accurate than another. We consider it is because that:
The Menu Network Dist. Prediction method generated
only one center in essence. As the high fault prone
modules is much scattered, more centers used during
prediction process can obtain much better results.

Table 3. Accuracy rate of low, high fault prone
prediction on MIS

Modules Type I Type II GCCR

0-100 8% 18% 82%

100-200 7% 11% 86%

200-300 6% 10% 89%

4.4 Experiment on low, medium and high
prediction.

In this experiment, the modules produced are classified
into three classes: low default prone, high default prone
or medium default prone. Figure 8 shows the centers
generated of the three networks after 90 modules have
been presented. The blue points represent the medium
fault prone modules. And the other processes are the
same as the last experiment.

Fig. 8. Centers generated after 90 modules presented

As mentioned in figure 2, we can control the center
numbers by adjusting dist to influence the probability of

the prediction result. It can be seen from table III that
when the threshold dist is assigned 0.3, there are 2
clusters generated of low-fault-prone network, and thus,
2 centers. We find that when dist is the same, the higher
fault prone network generated more centers than the low.
The reason is that higher fault prone modules are more
scarred. As when the threshold dist is assigned 0.3, the

lower fault prone network will generate 2 centers
after the 90 modules represented. However, there will
be 8 centers generated by high fault prone network,
details please refer to the table 4.

Table 4. The center number of each network

dist Low Medium High

0.20 3 8 13

0.25 2 7 7

0.30 2 5 8

Table 5. Accuracy rate of low, medium and high
fault prone prediction on MIS

Modules H-F-P M-F-P L-F-P GCCR

0~100 61% 42% 77% 57%

100~200 63% 30% 85% 60%

200~300 69% 40% 82% 62%

The H-F-P, M-F-P, L-F-P in the table 5 represent
the accuracy rate of prediction results for high, medium
and low fault prone modules respectively. We can see
from the table, the prediction result is not as good as the
previous experiment. The prediction accuracy of high
fault prone modules is only 69%. The accuracy of low
fault prone modules is 85%. This is due to that the
medium modues always have not a distinct distribution
with low and high prone moudues.

5. Conclusions and future work

In this paper, we proposed a novel software fault
prediction framework mainly used for module or unit
testing. Our prediction method can start at an early stage
of software lifecycle and adjust itself along with the
testing process. The framework using aiNet algorithm to
simplify the metrics dataset and adjusts the network
dynamically as the developing and testing process

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3
0

0.5

1

1.5

2

2.5

x

y

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

722

parallel goes on. Experiments show that the method in
this paper we proposed has a better performance. Also,
the framework has a better adjustable ability to
emphasize on high-fault-prone module because the
parameter of the hierarchical clustering process can be
adjusted to generate proper number of centers. In the
future work, we will try to simply the process and
parameter control and the influence of different metrics
should be studied. What’s more, a integrated software
fault prediction system can be established with an
effective aiNet algorithm in future work.

6. Acknowledgements

The research work described in this paper was fully
supported by the grants from the “863” Program
(Project No.2009AA010314), the National Natural
Science Foundation of China (Project No. 60675011,
90820010). Prof. Qian Yin and Ping Guo are the authors
to whom all correspondences should be addressed.

7. References

1. M. D. Neil. Multivariate assessment of software products,
Journal of Software Testing, Verification and Reliability,
1992, Vol.1,No.4, pp.17-37.

2. J. C. Munson and T. M. Khoshgoftaar. The detection of
fault-prone programs, IEEE Transactions on Software
Engineering, 1992, Vol.18, No.5, pp.423-433.

3. F. Xing, P. Guo, and M.R. Lyu. A novel method for
early software quality prediction based on support vector
machinem. In Proc. of the 16th IEEE International
Symposium on Software Reliability Engineering
(ISSRE'05), Chicago, Illinois, Nov. 2005, pp. 213-222.

4. Taghi M. Khoshgoftaar and Naeem Seliya,
Analogy-based practical classi¯cation rules for software
quality estimation," Empirical Software Engineering
Journal, vol. 8, no. 4, pp. 325-350, December 2003.

5. De Castro L.N. and Von Zuben F.J.: An evolutionary
immune network for data clustering. Proc. Sixth Brazilian
Symp. Neural Networks, pp. 84-89 (2000)

6. Xie M. Software Reliability Modelling. Singapore: Word
Scientific Publishing Co. Pte. Ltd., 1991.

7. Lyu M. Handbook of Software Reliability Engineering.
Singapore: McGraw-Hill, 1996.

8. Trachtenberg M. Discovering how to ensure software

9. Jelinski Z, Moranda P. Software reliability research. In:
Freiberger W, ed. Statistical Computer Performance

10. Munson JC, Khoshgoftaar TM. The detection of
fault-prone programs. IEEE Trans. on Software
En

11. Khoshgoftaar TM, Seliya N. Improving usefulness of
software quality classification models based on boolean
discriminant functions. In: Proc. of the 13th Int’l Symp.
on Software Reliability Engineering. IEEE Computer
Soci

12. Khoshgoftaar TM, Yuan X, Allen EB. Balancing
misclassification rates in classification-tree models of
software quality. Empirical Software Engineering,

13. Zhong S, Khoshgoftaar TM, Seliya N. Analyzing
software measurement data with clustering techniques.

14. Jerne, N. K. (1974a), Towards a Network Theory of the
Immune System, Ann. Immunol. (Inst.Pasteur) 125C, pp.
373-389.

15. Burnet, F. M. (1978), “Clonal Selection and After”, In
Theoretical Immunology, (Eds.) G. I. Bell, A.S.Perelson
& G. H. Pimbley Jr., Marcel Dekker Inc., pp. 63-85.

16. Timmis J (2000) Artificial Immune Systems: A Novel
Data Analysis Technique Inspired by the Immune
Network Theory, Ph.D. Dissertation, Department of
Computer Science, University of Wales.

17. Stibor T, Timmis J (2007) An investigation into the
compression quality of ainet. In: Fogel D (ed) Proc of
foundations of computational intelligence. pp 495-503

18. M. Neal. An Artificial Immune System for Continuous
Analysis of Time-Varying Data. In J. Timmis and P. J.
Bentley, editors, Proceedings of the 1st International
Conference on Artificial Immune Systems (ICARIS),
volume 1, pp.76 – 85.

19. M. Neal. Meta-Stable Memory in an Artificial Immune
Network. In J. Timmis, P. Bentley, and E. Hart, editors,
Proceedings of the Second International Conference
ICARIS, pages 168 – 180.

20. J. Timmis and M. Neal. A Resource Limited Artificial
Immune System for Data Analysis. Knowledge-Based
Systems, 14:121 – 130, 2001.

21. Xuchao Cheng, Xinyu Chen, and Ping Guo. Software
reliability prediction with an improved Elman network
model, Journal of Communications, in press, 2011.

22. T. Khoshgoftaar, V. Joshi, and N. Seliya. Detecting
Noisy Instances with the Ensemble Filter: A Study in
Software Quality Estimation. International Journal of
Software Engineering and Knowledge Engineering, Vol
16, No 1, 2006, pp. 1-24.

23. M.R. Lyu. Handbook of Software Reliability
Engineering, IEEE Computer Society Press. McGraw
Hill, 1996.

24. John C. Munson, Member, IEEE, and Taghi M.
Khoshgoftaar, The Detection of Fault-Prone Programs
IEEE Transactions on Software Engineering, 1992,vol.
18, no. 5, pp. 423-433

26. F.Xing, P. Guo, M.R.Lyu. Comparison of Methods of
Controlling Two Types of Error Ratio Applied to
Software Reliability Prediction. Journal of Nanjing
University, 2005, Vol.41, pp.644-649.

27. http://mdp.ivv.nasa.gov/mdp_glossary.html

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

723

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

