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Abstract 

Because of high speed, efficiency, robustness and flexibility of multi-agent systems, in recent years there has been 
an increasing interest in the art of these systems. Artificial market mechanisms are one of the well-known 
negotiation multi-agent protocols in multi-agent systems. In this paper artificial capital market as a new variant of 
market mechanism is introduced and employed in a multi-robot foraging problem. In this artificial capital market, 
the robots are going to benefit via investment on some assets, defined as doing foraging task. Each investment has a 
cost and an outcome. Limited initial capital of the investors constrains their investments. A negotiation protocol is 
proposed for decision making of the agents. Qualitative analysis reveals speed of convergence, near optimal 
solutions and robustness of the algorithm. Numerical analysis shows advantages of the proposed method over two 
previously developed heuristics in terms of four performance criteria.  

Keywords: Task Allocation, Foraging Robots, Distributed Artificial Intelligence; Multi-agent Systems; Capital 
Market Mechanism  

1. Introduction 

Swarm robotics is a state of the art in robotics research. 
Large group of robots, when working with together, 
potentially can emerge complicated behaviors. The 
robots need cooperation, coordination and 
communication protocols to act as a unit.  

Among well known swarm behaviors one can refer to 
multi-robot foraging. Foraging in mobile robots refers to 
task where the robots aim to find objects in a two-
dimensional environment and collect them to specific 
goal points1. Different assumptions could be made in 
foraging task in terms of communication level among 
robots, motion pattern of objects, actuation and sensory 
constraints of robots, etc. Different assumptions impose 
different levels of complexity in foraging task.  

Foraging task is an excellent test-bed in multi-robot 
systems. The reason is that foraging comprises some 
interesting and sophisticated sub-problems such as 
energy efficiency2-6, path and motion planning7-12,
coordination10, 13-16, communication17-25, optimization3, 7-

9, 26-31 and task allocation32-43. Although in most cases 
these sub-problems are not completely independent, 
there have been a focus on a particular sub-problem in 
different researches in swarm robotics field. 

One of the most interesting sub-problems in multi-
robot foraging is task allocation. Task allocation refers 
to assigning available tasks to robots, such that a 
specific criterion is satisfied or optimized subject to 
some constraints. Some custom criteria are minimum 
time, maximum traveled distance and minimum 
consumed energy or their combinations. The constraints 
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may denote robot limitations in terms of power, 
velocity, force etc or they may correspond to 
environmental limitations such as obstacles, friction, 
etc.

 There are two general approaches to solve task 
allocation problem including centralized and distributed 
approaches. At this point, employing of distributed 
paradigm is necessary for tasks those cannot be 
completed by a single robot44. Nevertheless, even when 
the task can be completed by a single robot, distributed 
approach is still beneficial as it may boost up efficiency, 
speed, flexibility and robustness of the system45-46.
Distributed solutions of the problem as well as parallel 
computations would improve the efficiency and 
flexibility where the flexibility is related to novel and 
different solutions46-49. Distributed mechanisms 
facilitate repairing of failures hence a fault tolerant or a 
robust mechanism is achieved50.

   Despite having some advantages, distributed task 
allocation encounters some challenges. A main 
challenge is task decomposition where a total mission is 
reduced into some independent sub-tasks and each robot 
undertakes a subtask. In fact, robots perform their own 
jobs while completing whole mission of the mechanism. 
After task decomposition, a distributed decision making 
protocol is required in order to efficient assignment of 
available tasks. Therefore, a well-organized task 
allocation algorithm requires an appropriate model with 
well defined subtasks and efficiently developed 
assignment procedure. 

In this paper we propose artificial capital market as a 
novel scheme for modeling of multi-agent systems. We 
also develop a negotiation protocol via which the agents 
can reach an agreement in the capital market. Then we 
will use artificial capital market as a task allocation 
mechanism in a multi-robot foraging system. 

The rest of the paper is organized as the following. 
The next section includes related works. In Section 3 the 
proposed artificial capital market is described and in the 
forth section an appropriate negotiation algorithm for 
our capital market is devised. In Section 5 a complicated 
multi-robot foraging environment is considered and 
application of artificial capital market in task allocation 
in the environment is devised. The sixth section 
includes simulation results. Simulations are organized in 
two parts including qualitative and numerical studies. 
Conclusions are provided in the last section. 

2. Related works 

2.1. Local heuristics in task allocation 

Local heuristics are a class of methods those have 
been successfully employed in distributed task 
allocation problems51-52. According to Ref 34, four local 
heuristics have been used in the literature: 

Closest Task First (CT): In this heuristic each 
robot selects an available task that is closest to it.   
Most Starved Task First (MST): In this heuristic, 
in order to balance the task load across the 
environment, the robots are more likely to perform 
the tasks those have the least number of robots in 
their neighborhood and necessitate more robots to 
complete them. 
Most Starved, Most Complete Task First 
(MSMCT): This is an extension of MST where the 
number of robots, required to complete a task, is 
also taken in account. Besides the tasks in the 
neighborhood, tasks those are near to be completed 
are given higher priority. 
Most Proximal Task First (MPT): In previous 
heuristics, each robot only considers status of 
available tasks. However in MPT a robot finds out 
which robots are closer to the task than the robot 
itself. Then it selects the task with the least number 
of robots closer to the task than itself.   

2.2. Market mechanisms

Among distributed task allocation procedures, market 
inspired mechanisms have attracted much attention. 
Since firstly introducing this approach in Ref 53, 
different related researches have been reported. Most of 
them, in a general view, can be fall into three major 
categories:

Auction mechanisms:  Auction based multi-agent 
systems are one of the frequent market-based task 
allocation protocols. In this protocol, an auction is 
conducted where tasks (as goods) are sold to robots 
(as buyers). In an auction based system, an 
auctioneer agent supplies tasks to agents who can 
potentially perform the tasks. Each agent bids over 
available tasks and if it wins the auction, it 
performs the tasks.  

TraderBots is a well known example47 that 
improves robustness and efficiency of multi-agent 
system by taking the advantage of efficiency and 
flexibility of the market. Jones et al exploited this 
protocol to obtain thriving solutions to form pickup 
teams in multi-robot systems54. In 2003 
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combinational auctions was developed to decrease 
computational cost of auction mechanisms; 
afterwards it was employed in robot exploration55.
Auction based protocols have also been used for 
assigning dynamic tasks to multiple agents in 
formation control scenario38 and for multi-robot 
dynamic coordination to visited locations in a 
map56. In Ref 57 a behavior based mechanism was 
proposed in order to implement a multi-robot 
cooperation system. This architecture is also 
exploited for development of auction based task 
assignment strategies in multi-robot systems 
applications. Zhang et al introduced a stochastic 
clustering auction for centralized and distributed 
task allocation in multi-agent teams58 and 
employed it to improve the global cost of the task 
allocations obtained with fast greedy algorithms59.
In Ref 60 an optimized decision mechanism based 
on multi-attribute auction was proposed for 
procuring of some divisible goods. Auction based 
mechanisms have also been used for inspection of 
graphic-like maps by multi-robot systems61.     
Contract nets: The idea of using contract nets in 
multi agent systems was firstly introduced by Smith 
in 198061. In this protocol manager agents (robots) 
announce an available task to other agents those 
operate as contractors. The contractors bid over the 
tasks if they are interested to do it. Then if the 
manager accepts the bid (according to a specific 
eligibility criterion) a contract is formed and the 
task is performed by the contractor agent. 
As an earliest application, Parunak was employed 

contract nets for implementation of a control system 
in a discrete manufacturing environment63. In Ref 64 
a task allocation graph was proposed to analyze 
different contract types including single task 
contracts, cluster contracts, swaps and multi-agent 
contracts. Then it was shown that no contract type 
can avoid local optima. In Ref 65 it was shown that 
the behavior of the protocol depends on system size 
and agent load. It was also illustrated that under 
heavy loads, the algorithm usually should be 
performed frequently. Contract nets were employed 
to develop a distributed task allocation scheme in 
multi-UAV robots in Ref 66. Hsieh has noticed that 
with the lack of a model in contract net protocol, it is 
difficult to assure feasibility of contracts. Then he 
presented a model to ease the bid evaluation to 

handle tasks with complex process structure67. In 
Ref 68 contract nets were used for coordination of 
agents in multi-agent systems. In Ref 69 the authors 
were proposed an adaptive efficient job scheduling 
service model on grids using a market like service 
level agreement (SLA) negotiation protocol based 
on contract nets. Lili and Huizhen proposed a 
threshold-limited load balance strategy for awarding 
in contract net models and established a 
mathematical model of negotiation process based on 
the improved contract net70. In Ref 71 a novel 
approach based on maximum dynamic integrative 
trust was introduced for contractor selection in 
contract nets in an agent based simulation 
environment.    
Market price equilibrium: In this approach to task 
allocation, some producer agents are defined in the 
environment those produce tasks in the market. On 
the other hand some consumer agents are defined 
those are interested to buy tasks. An adjustor agent 
tunes the prices in the market so that the market 
reaches to general equilibrium. In 1993, Wellman 
developed a market-oriented programming 
approach to distributed problem solving. He 
allocated tasks and recourses to a set of 
computational agents by obtaining equilibrium of 
an artificial market72. He then studied the concept 
of conjectural equilibrium in multi-agent learning 
systems73. Kaihara modeled problem of supply 
chain in a dynamic environment as a virtual 
market74. A context-aware coordinated web service 
multi-agent mechanism based on artificial market 
was proposed in Ref 75.   

In all above protocols, there are some agents who are 
responsible for processing information and making 
decisions.  Auctioneers in auction mechanism, managers 
in contracts net and adjustors in artificial price market 
are such agents. Therefore, none of these protocols are 
completely distributed and they always involve some 
central processing. 

Artificial capital market, that we are firstly introduced 
in Ref 76, is a new paradigm in market based 
mechanisms. Artificial capital market is a completely 
distributed protocol as well as generating near optimal 
results in many cases. 
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3. Artificial Capital Market 

In this section we describe essentials of artificial capital 
market as a mechanism for modeling and decision 
making purposes in multi-agent systems. In artificial 
capital market, agents are considered as investors those 
decide about some bundle of assets they are going to 
invest on76. Their decision is based on the expected 
profit of different bundles. 
The components of artificial capital market are defined 
as the following: 

Investors: Agents in multi-agent systems are 
considered as investors. 
Assets: In multi-agent systems total task of the 
system is decomposed into some small subtasks. In 
the artificial capital market each subtask is 
considered as an asset.  
Cost of assets: Doing a specific task has a cost for 
agent. This cost can be different in different 
problems. For example in a multi-robot object 
manipulation problem the cost could be the 
consumed energy by robots; in transportation 
problem the cost could be the covered distance by 
vehicles and in software agents the cost could be 
related to computational complexities. 
Asset Bundles: Each agent can decide to participate 
in doing more than one subtask according to its 
capabilities. An asset bundle is composed of assets 
(subtasks) that the investor (agent) is going to 
invest on them. 
Bundle cost: Cost of a bundle is aggregate costs of 
assets included in the bundle. 
Initial capital: It is assumed that each investor have 
an initial capital Ii. The initial capital could be 
battery charge, computational capacity etc 
depending on type of agents. 
Outcomes: Investment on a bundle or equivalently 
doing corresponding subtask will have an outcome 
for the agent. Outcomes of different subtasks could 
be different. The agent should take in account this 
outcome in its decision making. 
Payoff: Payoff of agent i is defined as difference of 
its outcome and its costs: 

jiif
jiifCOIP

j
i

j
iij

i bundleoninvestnotdoesagent the0
bundleoninvestsagent the (1)         

where j
iO , j

iP  and j
iC  are payoff, outcome and cost 

values respectively.  

4. Negotiation algorithm 

In the artificial capital market, agents should decide 
about the bundles they are going to invest. In a multi-
agent system it is desired that the decisions are made in 
a distributed manner and no central processing exists. It 
is assumed that each agent can obtain its local 
information including the costs and profits of assets 
available for itself. The only information that each agent 
gets from the other agents is their decisions. Each agent 
simply calculates the payoff of available bundles. If it 
has enough initial capital and investment on bundles are 
profitable, the agent decides to invest on bundles. Here 
two different cases exist: 

More than one agent can invest on a single bundle: 
In this case the profit of the bundle should be 
shared among the investors. 
Only one agent can invest on a single bundle: In 
this case if an agent decides to invest on a specific 
bundle, other agents have to give up investing on 
that bundle. 

In both above cases, decision of each investor is 
highly dependent on decisions of other agents. 
Therefore a negotiation mechanism is required to 
support the society to come to an agreement about the 
decision of agents. Despite self-interested investors in 
the capital market, the negotiation mechanism should 
lead the agents to a decision which is superior for the 
society. This factor is the most important feature of the 
negotiation algorithm.  

4.1.  Decision making in static market  

In static markets, the agents make their decisions once 
in the beginning and they do not have to change their 
decisions. In order to explain how the agents make 
decisions, a binary string k

R
kkjk bbbD ...21

,  is exploited 
to encode decisions of society about bundle j in iteration 
k. Bit k

ib  stands for decision of ith agent in iteration k:

ji
ji

bk
i bundleoninvestnot todecidesagentif0

bundleoninvest todecidesagentif1
(2) 

For example in a six agent system (A=6) D7,5=001011 
means that in iteration k=7 agents 3, 5, 6 have decided 
to invest on bundle 5. Decision string Dk, j is a common 
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knowledge for all agents. Based on this encoding, our 
instance negotiation algorithm starts with a random 
decision string D0,j for bundles j=1,2,3,…J where J is 
number of available bundles. Subsequently, the first 
investor calculates the costs of its currently available 
bundles. In the case that it has enough capital (i.e. 

011 CI ) the investor calculates its payoff and 
selects the bundles it is going to invest on. The payoffs 
can be considered as local cost functions that the agents 
are going to minimize them.   If the investment does not 
cover the costs, the investor suspends the investment. It 
is noteworthy to repeat that the investor performs all of 
calculations based on the current decision string as a 
common knowledge. If the investment on bundle j is 
profitable the investor accepts it and sets 0

ib  to one. If 
the investment on bundle j is not profitable the investor 
declines it and sets 0

ib to zero. The next agent performs 
the same calculations using new decision string. Agents 
1,…, A repeat this procedure in a loop until a decision 

string is converged to a fixed string. In fact this 
negotiation is a way to share local information of the 
agents. Pseudo code STATIC_MARKET shown in 
Figure 1 illustrates proposed decision making algorithm.

4.2. Decision making in dynamic market  

In dynamic markets, agents have to change their 
decisions in accordance to environment changes. The 
investors simply employ STATIC_MARKET as basic 
subroutine to make decisions and choose appropriate 
tasks. They afterwards execute the tasks for tfr time 
duration. At the end of period tfr, they make new 
decisions using STATIC_MARKET. The procedure is 
repeated in a loop until the final goal is achieved. It is 
noteworthy to mention that the value of parameter tfr

depends on the rate of changes of the market. Fast 
changes in the market necessitate large values of tfr.
Figure 2 illustrates the proposed algorithm for dynamic 
markets. 

5. Task allocation in multi-robot foraging system 

Task allocation in multi-robot multi-object foraging 
problem with dynamic objects is a complicated problem 
that can be a good test bed for multi-agent problems. 
Different constraint assumptions can bring about 
different levels of complexity in foraging systems. Our 
case is one of the most complicated cases where R
robots are located in an environment in different 
locations PRi=(XRi,YRi) as it is shown in Figure 3. The 
robots should collect the objects from positions 

Fig. 2. Decision making algorithm in dynamic markets 

DYNAMIC_MARKET

WHILE Final Goal of the society is not 
achieved

   RUN STATIC_MARKET 

Execute selected tasks for tfr time 
duration

END OF WHILE

Fig. 3. Environment of multi-robot foraging problem 

YF

YO1

YG
Y1

Y2

XF X1                                           XO1        X2                                                             XG

Moving object 

Goal 

Fuel station 

STATIC_MARKET

INITIATION: Select a random decision 
string D0,j as an initial string 

For j=1:J

    WHILE Dk,j  has not been converged 
to a specific decision DO

      k=k+1

FOR investors  i=1:A  DO

            Calculate j
iP  using (1)

IF 0j
iP  or 0ii CI

             THEN 0k
ib

     END OF FOR 

    END OF WHILE 

END OF FOR 

Fig. 1. Negotiation algorithm for decision making in static 
markets based on artificial capital market 
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POj=(XOj,YOj) to a single goal point PG(XG,YG). The 
objects can be static or dynamic and may be carried by a 
single robot or by a team of robots. Robot i initially has 
limited fuel Fi. The fuel consumption rate of the robots 
while travelling with no load is Ef unit per meter. If a 
single robot carries a single object it would consume Ec

unit of fuel per meter and if n robots cooperate in 
carrying an object the rate of fuel consumption will be 
decreased to Ec/n unit per meter for each robot. A fuel 
station is located at PF=(XF,YF). Only agents (robots) 
those have contributed in collecting the objects are 
allowed to fuel after completing the collection task. 
Each robot knows the positions of the goal and fuel 
station and has a local database including its own 

position. Database of each robot does not include 
positions of the other robots. The components of 
artificial capital market for this problem are defined as: 

Investors: Robots 
Assets: Covered distances by the robots, traveling 

with or without carrying the objects. 
Cost of assets: Fuel consumption in a distance which 

depends on three parameters: covered distance, 
carrying or not carrying the objects and number 
of robots contributing in carrying a single object. 

Asset Bundles: Contributing in transportation of an 
object. Each bundle includes three probable 
assets: finding the objects, taking them to the 
collection point and going back to the fuel 

Table 1. Initial positions of robots. Pi=(Xi,Yi) is position of ith robot.
P1 P2 P3 P4 P5 P6 P7

(30,140) (50,40) (70,100) (100,150) (120,70) (180,120) (200,20) 

Table 2. Positions of goal, object and fuel station in two problem cases studied in simulations. 
CASE Goal position  

PG=(XG,YG)
Object position 

PO=(XO,YO)
Fuel station position

PF=(XF,YF)

1 (10,70) (110, 90) (190,70) 

2 (90,10) (60,160) (160,10) 

Table 3. Progress of the proposed algorithm for first set of fuels in problem case 1 in three different runs. 

Iterations 

Run 1 
Converged in 
iteration 3

Run 2 
Converged in 
iteration 1

Run 3 
Converged in 
iteration 1

D0 0100111 1011010 0111010 
D1 0000100 0011100 0011100 
D2 1010100 0011100 0011100 
D3 0011100 0011100 0011100 
D4 0011100 0011100 0011100 

Final decision of the algorithm:  0011100                            Fuel Consumption:  703.0478 
Optimal decision for the society:  0010100                          Fuel Consumption:  653.4456 

Table 4. Progress of the proposed algorithm for first set of fuels in problem case 2 in three different runs. 

Iterations 

Run 1 
Converged in 
iteration 1

Run 2 
Converged in 
iteration 1

Run 3 
Converged in 
iteration 1

D0 1010101 1111000 1010100 
D1 1011000 1011000 1011000 
D2 1011000 1011000 1011000 
D3 1011000 1011000 1011000 
D4 1011000 1011000 1011000 

Final decision of the algorithm:  1011000                           Fuel Consumption:  665.82 
Optimal decision for the society: 1011000                          Fuel Consumption:  665.82 
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station. 
Initial capital: Initial fuel. 
Outcomes: Amount of fuel in the station is limited 

that would be shared among robots those have 
participated. 

Payoffs: Difference between outcomes of an agent 
and its costs. 

6. Simulations   

We have organized simulations in two subsections. In 
the subsection 6.1 we focus on the proposed method 
itself to show the progress of the algorithm and study its 
quality and suitability for the foraging system. Then in 
subsection 6.2, from a statistical viewpoint, we compare 
the efficiency of the proposed algorithm with two earlier 

methods.   

6.1. Qualitative analysis 

6.1.1. Static market 

In order to verify efficiency and precision of the 
proposed method, we considered an environment with 
only one stationary object. The environment is a 
200m 160m area with 7 robots those initial locations 
are shown in Table 1. The rate of fuel consumptions 
with and without carrying the object are assumed Ef=0.7
and Ec=7 respectively. It is assumed that initial fuel of 
robots is 750 (Fi=750 i=1,...,R). Available fuel at 
station is set to 800. We applied the proposed algorithm 
for two problem cases with different values for locations 
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Object Fuel station 

Fig. 4. Final solution of problem case 1 (first set of fuels) 

Table 5. Progress of the proposed algorithm for second set of fuels in problem case 1 in three different ru

Iterations 

Run 1 
Converged in 
iteration 3

Run 2 
Converged in 
iteration 3

Run 3 
Converged in 
iteration 3

D0 1010011 0110000 1111101 
D1 0011100 1111100 0011100 
D2 0011010 0011010 0011010 
D3 0011110 0011110 0011110 
D4 0011110 0011110 0011110 

Final decision of the algorithm:  0011110                        Fuel Consumption: 822.8696 
Optimal decision for the society:   0011100                     Fuel Consumption:  703.0478 

Table 6. Progress of the proposed algorithm for second set of fuels in problem case 2 in three different runs.

Iterations 

Run 1 
Converged in 
iteration 2

Run 2 
Converged in 
iteration 3

Run 3 
Converged in 
iteration 2

D0 0000100 1100001 0110000 
D1 1111100 1111000 1111100 
D2 1011100 1111100 1011100 
D3 1011100 1011100 1011100 
D4 1011100 1011100 1011100 

Final decision of the algorithm:  1011100                   Fuel Consumption:  685.8721 
Optimal decision for the society:  1011000                 Fuel Consumption:  665.8200

Fig. 5. Final solution of problem case 2 (first set of fuels) 
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of the object, goal point and fuel station illustrated in 
Table 2. 

Progress of the proposed algorithm for different 
choices of initial decision string D0 are shown in Tables 
3 and 4. In both cases the algorithm is converged in less 
than 4 iterations. In problem case 1, robots 3, 4, 5 are 
decided to contribute in carrying the object (see Figure 
4) and in problem case 2, robots 1, 3, 4 are decided to 
contribute in carrying the object (see Figure 5). These 
solutions do not depend on initial decision string D0. In 
each case fuel consumption of the society corresponding 
to final decision is compared with optimal solution. The 
optimal solutions are obtained by a brute force approach 
where all solutions are calculated and the best one is 
selected. In case 1, fuel consumption corresponding to 
the final decision of the algorithm 703.0478 is about 7% 
more than that of optimal solution (653.4456). In case 2, 
fuel consumption corresponding to the final decision of 
the algorithm 665.82 is equal to that of optimal solution. 

 Subsequently, initial values of robot fuels are set to 
(F1= F2= F6= F7=800, F3= F4=F5=300) and available 
fuel at fuel station is changed to S=900. For above 
problem cases 1 and 2, the progress of the algorithm and 
corresponding final decisions are shown in Tables 5 and 
6.  It can be concluded that the convergence is still fast 
and different initial fuels have resulted in different final 
decisions. In fact, different payoff of investors has 
caused different decisions. By changing robot fuels in 
the problem case 1, robot 6 has become interested to 
participate in transportation task. As a result, robots 3, 
4, 5, 6 are included in the final decision (see Figure 6). 
In the same way in problem case 2, robot 5 has become 
interested to participate in transportation task and robots 
1, 3, 4, 5 are included in the final decision (see Figure 

7). For more details about static market simulations see 
Ref. 76 which is a preliminary work of this paper. 

6.1.2. Dynamic market: general problem   

We considered a general problem where the robots 
try to collect some moving objects. Dimension of the 
environment is considered to be 200m 200m area with 
10 robots. Initial locations of the robots are shown in 
Table 7. Values of Ef and Ec are set to 0.7 and 7 
respectively.  It is assumed that the robots have the 
same amount of initial fuel (Fi=750, i=1,...,R) and
available fuel at the station is set to S=800. Positions of 
the fuel station and goal are PF=(160,140) and 
PG=(20,70) (see Table 8).    

As it is explained in section 5.2, we employ decision 
making procedure of static market as core of decision 
making in dynamic market. Every tfr time steps, 
negotiation is set up among the robots and a task 
allocation plan is generated according to current 
positions and fuels of the robots and positions of the 
objects. Once the tasks are allocated, the robots move 
toward the specified objects for tfr time steps. Then a 
new allocation plan is generated. This procedure is 
continued until the robots reach the objects and collect 
them in collection points. 

Single object simulations: In this part we provide 
single moving object simulations. Initial position of the 
object is PO=(100,100). In the first test it is assumed that 
the object randomly takes one of the eight available 
directions (N, S, W, E, NW, NE, SW and SE) to move 
one unit at each time step. In these simulations tfr is set 
to 1 time steps. As new allocation plan is generated at 
each time step, simulations are relatively slow and the 
generated paths are near optimal. Five snapshots of 
simulation in MATLAB corresponding to time steps 25, 
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Fig. 6. Final solution of problem case 1 (second set of fuels) Fig. 7. Final solution of problem case 2 (second set of fuels)
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50, 75, 100 and 125 are shown in Figure 8.  It can be 
seen that the robots R7, R9, R10 have approached the 
object and the robots R7 and R10 have reached it before 
step 125. R4, R5, R6, and R8 have moved toward the 
object, however they have given up after some steps. 
R1, R3 and R2 have not moved toward the object. 

In the second test, the object is assumed to take a 
direction and move in a straight line. Five snapshots of 
simulation corresponding to time steps 25, 50, 75, 100 
and 125 are shown in Figure 9. It can be observed that 
the robots R2, R6, and R9 have caught the object. R2 
had not been interested to contribute in the beginning 
(until time step 60) but by moving the object toward R2, 
it has become beneficial for R2 to move toward the 
object.

Two object simulations: Two moving object 
simulations are provided in this section. Initial position 
of the objects are PO1=(80,80) and PO2=(120,120). 
Similar to single-object simulations, two tests were 
performed; one with random motions of the objects and 
the other one with motions of the objects in straight 
lines. Figure 10 shows four snapshots of the first test. It 
can be seen that the robots R1, R2 and R3 have 
approached the object 1 and the robots R8 and R9 have 
approached the object 2. Figure 11 shows four 
snapshots of the second test. Yet again R1, R2 and R3 
have caught the object 1 and the robots R8 and R9 have 
caught the object 2. It is interesting that the robots R1 
and R3 have firstly caught the object 1 at time step 51 
and the robot R3 has joined them later. The reason is 
that the investment has remained beneficial for R2 after 
time step 51. 

6.2. Numerical analysis 

Consider an environment with R robots and one static 
object where robots are homogenous and their initial 
fuels are equal. We denote area of the environment by 
Ae. A robot, With its initial fuel, can achieve the object 
and carry in to goal if it is located in a specific 
neighborhood of the object. We call this region as 
achievable region and denote its area by Aa. We also 
call the object as achievable object. A schematic 
diagram of such an environment is shown in Figure 
12.a.

6.2.1. Expected average values 

Assuming that all robots those are located inside the 
achievable area contribute in carrying the object we are 
going to find expected averages of number of robots 
contributing in foraging, steps taken by robots and fuel 
consumption by robots.    

It is obvious that the probability of a single robot 
(R=1) being inside achievable area (Aa) is: 

e

a
a A

AA )(                                                           (3) 

The probability of r robots ( Rr0 ) being inside 
achievable area is:  

rRr

r
R

r )1()(                                              (4) 

In fact, )(r is the probability of contributing r robots in 
carrying the object. Then, expected average number of 
robots those contribute in carrying the object is obtained 
by: 

Table 7. Initial positions of robots. Pi=(Xi,Yi) is position of ith robot. 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

(10,60) (10,140) (20,20) (20,180) (50,10) (140,190) (150,20) (180,30) (180,180) (190,80) 

Table 8. Initial position of the moving object and positions of goal and fuel station. 

Goal position 
PG=(XG,YG)

Object position 
PO=(XO,YO)

Fuel station position 
PF=(XF,YF)

(20,70) (100,100) (160,140) 
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Fig. 8. Five snapshots of single-object foraging with random motion of the object. 

e. Status of environment after step 125 
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Fig. 9. Five snapshots of single object foraging with straight motion of the object. 
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Fig. 10. Four snapshots of two-object foraging with random motion of the objects. 

a. Status of environment after step 25 b. Status of environment after step 50  

c. Status of environment after step 75 d. Status of environment after step 100 
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Fig. 11. Four snapshots of two-object foraging with straight motion of the objects. 

a. Status of environment after step 25 b. Status of environment after step 50 

c. Status of environment after step 75 d. Status of environment after step 100 
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R
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)()(                                                          (5) 

   
Now let Sa (which is proportional to Aa) be average 

steps that the robots inside achievable area should take 
to reach to the object; and Sg and Sf be the steps required 
for a robot to reach from the object to the goal and from 
the goal to the fuel station respectively.  Obviously, the 
robots outside the achievable area will take no step. 
Then, the expected average steps taken by all robots to 
reach the object is given as: 

R
RNSSSRS fga

)()()(                                     (6)  

Finally we can obtain expected average fuel 
consumption by robots as: 

R
RN

r
rESSSERF

R

r

c
gfaf

)()(
)()(

1
           (7) 

Recall that Ef  and Ec are fuel consumption rate of 
robots while carrying or not carrying an object. 

Above discussion can be easily employed in multi 
object environments by extending equation (3) using 
inclusion-exclusion principle. For example in a two 
object environment (see Figure 12.b) we have: 

)()()( 2121 aaaa AAAA and                      (8) 

Then aforementioned expected average numbers is 
obtained using equations (4) to (7). 

6.2.2. Comparative simulations 

In this sub-section we are going adopt a Monte Carlo 
approach to evaluate performance of the proposed 
method in comparison with following local heuristics 
introduced in section 2.1: 
CT: Each robot selects closest achievable object to 
itself.
MSMCT: For achievable objects, each robot calculates 
distances from the robot itself to the object, from the 
object to the goal and from the goal to the fuel station. 
Then it selects the object that corresponds to the 
minimum sum. 

We do not include MCT and MPT heuristics in this 
study as MSMCT is extension of MCT and in MPT the 
robots needs to know the positions of other robots 
which is not the case in our study.       

To evaluate the performance of the algorithm using 
Monte Carlo approach, we considered an environment 
with a 200×200m area. Positions of the objects, goal and 
fuel station are shown in Table 9. The rate of fuel 
consumptions with and without carrying the object is 
assumed Ef=0.7 (unit per meter) and Ec=10 (unit per 
meter) respectively. The initial fuel of robots is assumed 
to be 350 units (Fi=350 i=1,...,R). Available fuel at 
station is set to 900.  

In first set of simulations a single-object problem was 
considered where only object 1 (see Table 9) exists in 
the environment. We run proposed artificial capital 
market (ACM), CT and MSMCT methods for R=5, ..., 
10 robots in the environment. For each method 
simulations had run 50 times with random selection of 
initial positions of the robots. The results of average 
number of robots contributing in foraging, average step 
taken by robots, average fuel consumption of robots and 
average number of transported objects are shown in 
Figure 13. The expected average values obtained by 
equations (5), (6), (7) are also depicted. By increasing 
the number of robots probability of being in achievable 
region is increased, hence the number of robots 

Fig. 12. Achievable regions in: 
      (a) single-object           (b) two-object environments

Object 

Achievable Region  

Environment (Ae)

Object 

Achievable Region

Environment (Ae)

Aa1                                     Aa2

Object 1            Object 2  

Aa

(a) 

      

(b)

Table 9. Positions of goal, objects and fuel station in the environment considered in numerical analysis.   
Goal position
PG=(XG,YG)

Position of 
Object 1 (PO1)

Position of 
Object 2 (PO2)

Fuel station 
position

PF=(XF,YF)

(20,70) (100, 60) (80, 160) (160,140) 
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Fig. 13.  Monte Carlo simulations of a single-object system. Simulations had run for R=5, ...,10 robots; each for 50 times with 
random selection of initial position of robots. 
The average results of the proposed algorithm, ACM, is compared with the average  results of CT and MSMCT heuristics in terms 
of (a) Number of robots contributing in foraging, (b) Steps taken by robots, (c) Fuel consumption, (d) Number of carried objects       
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Fig. 14.  Monte Carlo simulations of a two-object system. Simulations had run for R=5, ...,10 robots; each for 50 times with random 
selection of initial position of robots. 
The average results of the proposed algorithm, ACM, is compared with the average  results of CT and MSMCT heuristics in terms 
of (a) Number of robots contributing in foraging, (b) Steps taken by robots, (c) Fuel consumption, (d) Number of carried objects       
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contributing in foraging and the number of steps taken 
by robots are increased (Figures 13.a and 13.b), average 
fuel consumption is decreased (Figure 13.c) and the 
probability of the object to be carried tends to one 
(Figure 13.d). In single-robot problem, CT and MSMCT 
are equivalent and their results are around expected 
average curve in all sub-figures of Figure 13. In CT, 
MSMCT and expected average approaches, if the robot 
is located in achievable region, it will definitely 
contribute in carrying the object. Nevertheless, in the 
proposed ACM method some robots inside achievable 
region may decide not to contribute in carrying the 
object. Therefore, in ACM less robots contribute in 
foraging, resulting less steps and less fuel consumption 
(See Figure 13. a, b, c). There is no meaningful 
difference between results of ACM and other methods 
in Figure 13.d since only one object exists in the 
environment.   

In the second set of simulations, the same approach 
was adopted for two-object problems and the results of 
running ACM, CT, MSMCT methods (each 50 times) 
for R=5, …, 10 robots are illustrated in Figure 14. The 
overall analysis provided for single-object environment 
is true here except that some performance indices of CT 
and MSMCT are not the same. About number of robots 
those contribute in foraging there is no difference 
between CT and MSMCT since the robots inside 
achievable region will definitely contribute in carrying 
at least one object. In CT, a robot selects the nearest 
object and it does not take in account distances from the 
objects to goal and fuel station. Thus the robots are 
likely to cover more distances which results in more 
steps and more fuel consumption. In MSMCT, the 
robots consider distances from the objects to goal and 
then to fuel station, hence their taken steps and fuel 
consumption are less than CT. One drawback of 
MSMCT is that all robots inside the achievable region 
have to contribute in foraging while in the proposed 
ACM method the robots may decide to not contribute in 
the task. On the other hand in ACM, a robot considers 
decisions of other robots to make a better decision. 
Consequently number of steps and fuel consumption in 
ACM is less than both CT and MSMCT. Finally 
average number of carried objects in ACM is more. The 
reason is that in CT/MSMCT the robots choose the 
closest/most starved tasks and if one of the objects are 
closest/most starved to all robots, then the other object 
will selected by no robot. Therefore in ACM, two 
objects have more chance to be carried by robots.        

7. Conclusions  

Multi-robot multi-object foraging problem with 
dynamic objects is a complicated problem that can be a 
good test bed for multi agent problems. Artificial capital 

market as a new variant of market mechanisms was 
introduced and employed for task allocation in a multi-
robot foraging system. In artificial capital market the 
robots are considered as investors those try to increase 
their outcomes by investing on some bundles of assets. 
The assets are sub-tasks of transporting of objects.  
Components of the market were defined and negotiation 
algorithm was proposed. The negotiation algorithm 
consists of a subroutine for decision making in static 
markets which is employed as a core routine for 
decision making in dynamic markets. 

To evaluate performance of the algorithm two set of 
analysis were conducted including qualitative and 
numerical analysis, each supported by simulations in 
MATLAB. Qualitative analysis showed that the 
algorithm is robust and fast and the solutions are near 
optimal in the environment with static objects. As 
decision making in static market is the core of decision 
making in dynamic market, it can be concluded that the 
solutions obtained for the environments with dynamic 
objects would be robust and near optimal as well. In 
numerical analysis a Mont Carlo approach was adopted 
to study the performance of the algorithm in 
environments with different number of robots. The 
results were compared with the results of earlier task 
allocation heuristics namely closest task first (CT) and 
most starved-most closest task first (MSMCT) 
heuristics. The analysis showed that the proposed 
algorithm is superior in terms of four criteria including 
average number of robots contributing in foraging, 
average steps taken by robots, average fuel consumption 
and average carried objects.         
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