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Abstract

The performance of Differential Evolution (DE) for multiobjective optimization problems (MOPs) can
be greatly enhanced by hybridizing with other techniques. In this paper, a new hybrid DE incorporating
preference based local search is proposed. In every generation, a set of nondominated solutions is gener-
ated by DE operation. Usually these solutions distribute unevenly along the obtained nondominated set.
To get solutions in the sparse region of the nondominated set, a mini population and preference based
local search algorithm is specifically designed, and is used to exploit the sparse region by optimizing an
achievement scalarizing function (ASF) with the dynamically adjusted reference point. As a result, mul-
tiple solutions in the sparse region can be obtained. Moreover, to retain uniformly spread nondominated
solutions, an improved €-dominance strategy, which would not delete the extreme points found during
the evolution, is proposed to update the external archive set. Finally, numerical results and comparisons
demonstrate the efficiency of the proposed algorithm.

Keywords: multiobjective optimization, hybrid differential evolution, preference, sparse region, dynami-
cal adjustment

with respect to all objectives, but rather a set of al-

Many real world problems involve optimization of
two or more objectives. Very often, the objectives
contradict each other, and improvement of one ob-
jective may lead to deterioration of another. Thus,
there is no single optimal solution that is the best

ternative solutions. The best tradeoffs among the ob-
jectives are so called the nondominated solutions or
Pareto optimal solutions, from which the decision
maker (DM) may select one. For many real world
multi-objective problems, there is no any informa-
tion about the Pareto solutions beforehand, and DM
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has no any preference to the Pareto solutions. Thus
a method that can find as many as possible Pareto
solutions scattered evenly in the entire Pareto set is
considered as an efficient one.

Evolutionary algorithms (EAs) are a class of
stochastic and population based optimization tech-
niques, and can find multiple optimal solutions in
a single run, they are ideally suited for MOPs. In
the past of several decades, many efficient multiob-
jective evolutionary algorithms (MOEAs) were pro-
posed, e.g., NSGAII!, SPEA22, PAES?, etc. DE* is
a simple but powerful evolutionary algorithm, and
it is very robust for solving single-objective opti-
mizations. Later on, researchers extended it to han-
dle MOPs>~!'.  Among them, Abbass et al.> first
applied DE to MOPs and proposed Pareto-frontier
Differential Evolution(PDE). In PDE, the offspring
is produced using DE, and then compared with its
parent using dominant relationship. The dominated
solution is discarded and the nondominated one is
retained to go to the next generation. A Pareto-
based differential evolution for MOPs was proposed
in Ref.6, where the algorithm incorporates nondom-
inated sorting and ranking selection procedure pro-
posed in Ref. 1 into DE. Tobi¢ et al.” presented
DEMO algorithm for multiobjective optimization.
This algorithm maintains only one population, and
incorporates two crucial mechanisms. One is the
immediate replacement of the parent with the can-
didate that dominates it, which enables a fast con-
vergence towards the Pareto front. Another is the
Pareto-based ranking and crowding distance sort-
ing, which can promote the uniform spread of so-
lutions. The algorithms in Refs. 6 and 7 used non-
dominated sorting and crowding distance to evalu-
ate candidates, which have a relative high cost of
computation. Laumanns et al.!? proposed a relaxed
form of dominance, named the &-dominance, for
multiobjective evolutionary algorithms. This mech-
anism acts as an archiving strategy to ensure prop-
erties of diversity among the nondominated solu-
tions found. Then, several DE algorithms incorpo-
rated with e-dominance were proposed to get a well-
distributed set of solutions along the Pareto front
without computing the crowding distance, such as &-
MyDE? and e-MOEA®. Though an algorithm with

e-dominance can maintain good distribution of so-
lutions in archive, it obviously has the limitation of
losing both the extreme points and the points in al-
most horizontal or vertical segments of the Pareto
front. To overcome these drawbacks and main-
tain the good properties of e-dominance, a Pareto-
adaptive £-dominance (pae-dominance)!’ was pro-
posed, where an initial Pareto front approximation
F must be generated firstly. The quality of effi-
cient points in F is critical for the final performance.
However, it is difficult to get any information of
Pareto front before starting to solve a MOP. Al-
though the pag-dominance can remedy some limi-
tations of e-dominance, it may also lose the extreme
points for some MOPs!3. paec-ODEMO '3 was pro-
posed based on pae-dominance!”, while it took an
additional storage technique in every generation to
retain the extreme points found so far.

The above MOEAs belong to posteriori meth-
ods, where the opinions of the DM are not taken into
consideration. Another widely-used class of multi-
objective optimization methods is interactive meth-
ods. In interactive methods, the DM takes actively
part in the solution search process and directs the
search according to her/his preference. A common
way for a DM to express her/his preference is to use
a reference point, which is a vector consisting of the
components that the DM wishes to achieve for all
objective functions, respectively. Once a reference
point is determined, the most usual way to find a
solution is to optimize an ASF, and the optimal so-
lutions of ASF are weakly, properly or Pareto opti-
mal solutions. There are many reference point based
interactive methods'*!7 for MOPs. In Ref. 14, a
reference point based preference strategy was incor-
porated into MOEA to find a set of solutions near
the reference points. The preference strategy is per-
formed by a biased crowding scheme defined by the
reference point but do not use an ASF, which is an
essential concept in the context of reference point. A
variation of the concept of Pareto dominance, called
g-dominance'”, was proposed. This concept leads
the algorithm search the approximate Pareto front
around the area of the preferred point without using
any ASF, and it can be easily used with any MOEAs.
L. Thiele et al. proposed a preference-based evo-
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lutionary approach, called PBEA'®, which incorpo-
rates preference information into an indicator-based
evolutionary algorithm IBEA'® and aims to produce
a good, probably small set of approximate efficient
solutions related to the reference point. A parallel
multiple reference points approach for multiobjec-
tive optimization was proposed in Ref. 19. These
multiple reference points are generated uniformly on
the cutting plane which is defined by the estimated
bounds of the Pareto front. Multiple reference points
are used to establish multiple subproblems to be op-
timized by PBEA in parallel. However, the qual-
ity of the estimated bounds of the Pareto front will
greatly influence the performance of the parallel ap-
proach. To improve the convergence of MOEAs, lo-
cal search in multiobjective scenarios is a promising
scheme?’-23. However, the efficiency of the local
search depends heavily on the choice of the single
objective function to be optimized. ASF in interac-
tive methods is a good choice for two reasons: one
is it has the minimal solution among Pareto opti-
mal solutions of the original problem, the other is
ASF can lead the local search towards the prefer-
ence region of the reference point. In Ref.23, a hy-
brid approach was proposed by incorporating ASF
based local search to NSGA-II. But in this hybrid
algorithm, the local search is performed on ASF es-
tablished by the randomly selected reference point
with probability, where the reference point may be
in dense region, and the local search makes no con-
tribution for adding solutions in sparse region.

In this paper, we suggest a hybrid approach
which incorporates idea from interactive multiobjec-
tive optimization into DE, and intends to get a set of
sufficiently wide and evenly scattered representative
set of Pareto front. In DE process, we use a hybrid
mutation scheme to improve the exploitation ability
of DE mutation. Then, an ASF is used to perform lo-
cal search, where the reference point and weighting
vector in ASF are adaptively calculated by the Pareto
optimal solutions obtained by DE, which make the
ASF prone to search the sparse region of Pareto front
the reference point prefers. In the end, to get a suffi-
ciently wide and evenly scattered representative set
of solutions of Pareto front, a minor revision on &€-
dominance scheme is made which can overcome its

Hybrid DE for MOP

deficiency of losing the extreme points, while does
not need any additional extreme points storage tech-
nique.

The rest of this paper is organized as follows. In
section 2, we give some preliminaries of MOPs, and
briefly introduce DE algorithms and ASF. A hybrid
local search based multiobjective DE is exhibited in
section 3. In section 4, the experiment results and
comparisons with other algorithms are given. Fi-
nally, the conclusion is made.

2. Preliminary

2.1. MOP and some related definitions

Without loss of generality, a multiobjective opti-
mization problem can be stated as follows:

1
st. xeQ, %

{mm F0) = (i) @), fun)
where € is the decision space, f : Q& — R" con-
sists of m real-valued objective functions and R"
is called the objective space. Generally, the deci-
sion space € is a hyper-rectangle, and denoted by
Q= {x€R"la<x<b}, where a,b € R".

Definition 1 (Pareto Dominance) A solution x is
said to dominate y, denoted as x <y, if fi(x) < fi(y)
forall i =1,2,--- ,m and f;(x) < f;(y) for at least
one index j € {1,2,--- ,m}; x is said to strongly
dominate y, denoted as x <y, if fi(x) < fi(y) for
alli=1,2,--- ;m.

A point x* is called a (weakly) Pareto optimal so-
lution of (1) if there is no point x € € that (strongly)
dominates x*. The image of x*, z* = f(x*) in ob-
jective space, is called Pareto optimal vector. The
set of all the Pareto optimal solutions is called the
Pareto optimal set (PS), and correspondingly the set
of Pareto optimal vectors is called the Pareto opti-
mal front (PF). Consequently, the optimization goal
in MOP is not only to search solutions as close to the
PF as possible but also to find solutions as diverse as
possible in the obtained nondominated front.

Because it is often useful to know the ranges of
objective vectors in the PF, the ideal and nadir vec-
tors are defined below:
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Definition 3 (Ideal vector) The ideal vector 7* =
(z},25,--+ ,z,) is the vector that minimizes each ob-

jective function individually, i.e.,
Z; = min f;(x) = min f;(x i=1,---,m.

= min fi(x) = min (), i=1,00,
Definition 4 (Nadir vector) The nadir vector
719 = (pod had ... znad) is the vector that maxi-
mizes each objective function in Pareto optimal set

individually, i.e.,

29 — max fi(x), i=1,---,m.
xePS
Laumanns et al.'> proposed two different

schemes to implement e-dominance: the additive
and the multiplicative approaches. In this paper, we
use the additive scheme defined as follows.

Definition 5(¢-dominance) Let f,g € R". Then
f is said to e-dominate g for some € > 0, denoted as
f=<eg, ifandonlyifforallie {1,2,--- ,m}, fi—e <
8i-

2.2. Differential evolution

Differential evolution® is a parallel stochastic direc-
tion search method which follows the general pro-
cedure of an evolutionary algorithm. Initial popula-
tion P with NP individuals are produced randomly
in decision space. For each individual x € P(i =
1,2,--- ,NP) at each generation, DE then employs
the three operations below in turn.

Mutation: A trial vector v; for each individual x;
is generated based on the current parent population
via certain mutation strategy. The most frequently
used mutation strategies are:

1) “DE/rand/1”*

Vi =X +F - (X0 — X3), ()
2) “DE/best/17%*:
Vi = Xpest + F - (X1 — X12) 3)
3) “DE/current-to-best/177%*:
Vi =X+ F - (Xpest — %) +F - (X1 —x2)  (4)
4) “DE/rand/2%*:
Vi=X1 +F (X2 —%3) + F - (Xa —Xp5)  (5)

5) “DE/best/2”%4:

Vi = Xpest +F - (xrl _er) +F- (xr3 _xr4) (6)
where r1,72,r3,r4 and r5 are mutually different in-
tegers randomly selected from {1,2,--- , NP} \ {i},
Xpesr Tepresents the best individual in the current
population, F € [0,2] is a scale factor which controls
the amplification of the differential variation.

Crossover: To increase the diversity, the follow-
ing offspring vector i; is then generated from its par-
ent x; and mutation vector v; by

vi7j’
xi7j’

for j=1,2,--- ,n, where u; ;, v; j and x; ; are the j-th
components of u;, v; and x;, respectively, Cr € [0, 1]
is crossover probability and jug € {1,2,--- ,n}isa
randomly chosen index, which ensures that i is dif-
ferent from its parent x; in at least one component.

Selection: The offspring u is compared to its
parent x; using greedy criterion, and the one with
better fitness will be selected into the next popula-
tion.

if rand(0,1) < Cror j = jrana

else

(N

2.3. Achievement scalarizing function

The achievement scalarizing function approach was
first proposed by Wierzbicki®>, and now is fre-
quently used to solve MOPs. The achievement
scalarizing function is based on a reference pointz,
no matter it is feasible or not, and the main idea is
to project Z on to the Pareto optimal front along a
specified direction. Given a reference pointz, one of
the widely-used achievement scalarizing function is

as follows:
min
S.t.

where @ = (@, @, - ,®,) is a given weighting
vector for scalarizing the objectives with @ > 0 for
alli=1,2,--- ,mand X", ; = 1. The solution of
(8) is a (weakly) Pareto optimal solution for any
reference point®®. Fig. 1 illustrates the behavior

max [a;(fi(x) —Z)]

i=1~m

xeQ,

®)
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of achievement scalarizing function for two objec-
tives to be minimized. In Fig. 1, Z is the reference
point and ® = (o, ®,) is a given weighting vector,
where @; = 1/(z/%! — z}), then Z is projected to 7,
which is the closest Pareto optimal solution (in the
sense of the weighted-sum of the objectives) follow-
ing the direction (;, ;). For further investigation,
it is concluded that the reference point could be pro-
jected to different Pareto optimal solutions between
A and B by altering weighting vectors®®. And re-
cently, many researchers focus on the influences of
different weights on the DM preferences!’-27-28.

£,

AN

z

L
2+

0o T,
Fig. 1. Behavior of achievement scalarizing function

There are also other achievement scalarizing
functions that are frequently used in literatures, for
example,

min max [wi(fi(x) =z)]+p Y @i fi(x) —Zi)
= i=1
st. xeQ,

)
where p is an arbitrary small positive number (0 <
p < 1). Problem (9) has minimal solutions at Pareto
optimal solutions with bounded trade-offs between
objectives (so-called properly Pareto optimal solu-
tions), which often in practice are more useful than
weakly Pareto optimal solutions?®. The above func-
tion is also called augmented ASF, and p is so called
augmentation coefficient.

3. Hybrid Multiobjective DE Incorporating
Preference based Local Search

In this section, we present a hybrid multiobjective
DE algorithm where the ASF based local search is
incorporated to improve the DE efficiency. In the
hybrid algorithm, local search is performed to opti-
mize the ASF where the reference point and weight-
ing vector are adaptively determined, which prefers

Hybrid DE for MOP

to the solutions in the sparse region of nondominated
set obtained by DE.

3.1. Hybrid mutation strategy

In DE literatures, formula (5) is a frequently used
mutation scheme which has good exploration abil-
ity in the entire search space, while its exploitation
ability is weak. To enhance the exploitation ability
of DE mutation schemes, descent search similar to
that of traditional optimization is used in offspring
generating process. In every generation, solutions in
population can be divided to dominated or nondom-
inated ones by dominance relationship. For a partic-
ular solution x; which is nondominated, we use for-
mula (5) to generate mutation offspring. For a solu-
tion x; which is dominated, there is at least one non-
dominated solution x,,, dominating x;, and along
the direction from x; to x,,,, all objectives may de-
crease, so we can move x; along this direction to
some extent as follows:
Vi =xj+F - (Xpon — ;). (10)
In the above hybrid mutation strategy for MOPs,
offspring of the nondominated solutions are ran-
domly generated by (5) which maintain the explo-
ration ability, while offspring of the dominated solu-
tions go close to a randomly selected nondominated
solution which accelerates the convergence.

3.2. Local search based on achievement
scalarizing function

In this section, local search based on ASF is pre-
sented to find the nondominated solutions in the
sparse part of the obtained approximation of PF. Af-
ter every generation of DE, the nondominated solu-
tions of the current population and offspring can be
selected. Then we can find the nondominated so-
lutions in the sparse part of the nondominated front.
Subsequently, the reference point is dynamically ad-
justed by these nondominated solutions such that its
preference region is just the sparse part of the ob-
tained approximation of PF. Finally, the reference
point is used in the ASF (8) or (9). The local search
behavior of the ASF is illustrated in Fig. 2(a). In Fig.
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2(a), black dots denote the nondominated solutions
obtained by DE, and the sparse part is between A
and B. The reference point 7 is determined by A and
B with each coordinate being the smaller one of A
and B (any other methods can be used to determine
7z, provided that the preference region is the sparse
part between A and B), then the preference region
of Z on PF is between C and D, so the achievement
scalarizing function using 7 will induce a Pareto vec-
tor between C and D by a given weighting vector
(any m-dimension vector with non-negative compo-
nents whose summation is unit 1 can be used as the
weighting vector, in this paper, o is set to the nor-
malized direction from Z to the other vertex of diag-
onal lines of the hyper box specified by A and B).
In many complicated MOPs, the nondominated so-
lutions obtained by DE are coarse in initial phases,
and the reference point 7 is far from the PF, as illus-
trated in Fig. 2(b). Thus the preference region of
7 is almost the entire PF and the result induced by
local search will greatly accelerate the convergence.
In a word, the local search can not only accelerate
the convergence in initial phases, but also improve
the distribution of the obtained approximation of PF
in later phases, so the performance of DE will be
greatly enhanced by the proposed preference based
local search strategy.

0 I
e nondominated solutions obtained o nondominated solutions obtained

@ ®)
Fig. 2. Local search based on achievement scalarizing func-
tion
For the ASF with formulation (8), the following
two conclusions can be conducted from Fig. 3. On
one hand, even if A dominates B, it is still possible
that their ASF value (8) are equal, and on the other
hand, even if the ASF value of C is less than that of
A, C and A are still nondominated each other. More-
over, traditional gradient based method to minimize
the ASF can only get a/an (local) optimal solution
D in the end, some solutions generated in the opti-
mization process which are not optimal to ASF but

are nondominated may be deleted. Thus, the tradi-
tional local search method which only returns one
optimal solution of ASF is not enough.

contours of| ASF
o f,

Fig. 3. Relationship between ASF and dominance

It can be seen from the above analysis that de-
signing a mini population differential evolutionary
algorithm to do the local search on ASF may be
a reasonable choice. It can find multiple solutions
in sparse region which are probably nondominated
each other although they may not be optimal to ASF.
Suppose that x; and x, are two solutions in sparse
region, the detailed mini population differential evo-
lutionary algorithm for local search is as follows.

Algorithm 1. Mini population DE for local
search

Step 1. Initialization. For each solution x; (i=1,2)
in sparse region, generate Ny (Vg is a small integer)
individuals around x; which obey normal distribu-
tion with x; as mean, and |x; — x| as variance, and
the 2Ny individuals consist of the initial population.

Step 2. Evaluation. For each individual gener-
ated in Step 1, calculating its ASF value based on
(8) or (9), and the solution with optimal ASF value
is denoted as xpey; .

Step 3. Evolution. Evolve the mini popula-
tion using DE with DE/current-to-best/1 mutation
scheme (4) and crossover (7), in which mutation
scheme (4) has good exploitation ability.

Step 4. Selection. Once an offspring is gener-
ated, immediate comparison is performed between
offspring and its parent with their ASF values. If the
offspring is better than its parent, then it replaces the
parent. Furthermore, if it is better than Xpes, Xpes
is then replaced by it. Otherwise, the offspring is
discarded.

Step 5. If the given number of function evalua-
tion is used, stop and the final population is as the
output of local search, else, go to Step 3.
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3.3. Improved e-dominance updating strategy

In most MOEAs, an external population, named
archive, is used to retain the nondominated solu-
tions found so far, and some of them are updated
by e-dominance strategy”!?: each member f =
(f1,f2,+++ , fm) of the archive is assigned an identifi-
cation array B = (By,By, - - ,Bm)T (m is the number
of objectives), which can divid objective space into
hyper boxes (B is also called the coordinate of the
hyper box) as follows :

Bi(f) = L(f; = ") /e, (11)

where fjr-nin is the minimum possible value of the j-
th objective and ¢; is the same as € used in defini-
tion 5. Each offspring used to update archive is first
assigned an identification array computed by (11),
and then all offspring and all members in archive
have identification arrays. Compare their identifica-
tion arrays using the usual dominance relationship,
(i.e., compare the dominance relation of identifica-
tion arrays of individuals), and keep the nondomi-
nated individuals in archive. If the identification ar-
rays of two individuals are same, then the one with
the smaller distance between its objective vector and
its identification array will retain in the archive. This
mechanism acting as an archive strategy has been
shown the good convergence towards the Pareto op-
timal set and good diversity among the solutions
found. However, as indicated in Ref. 10, the strat-
egy has several drawbacks such as the loss of the ex-
treme points, and the difficulties of determining an
appropriate value of €, which controls the number of
nondominated solutions. Even though the approach
in Ref. 10 provided the method to select appropriate
€, it greatly depends on the initial PF approximation.
Clearly, it is difficult to obtain any information of PF
before starting to solve the MOP. Thus the method
in Ref. 10 to choose the appropriate € is hard to im-
plemented in practice. To avoid the loss of extreme
points, an improved €-dominance strategy based on
strongly dominance relationship is presented in this
subsection, which does not need any additional ex-
treme points storage. The presented strategy is de-
scribed in details as follows.

If the identification array of offspring is nondom-
inated with respect to any archive member or the oft-

Hybrid DE for MOP

spring locates in same hyper box with any archive
member, the acceptance rule remains unchanged
with original e-dominance. Otherwise, suppose that
B, is the identification array of an archive member
a and B, is the identification array of an offspring c.
We consider three cases:

1) If B, < B, i.e., the identification array B, of
an archive member a strongly dominates B. of oft-
spring c¢, then ¢ is not only &-dominated but also
dominated by this archive member, and offspring ¢
is not accepted.

2) If B. < B,, then the archive member a is
deleted and the offspring c is accepted.

3) If B. < B, and B. £ B, or viceversa, then a
and c are checked as the usual domination. If the
offspring ¢ dominates the archive member a, c is ac-
cepted and a is deleted. If ¢ is dominated by a, then
¢ is not accepted. If neither of the above two cases
occur, i.e., a and ¢ are nondominated, then c is ac-
cepted and a is also retained in the archive(see Fig.
4). If the original e-dominance is used, offspring ¢
is retained and archive member a is deleted in Fig.
4(a), while in Fig. 4(b), offspring c is deleted and
archive member a is retained.

In the above update strategy, we can retain the
offspring that locate in different hyper boxes and are
nondominated with archive members. Obviously,
the improved strategy not only retains the extreme
points but also improve the uniformity of Pareto
front. Moreover the archive size needs not to be pre-
defined, and the archive is bounded.

fy £y

° (@ B ¢ ®) fi

Fig. 4. Box weak dominance relationship

Suppose that ¢, d and e are members of archive,
and a, b, f and g are offspring generated. From Fig.
5, one can see that only ¢, d and e are retained in
the archive if the original e-dominance strategy is
used. Even with the additional extreme points stor-
age strategy '3, all solutions exclusive of b and f can
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be retained, while the improved e-dominance strat-
egy will keep all of the seven individuals in the end.
Thus the improved strategy not only avoids the loss
of extreme points but also enhances the uniformity
of PF obtained. Fig. 5 clearly shows the advan-
tages of the proposed method over the original &-
dominance strategy.

fy

°d

ob

of

od

[0 £,
Fig. 5.
dominance

Archive members updated by improved e&-

It should be mentioned that even though the
above improved strategy is similar to that in Ref.29,
the box and the number of individuals including in
the box are different. The hyper boxes in Ref. 29
are changed with the evolution and every box can
hold more than one individual, while the boxes are
unchanged once the € is given and each box can con-
tain only one individual in the proposed algorithm.

3.4. Hybrid multiobjective DE incorporating
preference based local search

For multiobjective problem (1), the proposed hybrid
multiobjective DE algorithm incorporating prefer-
ence based local search and improved e-dominance,
denoted by PLSDE, is described as follows:

Algorithm 2. PLSDE

Step 1. Initialization. Generate the initial popu-
lation P using orthogonal design (see Ref.30 in de-
tail), i.e. generate the initial individuals uniformly
in the search space Q, select the nondominated solu-
tions of P based on the improved e-dominance and
save them in external archive AR.

Step 2. Evolution. For each solution x € P,
(i=1,2,--- ,NP), generate offspring based on pro-
cedure in subsection 3.1, and all offspring constitute
OP.

Step 3. Update. Use nondominated solutions of
OP to update the external archive set AR via the im-
proved €-dominance strategy in subsection 3.3.

Step 4. Local Search. According to the distribu-
tion of the solutions in AR, local search is performed
via Algorithm 1 in subsection 3.2, and the output of
local search is denoted by LP.

Step 5. Selection. Select the next popula-
tion from P|JOP|JLP using nondominated ranking
method, i.e., select the first rank individuals into the
population, then the second rank individuals, and the
process is repeated until some rank where the indi-
viduals are more than the vacancy in the population,
then the required number of individuals in this rank
are randomly selected into population without cal-
culating the crowding distance.

Step 6. Update the external archive AR with so-
lutions in LP by improved £-dominance strategy in
subsection 3.3.

Step 7. If stopping criterion is not met, go to Step
2, else, output the external archive AR.

4. Simulation Results

4.1. Testinstances

To test the performance of PLSDE, we make
the simulations on five 2-objective test problems:
ZDT1, ZDT2, ZDT3, ZDT4, ZDT6 and five 3-
objective problems: DTLZ1, DTLZ2, DTLZ3,
DTLZA4 and DTLZ7. These problems have differ-
ent characteristics in their PF, which are frequently
used to verify the efficiency and effectiveness of dif-
ferent algorithms. For more details about the test
instances, please refer to Refs.9 and31.

4.2. Performance metric

The inverted generational distance (IGD)*? was
widely used to evaluate the performance of an al-

gorithm. The IGD is defined as

Z d(v,P)

IGD(P*,P) ="

1P|
where P* is a set of uniformly distributed points on
PF, P is an approximation to PF, d(v, P) is the mini-
mum Euclidean distance between v and the points in
P, and |P*| denotes the number of points in P*.
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Because P* is a set of uniformly distributed
points on PF, if we want to get a small value of
IGD(P*,P), P must be of diversity, uniform distri-
bution and good convergence. Thus, IGD(P*,P)
could be as a performance measure to evaluate the
diversity, distribution and convergence of P. In this
paper, we use IGD as the performance measure.

4.3. Experimental setting

Experimental parameters are given below:

1) The number of decision variables (n): n is 30
for ZDT1, ZDT2 and ZDT3, and 10 for the other
problems.

2) The size of population (NP): NP is 100 for
ZDT test instances and 200 for DTLZ test instances.

3) The maximum number of function evaluations
is set to 10000 for ZDT test instances except ZDT4
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and 50000 for DTLZ problems, the maximum num-
ber is 20000 for ZDT4 for it has many local PFs.

4) The number of the solutions generated around
each solution in a sparse region and function eval-
uations in local search are 5 and 50 for ZDT series
problems, respectively, and 10 and 100 for DTLZ
series problems, respectively.

5) The control parameter F' and crossover prob-
ability C, in DE are set to 0.5 and 0.3 for all test
instances.

6) The value of € in archive updating is 0.02 for
ZDT1 to ZDT4, and 0.016 for ZDT6 to maintain
about 100 Pareto solutions. For DTLZ test prob-
lems, the value is 0.035 for DTLZI, and 0.09 for
other DTLZ problems to retain about 300 Pareto so-
lutions in the final archive.

7) The number of P* used in IGD metric is 500
for ZDT series test instances, 990 for DTLZ1-4 in-
stances, and 961 for DTLZ7 problem.
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Fig. 6. Local search results by mini population DE at gen-

eration t
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4.4. Effectiveness of the local search in evolution

To verify the efficiency of ASF based local search
in the proposed algorithm, we exhibit several lo-
cal search results in different stages of evolution for
ZDT?2 test instance in Fig. 6. Fig. 6(a) demonstrates
the first local search results at generation r = 12
when there are more than one solution in the archive,
which are not all Pareto optimal solutions. From
Fig. 6(a), one can see that the local search not only
accelerates the convergence but also increases the
diversity of the archive members. With the evolu-
tion process going on, from Fig. 6(b) at generation
t = 20, one can see that there are many nondom-
inated solutions in the archive which are scattered
unevenly. Then the local search is performed and
the resulted solutions are exactly on the sparse part
of PF denoted by black circle. The other two Fig.
6(c) and 6(d) atr = 33 and t = 51 are also illustrated
that the preference based local search always con-
centrates intensively on accordingly sparse region in
different evolutionary stages. These processes illus-
trate that the local search makes the search prefer to
the sparse region all the time, and the algorithm de-
signed for local search is efficient in obtaining mul-
tiple Pareto optimal solutions.

4.5. Experimental results

We execute the proposed algorithm PLSDE and
standard DE (DE without local search) with orig-
inal €-dominance (SDE) for 10 independent runs,
and present the best, mean, worst and standard de-
viation (std.) of the IGD metric values of the solu-
tions obtained by these two algorithms in Table 1.
From Table 1, one can see the best, mean, worst and
std. of IGD values in 10 independent runs, obtained
by PLSDE, are much better than those obtained by
SDE. Therefore, we can conclude that the proposed
strategies of preference based local search and im-
proved e-dominance greatly enhance the efficiency
of standard DE with original e-dominance.

Table 2 presents the best and standard devia-
tion of IGD metric values of the solutions obtained

by NSGA-II!, MOEA/D*? and PLSDE for five 2-
objectives ZDT instances and two 3-objectives in-
stances DTLZ1 and DTLZ2 (the results of NSGA-II
and MOEA/D are directly taken from Refs.1 and32,
respectively, and the results for the remaining three
test problems, DTLZ3, DTLZ4 and DTLZ7, are not
available for NSGA-II and MOEA/D in these ref-
erences. Thus we can not make a direct compari-
son with NSGA-II and MOEA/D for these three test
problems). From Table 2, one can see that the final
solutions obtained by PLSDE are better than those
of NSGA-II and MOEA/D in terms of IGD metric
for all ZDT test instances and two DTLZ test in-
stances DTLZ1 and DTLZ2. Furthermore, the num-
ber of function evaluations of PLSDE is fewer than
that of NSGA-II and MOEA/D.

Table 1. IGD metric values of the solutions obtained by PLSDE
and standard DE with original e-dominance

Function  Algorithm best mean worst std
ZDT1 PLSDE 0.0039  0.0040  0.0046  0.0002
SDE 0.0401  0.0407 0.0418  0.0005
ZDT2 PLSDE 0.0041  0.0042  0.0044  0.0001
SDE 0.0407  0.0409 0.0411  0.0001
ZDT3 PLSDE 0.0048  0.0051  0.0054  0.0002
SDE 0.0414  0.0422  0.0428  0.0005
ZDT4 PLSDE 0.0037  0.0039  0.0040  0.0001
SDE 0.0403  0.0426  0.0446  0.0016
ZDT6 PLSDE 0.0031  0.0034  0.0037  0.0002
SDE 0.0372  0.0377 0.0386  0.0005
DTLZ1 PLSDE 0.0067  0.0101  0.0107  0.0012
SDE 0.0205  0.0206  0.0207  0.0001
DTLZ2 PLSDE 0.0234  0.0237  0.0239  0.0001
SDE 0.0317 0.0322  0.0326  0.0003
DTLZ3 PLSDE 0.0227  0.0228  0.0230  0.0001
SDE 0.0319  0.0320 0.0322  0.0001
DTLZ4 PLSDE 0.0232  0.0233  0.0234  0.0001
SDE 0.0323  0.0324  0.0325 0.0001
DTLZ7 PLSDE 0.0306  0.0315  0.0330  0.0008
SDE 0.0331  0.0333  0.0334  0.0001

Table 2. IGD metric values of the solutions obtained by NSGA-
II, MOEA/D and PLSDE

Function NSGA-II MOEA/D PLSDE
ZDT1 0.0050(0.0002)  0.0055(0.0039)  0.0039(0.0002)
ZDT2 0.0049(0.0002)  0.0079(0.0109)  0.0041(0.0001)
ZDT3 0.0065(0.0054)  0.0143(0.0091)  0.0049(0.0002)
ZDT4 0.0182(0.0237)  0.0076(0.0023)  0.0037(0.0001)
ZDT6 0.0169(0.0028)  0.0042(0.0003)  0.0031(0.0002)

DTLZI1 0.0648(0.1015)  0.0317(0.0005)  0.0067(0.0012)

DTLZ2  0.0417(0.0013)  0.0389(0.0001)  0.0234(0.0001)
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Fig. 7. PFs obtained by SDE, PLSDE and MOEA/D for five
2-objective test instances. The left column is for SDE, the
middle one for PLSDE and the right one for MOEA/D
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15 15 i 08 e 08

Fig. 8. PFs obtained by SDE, PLSDE and MOEA/D for 3-
objective instances DTLZ1 and DTLZ2. The left column is
for SDE, the middle one for PLSDE and the right one for

MOEA/D.

Fig. 7 illustrates the PFs of five ZDT test in-
stances obtained by SDE, PLSDE and MOEA/D.
The results in Figure 7 from the left to the right
are those of SDE, PLSDE and MOEA/D, respec-
tively. It can be seen from this figure that the PFs
got by SDE in the left column are not only worse
in uniformity but also have less solutions than those
of PLSDE in middle column. This is because SDE
did not use the preference based local search to pay
more attention to the sparse regions. Furthermore,
SDE loses the extreme points of PFs, as well as
points located in horizontal or vertical part of the
segments of PFs due to the shortcoming of origi-
nal e-dominance. Compared with PFs of MOEA/D
in right column, PLSDE outperforms MOEA/D on
ZDT1, ZDT3 and ZDT4, especially in the extreme
points and the segments that are almost horizontal or
vertical, which also illustrates the preference based
local search strategy and the improved e-dominance
update procedure used in PLSDE are helpful to find
a widely spread and evenly distributed approxima-
tion of Pareto front. For the remaining problems,

PLSDE and MOEA/D perform almost the same.

Fig. 8 shows the PFs obtained by SDE,
PLSDE and MOEA/D for two 3-objectives in-
stances, DTLZ1 and DTLZ2. From the sub-figures
in the left column, one can see that the PFs obtained
by SDE have a small number of optimal solutions
and there are a few or no solutions on the boundaries
due to the shortcoming of original €-dominance of
losing the boundary points (for clarification, the
boundaries of PF are plotted on the two figures).
From the figures in the middle column, it is con-
cluded that PLSDE found a large number of optimal
solutions, which are almost uniformly distributed on
the Pareto front. Moreover, PLSDE found the uni-
formly distributed solutions on PFs inclusive on the
boundaries. The figures in the right column is for
MOEA/D, which exhibits that MOEA/D also got
a large number of optimal solutions on PFs, while
there are only a few on the boundaries. SDE can
not find the solutions on boundary for DTLZ1 and
performs worst.
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Fig. 9. PFs obtained by SDE and PLSDE for DTLZ3,
DTLZ4 and DTLZ7. The top row is for SDE and the bottom

one for PLSDE

Fig. 9 shows the PFs obtained by SDE in the
top row and PLSDE in the bottom on the other three
DTLZ test instances: DTLZ3, DTLZ4 and DTLZ7.
From Fig. 9, one can see that the performance of
PLSDE is much better than SDE both in the num-
ber of solutions obtained and the uniformity of solu-
tions distribution. Moreover, for instance with four
discontinuous PF, DTLZ7, PLSDE also found well
distributed Pareto solutions on different segments.

From the results in the above tables and fig-
ures, it can be concluded that the proposed algorithm
PLSDE can find well distributed and high quality
solutions for problems with different characteristics,
and is more efficient than the compared algorithms.

5. Conclusion

A hybrid multiobjective differential evolution algo-
rithm incorporating preference based local search is
proposed. To obtain multiple solutions in sparse
region of the obtained nondominated front, a lo-
cal search which prefers to solutions in sparse re-
gion is designed based on ASF in which reference
point and weighting vector are dynamically adjusted
with evolution. To retain uniformly spread nondom-

inated solutions, an improved e-dominance strategy,
which would not delete the extreme points found in
evolution, is proposed. The improved strategy can
keep the extreme points without using additional ex-
treme points storage technique. The simulation re-
sults on ten standard test instances and comparisons
with other two famous MOEAs show the high per-
formance and effectiveness of the proposed algo-
rithm.
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