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Abstract

This paper presents an integrated Artificial Neural Network - Hybrid Meta Heuristic(ANN-HMH) method
to solve the nonlinear time-cost tradeoff(TCT) problem of real life engineering projects. ANN models
help to capture the existing nonlinear time-cost relationship in project activities. ANN models are then
integrated with HMH technique to search for optimal TCT profile. HMH is a proven evolutionary mul-
tiobjective optimization technique for solving TCT problems. The study has implication in real time
monitoring and control of project scheduling processes.
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1. Introduction

Time-cost tradeoff problem is one of the most im-

portant aspects of engineering projects. Usually

there is a nonlinear and non-increasing relationship

between time and cost. The tradeoff between time

and cost gives project planners both challenges and

opportunities to work out the best plan that opti-

mizes time and cost to complete a project. TCT

problem is essentially a multiobjective optimization

(MOO) problem [1]. Exact methods or mathemat-

ical models require lot of computational effort to

solve TCT problem. For real-life complex networks,

not only exact methods but also simple heuristic

techniques fail to obtain optimal/near-optimal solu-

tions efficiently. Multiobjective evolutionary algo-

rithms (MOEAs) such as genetic algorithms, non-

dominated sorting genetic algorithm-II (NSGA-II)

are suitable for searching a true Pareto front [2]. Ge-

netic algorithm (GA) based search techniques were

originally developed by Holland [3], which are de-

rived from the mechanics of natural selection and

later refined by Goldberg [4]. An overview of the

selection mechanisms in GA has been given in [5].

Multiojective GA has been used to solve TCT prob-

lems [6-7]. The solution to discrete TCT problem in

presence of constrained resources using multiojec-

tive GA is described in [8]. Nonlinear TCT prob-
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lems of project scheduling have been solved by neu-

ral network embedded multiobjective GA [9]. A

computer-based Pareto multiobjective optimization

approach has been utilized for solving time-cost-

quality tradeoff problems [10]. NSGA-II has been

used for time-cost-resource optimization in a con-

struction project [11]. Project scheduling problems

have also been solved using ant colony optimization

approaches [12-14]. A branch-and-bound algorithm

for discrete time-cost tradeoff problem has been

proposed in [15]. An intelligent approach using

ANN has been applied to solve resource-constrained

nonlinear multiobjective time-cost tradeoff problem

[16]. A survey of various approaches to solve TCT

problem is detailed out in [17]. Wide varieties of

TCT problems encountered in real world engineer-

ing projects are dealt in [18].

In this study, we present an integrated ANN-

HMH method. The ANN models basically facilitate

the evaluation of fitness function of HMH. In real

world projects the Pareto-optimal front is unknown,

so all such metrics [19] which measure the extent of

convergence to a known set of Pareto-optimal solu-

tions are not appropriate for the problem considered.

HMH is used as a searching mechanism to search for

the optimal time-cost tradeoff profile. It is important

to note that the working (fitness function evaluation

etc.) of HMH used is quite unconventional in com-

parison to other MOEAs [19-20]. The solutions ob-

tained on the Pareto-front are diverse enough and in-

clude the relevant solution points which are required

by the decision-maker in real life projects. In this pa-

per, elitism is incorporated to keep the individuals in

the tradeoff profile for the next generation, as it helps

in converging to the true tradeoff profile. HMH suits

well to the problem of searching for optimal TCT

profile.

1.1. A Mathematical Description of Time-Cost
Tradeoff Problem

The mathematical description of TCT problem is as

follows:

The set φ represents the space of all feasible in-

stances θ of the network where an instance θ =
{< ti,ci > : CTi � ti � NTi, i = 1,2, ...,n} with ti
and ci are time and cost of ith activity respectively.

n denotes the number of activities in the network.

CTi , NTi are crash time and normal time of ith ac-

tivity respectively. For ith activity, ci = fi(ti) where

fi : [CTi,NTi] → R is a nonlinear map. tθ and cθ
denote the project duration and project cost respec-

tively. Three possible problem formulations for the

TCT problem are:

(a) Find θ ∗ such that c∗θ = min
θ∈φ

{cθ : tθ � d} where

d is the given project deadline.

(b) Find θ ∗ such that t∗θ = min
θ∈φ

{cθ : tθ � b} where b

is the given project budget.

(c) When the objective is to identify the entire time-

cost tradeoff profile for the project network, then

the problem is to find B = {θ ∗ ∈ φ : �θ ∈ φ with

(tθ � t∗θ )∧ (cθ � c∗θ )} with strict inequality in at

least one case.

Here the set of instances θ ∗ represents the entire

time-cost tradeoff profile over the set of feasible

project durations for the network. The decision-

maker is free to choose a θ ∗ depending on specific

project requirements. This formulation is the most

generalized one, which has been addressed in this

study.

2. Methodology

Preliminaries of HMH scheme for TCT problem

taken-up in this study are as follows:

2.1. Structure of a Solution

The solution is a string (as shown in Fig.1) repre-

senting an instance θ of the project schedule.

Fig. 1. An instance of project schedule.

Each element ti(time) of an n − tuple string S:

[t1, t2, t3, ..., tn], can assume any value (a natural num-

ber) from [CTi, NTi]. Associated project duration
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(tθ ) and project cost (cθ ) of each individual string

is determined by computing the maximum path time

and by summing up the corresponding cost for each

activity respectively. The cost data of each activ-

ity is intelligently determined by the corresponding

trained ANN.

2.2. Initial Population

The initial population consists of np solutions, where

(np −2) strings are selected randomly from the fea-

sible search space, i.e., each ti of a string is cho-

sen randomly from [CTi, NTi]. The remaining two

strings are formed such that for the first string ti =
NTi, ∀i = 1,2, ...,n and for the second string ti =
CTi, ∀i = 1,2, ...,n. This will ensure a good diver-

sification of population in each generation of HMH

while searching for optimal TCT profile. These so-

lutions are referred to as ‘parents’.

2.3. Tradeoff Profile and Convex Hull

Let θ1 and θ2 are two strings in a population F, θ1

dominates θ2 if tθ1
� tθ2

andcθ1
� cθ2

with either be-

ing tθ1
< tθ2

or cθ1
< cθ2

. Let D be a binary relation

defined on the set F by D= {(θ1,θ2) : θ1,θ2 ∈ F∧
θ1 dominates θ2}, then the non-dominating set NDS
is given by NDS = {θi ∈ F : (θi,θ j) /∈ D ∀ j, j �= i}
,i.e. it represents the strings (solutions) of F which

are not dominated by any other string of F. All the

solutions of this set are joined with a curve as shown

in Fig.2.

Fig. 2. Fitness evaluation of each member of the population.

The curve formed by joining these solutions is re-

ferred to as TCT profile and the solutions as the

tradeoff points in the context of project manage-

ment literature. We define a convex hull merely as a

boundary (set of points) that encloses all members of

a population with smallest convex set (Fig.2). This

boundary is in the form of straight line segments.

The purpose of drawing a convex hull for each popu-

lation of HMH is to evaluate the fitness of each indi-

vidual in the population [6]. A convex hull may not

include all the solution points of the non-dominated

set.

2.4. Distance Measurement

The distance di of an individual solution point in a

population is determined by calculating the minimal

Euclidean distance dik between the ith solution point

and each of the segment k of the convex hull, i.e.,

di = min
∀k

(dik) (Fig.2). The solutions with a lower

value of distance are considered to be fitter than

those having larger value of the distance.

2.5. Crossover

We consider one point crossover, in this, the ith

string, Si produces a new string by performing

crossover with another jth string, S j selected ran-

domly. A random integer z with 1 � z � n is cho-

sen, where z represents the crossover site. The first z
positions of the new string are taken from the first z
positions of Si while the remaining (n− z) positions

are defined by the (n− z) positions of S j.

2.6. Mutation

The mutation operator modifies a randomly selected

activity of a string with a probability pm; that is

(pm∗ | F |) strings will undergo for mutation. The

mutation operator works on a given string in the fol-

lowing manner:

The value of an element ti, 1 � i � n in string

S: [t1, t2, t3, ..., tn] is randomly replaced by r, r ∈
[CTi, NTi].
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2.7. Simulated Annealing

Simulated annealing (SA) is a stochastic optimiza-

tion method for searching the global optimum in the

entire search space. Kirckpatrick et al. [21] intro-

duced this method in the context of minimization

problems. SA is motivated by an analogy to anneal-

ing in solids, a technique involving heating and con-

trolled cooling of a material to increase the size of its

crystals and reduce their defects. The heat causes the

atoms to become unstuck from their initial positions

(a local minimum of the internal energy) and wander

randomly through states of higher energy; the slow

cooling gives them more chances of finding config-

urations with lower internal energy than the initial

one [21]. By analogy with this physical process, SA

chooses a random move to the neighbourhood of the

original solution. If the move is better than its cur-

rent position then simulated annealing will always

take it. If the move is worse (i.e. lesser quality)

then it will be accepted based on Boltzmann proba-

bility factor. The probability factor is regulated by

a global parameter T (called the temperature), that

is gradually decreased during the process and pro-

vides a mechanism for accepting a bad move. In the

initial iterations this probability is high (almost one)

and in the final stage of iterations it comes down to

almost zero. In the context of this paper, the initial

and final temperatures are denoted by T (1) and T ( f )

respectively.

2.8. Boltzmann Criterion

In SA, the selection of temperature is such that ini-

tially the probability of acceptance of a bad move

is high (approximately 1) but as the temperature

is slowly decreased, at the end, the probability of

accepting a bad move is negligible (approximately

0). Such strategy enables the technique to seek the

global optimum without getting stuck in any local

optimum. The initial temperature, T (1) and final

temperature, T ( f ) are calculated as follows:

Initially the probability of accepting a bad move

is e−
Δd

T (1) = 0.99 and finally it is e−
Δd

T ( f ) = 0.0001,

where Δd is the change of distance between the two

neighborhood points in search space. This distance

is calculated over the number of solutions. The ini-

tial temperature, T (1) is gradually decreased using

the cooling ratio (cool r), and it comes down to al-

most zero in the final stage of iterations.

3. Modeling of Time-Cost Relationship with
ANNs

Artificial Neural Networks (ANNs) have gained

wide popularity in the intelligent decision making

systems. The ANN approach is an inductive ap-

proach driven by data. The data driven approach of

the ANNs enables them to behave as model free es-

timators, i.e., they can capture and model complex

input-output relationships even without the help of a

mathematical model.

In this work, time-cost relationships of each ac-

tivity in project networks (Fig.3) is modeled by

a function approximation capability of ANNs us-

ing Back Propagation Neural Network (BPNN)with

Levenberg-Marquardt (LM) learning rule.

Fig. 3. Neural network architecture used for nonlinear TCT

problem.

BPNN is a multiple layer network with an input

layer, an output layer and some hidden layers be-

tween the input and output layers [22]. The LM

learning rule is relatively faster [23-25] in model-

ing input/output relationships of complex processes.

The LM approximation update rule is ΔW = [J�J+
μI]−1J�ε , where ΔW is a ’weight update’ matrix, J
is a Jacobian matrix that contains first derivatives of

the network errors with respect to the weights, J�
is the transpose of matrix J, I is the identity matrix,

ε is a vector of network errors, and μ is a scalar.

If the scalar μ is very large, the above expression

becomes gradient descent method with a small step
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size. When the scalar μ is small the above expres-

sion is Gauss-Newton method. The Gauss-Newton

method is faster and more accurate. Hence, the

aim is to shift towards the Gauss-Newton method as

quickly as possible. Thus the scalar μ is decreased

after each successful step and increased only when a

step increases the error.

4. Hybrid Meta Heuristic

Hybrid Meta Heuristic (HMH) begins with generat-

ing an initial population (see section 2.2) of np solu-

tions (strings), referred to as ‘parents’, say; Pt , t =
1,2, ...,np. Initially each parent Pt is allowed to pro-

duce Qt =
nc
np

number of offsprings, where nc is the

total number of offsprings produced in a generation;

this number is suitably chosen such that the search

space can be extensively scanned for the selection

process to follow. A parent Pt produces a offspring

by performing a crossover with a randomly selected

string from the remaining population of parents. A

parent, Pt with its offsprings, Qt constitute a fam-

ily, say; Rt , all members of a family are referred to

as ‘solutions’ of the family. Thus np families ex-

ist in a population. In the initial generation, each

family, Rt has a single parent i.e. Pt = 1. Before

performing any further process, mutation (see sec-

tion 2.6) is applied on randomly selected strings of

the offsprings population in each generation, in or-

der to introduce random changes in subsequent gen-

erations. The tradeoff curve of the families is de-

termined which represents the non-dominated set of

solutions. Thereafter, the convex hull is drawn (see

section 2.3). The basic idea is that if within a fam-

ily, the distance of an individual from convex hull

is smaller than other individuals, then this individ-

ual has better fitness with respect to either one or

all of the objectives (Fig.2). For each family Rt , its

members on the tradeoff curve are counted, say; Ft .

These Ft members become the parents for the tth

family for the next generation i.e. P′
t . However, if

for a tth family, no member appears on the tradeoff

curve, then the tth family is not rejected all together

in the hope of its improvement in future. To decide

the parent for the next generation from this family, a

member of this family which is nearest to the trade-

off curve is selected. This proximity is measured

by a fitness function (see section 2.4). The impor-

tance of the number Ft is twofold. Firstly it de-

termines the parents for the next generation chosen

from each family. This is how elitism is incorpo-

rated in the algorithm, which helps it in converging

closer to true Pareto-optimal front (tradeoff curve).

Elites of a current population are given an opportu-

nity to be directly carried over to the next generation.

Therefore, a ‘good’ solution found in a current gen-

eration will never be lost unless a better solution is

discovered. The absence of elitism does not guar-

antee this feature [26]. Importantly the presence of

elites enhances the probability of creating better off-

springs [19]. It is observed that this heuristic helps

in keeping a ‘good’ distribution of solutions over the

tradeoff curve. The next step is to decide the number

of offsprings, say; Q′
t , allocated to each family of the

next generation. This number provides the informa-

tion of how good each family is with respect to the

diversification. To accomplish this, a distance mea-

sure has been defined (Fig. 2) which measures the

‘nearness’ of each member of a family to the trade-

off curve. To select the members so as to find Q′
t ,

the process of SA has been incorporated into the se-

lection process using the procedure f ind num (see

section 4.2). The number Q′
t is proportional to the

number of members of each family which are closer

to the convex hull. Further, Q′
t also plays a direct

role in measuring the fitness of each family Rt , that

is, number of offsprings to be produced in the next

generation by family Rt is determined by Ft plus the

number of family members who qualify the Boltz-

man criterion (see section 2.8), say; Bt . This is ob-

vious as these Ft members are on the tradeoff curve.

As mentioned earlier, initially each family has a sin-

gle parent, but in subsequent generations the num-

ber of parents of each family may be more than one

(as Ft � 1 for the families whose members are on

the tradeoff curve). In such a case, the number of

offsprings, Q′
t is almost equally divided among P′

t
parents for producing the offsprings. Now Rt family

is updated by new family R′
t , which consists of P′

t
parents plus Q′

t offsprings. The algorithm is able to

search for the best family in the evolution process.

The process is repeated until no improvement is ob-
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served in the tradeoff curve for a specified number

of generations.

4.1. Pseudo-code of HMH

HMH is elucidated in the following steps:

1. set initial parameters i.e., T (1), T ( f ), nc, np, and

Gen = 1

2. Pt = 1 and Qt =
nc
np
, t = 1,2, ...,np : Parent and

offsprings for the first generation

3. Rt = Pt ∪Qt : Families of the first generation

4. Ft = tradeoff points of Rt
Bt = Remaining members of Rt , who qualify the

Boltzmann criterion (See section 4.2)

5. Plot the convex hull of Rt

6. if Ft = φ , then Ft = min
∀k

(dik) : where dik is the

distance of ith member of family t, from the kth

line segment of the convex hull

7. P′
t = Ft : Parents for the next generation

8. Q′
t =

nc∗(Ft∪Bt)

∑
np
t=1(Ft∪Bt)

: Offsprings for the next gen-

eration

9. Until ∑np
t=1(|P′

t |+ |Q′
t |) �= |np|+ |nc| do

If ∑np
t=1(|P′

t |+ |Q′
t |)> |np|+ |nc| then

Q′
t = Q′

t −1

t = t +1

else If ∑np
t=1(|P′

t |+ |Q′
t |)< |np|+ |nc| then

Q′
t = Q′

t +1

t = t +1

End

10. Apply Mutation on Q′
t

11. R′
t = P′

t ∪Q′
t : Families for the next generation

12. Rt = R′
t : Update the current generation fami-

lies

13. Gen = Gen+1 : Increment in the generation

14. Repeat step 4 to 13 until the tradeoff curve re-

mains identical or certain number of iterations has

been reached

4.2. Procedure f ind num

To decide the number of the points who qualify the

Boltzmann criterion, the procedure f ind num is ex-

plained in the following steps:

1. Set

Bt = 0 : Number of the points who qualify the

Boltzmann criterion

h = 1 : Iteration count

cool r = 0.85 : Cooling ratio is decided by per-

forming the exhaustive experiments.

2. Rt = Pt ∪Qt : Family of the generation

3. Rt = Rt −Ft : Select only those members of

this family, which is not on the tradeoff curve

4. For u = 1 to |Rt |
i f (e

dik
T (h) > ρ) : ρ is a random number between

0 and 1

Bt = Bt +1 : Increment in Bt
T (h+1) = cool r ∗T (h) :Update the temperature

h = h+1 : Increment in the iteration

5. Working of Integrated ANN-HMH
Approach

Integrated ANN-HMH approach is explained with

the following steps:

1. Set the initial parameters: T (1), T ( f ), nc,np, and

mutation rate (pm).

2. Set the number of activities (n) in the project net-

work and define their precedence relationship and

input normal time (NT ), normal cost (CT ), crash

time (CT ), and crash cost (CC) for each activity.

3. Generate initial np strings (see section 2.2) each

of length n. Find the maximum path time (criti-

cal path time) and the corresponding cost by sum-

ming the cost of each activity along that path,

which is provided by ANN. These np strings are

referred to as ‘parents’.

4. Each string generates Q = nc
np

number of off-

springs by performing crossover and mutation

with other strings of parents.

5. Determine the time and cost of each offspring-

string as mentioned in step 3.

6. Combine the parent-strings and their correspond-

ing offsprings, which makes np families.

7. Plot the tradeoff points and convex hull of these

np families. The tradeoff points of each family

become the ‘parents’ of the family for the next
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generation. If a family has no tradeoff points, the

nearest point of the family is made the parent of

the family for the next generation.

8. To decide the number of the offsprings for the next

generation, simulated annealing has been incor-

porated (see section 4.2).

9. Generate the required number of offsprings for

each parent by performing crossover and mutation

with the other strings of parents.

10. Update the temperature.

11. Repeat steps 6 to 10 until the tradeoff curve re-

mains identical or for a pre-specified number of

iterations.

6. Result of the Benchmark Problems Using
HMH Technique

In this study, three Benchmark problems involving

convex Pareto front given in [19] are successfully

attempted using HMH technique to demonstrate the

capability of HMH technique for finding the solu-

tions. To solve these test problems using HMH tech-

nique, genetic parameters – initial population (np),

the ratio (nc/np), and mutation rate (pm) are selected

as 20, 9 and 0.02 respectively and SA parameters –

T (1), T ( f ), and cool r are chosen as 100, 0.1 and

0.85 respectively. HMH technique is run for a maxi-

mum of 2000 iterations. It has also been shown that

HMH is superior to multiobjective GA in terms of

convergence to known analytic results, as well as

from diversity view point [27]. In the following sub-

sections, each of these problems is described and the

performance of the HMH techniques on these prob-

lems is investigated.

6.1. Schaffer’s Two Objective Problem

This problem has two objectives, which are to be

minimized:

SCH :

⎧⎨
⎩

f1(x) = x2

f2(x) = (x−2)2

−A � x � A

This problem has Pareto-optimal solutions x∗ ∈ [0,2]
and the Pareto-optimal set is a convex set: f ∗2 =

(
√

f ∗1 −2)
2

in the range 0 � f ∗2 � 4. The values

of the bound-parameter A are taken as [−10,10] for

this study.

The non-dominated solutions obtained from

HMH technique lie on the Pareto-optimal front and

the solutions are well distributed in solution space

(Fig.4). This shows that HMH technique converges

to true optimal front for this Benchmark problem.

Fig. 4. Tradeoff points with HMH technique on SCH1

6.2. Zitzler-Deb-Thiele’s 1st (ZDT1) Problem

The ZDT1 benchmark problem has two objectives

which are to be minimized is illustrated below:

ZDT 1 :

⎧⎪⎨
⎪⎩

f1(x) = x1

f2(x) = g(x)[1−
√

x1

g(x) ]

g(x) = 1+ 9
n−1 ∑n

i=2 xi

This problem has 30 variables which lie in the range

[0, 1] and convex Pareto-optimal solutions lie in the

range 0 � x∗1 � 1 and x∗i = 0 for i = 2, 3,..., 30.

The non-dominated solutions obtained from

HMH technique fairly matches with Pareto-optimal

front and the solutions are well distributed in solu-

tion space as shown in Fig.5. Therefore, HMH tech-

nique demonstrates the ability in converging to true
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front and in finding the diverse solutions for large

size problems.

Fig. 5. Tradeoff points with HMH technique on ZDT1

6.3. Zitzler-Deb-Thiele’s 3rd (ZDT3) Problem

The ZDT3 benchmark problem includes a discrete-

ness feature to the front. Its Pareto-optimal front

consists of several noncontiguous convex parts. This

test problem has two objectives which are to be min-

imized:

ZDT 3 :

⎧⎪⎨
⎪⎩

f1(x) = x1

f2(x) = g(x)[1−
√

x1

g(x) − x1

g(x) sin(10Πx1)]

g(x) = 1+ 9
n−1 ∑n

i=2 xi

This problem also has 30 variables which lie in the

range [0, 1]. It has a discontinuous convex Pareto

front in the range 0 � x∗1 � 1 and x∗i = 0 for i = 2,

3,..., 30.

The non-dominated solutions obtained from

HMH technique matches with Pareto-optimal front

as shown in Fig.6. This figure clearly demonstrates

the ability of HMH technique in converging to true

front and in finding the diverse solutions.

Fig. 6. Tradeoff points with HMH technique on ZDT3

7. ANN-HMH Approach for the Case Studies

To illustrate the concept and the effectiveness of

the proposed ANN-HMH technique, three case stud-

ies are taken from literature with suitable modifica-

tions.The first, second and third case study are taken

from [28], [6] and [29] and involve 7, 18 and 89 ac-

tivities respectively. Fig.7, Fig.8 and Fig.9 show the

precedence relationship of each activity of project

network for each of the case studies respectively.

The different options for the time (in days) and cost

(in thousands) of each activity of these networks are

shown in Table 1 , Table 2 and Table 3 respectively.

To solve these test problems using ANN-HMH,

experiments are performed to select genetic and SA

parameters. Genetic parameters – initial population

(np), the ratio (nc/np) and mutation rate (pm) are se-

lected as 60, 8 and 0.02 respectively. To decide the

parameter np, experiments are done with different

values of np, ranging from 20 to 100. For each value

of np, 50 trials are conducted by keeping other pa-

rameters constant. The average time to converge to

the final tradeoff profile is fastest for np = 60. Sim-

ilar experiments are conducted to decide the SA pa-

rameters – T (1), T ( f ), and cool r; which ensure the
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faster convergence to the final tradeoff curve.

Fig. 7. Network of first case study

The SA parameters – T (1), T ( f ) and cool r are

chosen as 100, 0.1 and 0.85 respectively. In addi-

tion, the search is set to terminate when the tradeoff

profile does not change in five consecutive iterations.

Fig. 8. Network of second case study

Fig. 9. Network of third case study
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Table 1. Network data of first case study

Activity Options

number I II III IV V VI VII

(Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost)

1 (14, 23) (15, 21.67) (18, 19) (20, 18) (22, 16.1) (23, 13) (24, 12)

2 (15, 03) (17, 2.64) (18, 2.4) (20, 1.8) (23, 1.5) (24, 1.35) (25, 1)

3 (15, 4.5) (17, 4.257) (21, 4.16) (22, 4) (25, 3.692) (30, 3.489) (33, 3.2)

4 (12, 45) (14, 40.127) (15, 37.9) (16, 35) (17, 33) (18, 31.995) (20, 30)

5 (22, 20) (24, 17.5) (25, 16.8) (26, 16.25) (28, 15) (29, 12.875) (30, 10)

6 (14, 40) (15, 38) (17, 34.5) (18, 32) (20, 27.533) (22, 22.307) (24, 18)

7 (09, 30) (11, 27.340) (12, 26.99) (14, 25.098) (15, 24) (17, 23.667) (18, 22)

Table 2. Network data of second case study

Activity Options

number I II III IV V VI VII

(Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost)

1 (14, 2.4) (15, 2.15) (16, 1.9) (18, 1.75) (21, 1.5) (23, 1.34) (24, 1.2)

2 (15, 3.0) (17, 2.63) (18, 2.4) (20, 1.8) (21, 1.72) (23, 1.5) (25, 1)

3 (15, 4.5) (17, 4.415) (19, 4.22) (22, 4) (25, 3.73) (30, 3.375) (33, 3.2)

4 (12, 45) (13, 44.3) (15, 38.45) (16, 35) (18, 33.7) (19, 32.4) (20, 30)

5 (22, 20) (24, 17.5) (25, 16.4) (26, 15.9) (27, 15.7) (28, 15) (30, 10)

6 (14, 40) (16, 39.2) (17, 34.5) (18, 32) (20, 27.7) (22, 20.3) (24, 18)

7 (09, 30) (11, 27.2) (13, 26.1) (14, 25.6) (15, 24) (17, 22.3) (18, 22)

8 (14, 0.22) (15, 0.215) (16, 0.2) (17, 0.19) (21, 0.167) (23, 0.15) (24, 0.12)

9 (15, 0.3) (18, 0.24) (20, 0.18) (23, 0.15) (24, 0.13) (25, 0.11) (25, 0.1)

10 (15, 0.45) (22, 0.4) (23, 0.39) (27, 0.345) (28, 0.33) (30, 0.325) (33, 0.32)

11 (12, 0.45) (13, 0.42) (14, 0.37) (16, 0.35) (17, 0.33) (19, 0.305) (20, 0.3)

12 (22, 2) (24, 1.75) (25, 1.69) (27, 1.525) (28, 1.5) (29, 1.2) (30, 1)

13 (14, 4) (15, 3.795) (16, 3.5) (18, 3.2) (21, 2.75) (23, 2.155) (24, 1.8)

14 (09, 3) (10, 2.93) (12, 2.825) (14, 2.605) (15, 2.4) (17, 2.295) (18, 2.2)

15 (10, 6.525) (13, 5.99) (14, 4.5) (16, 3.5) (17, 3.355) (18, 2.6) (20, 1.93)

16 (20, 3) (22, 2) (24, 1.75) (26, 1.685) (28, 1.5) (29, 1.385) (30, 1)

17 (14, 4) (16, 3.7) (17, 3.455) (18, 3.2) (21, 2.78) (23, 2.335) (25, 1.8)

18 (09, 3) (10, 2.9) (12, 2.79) (14, 2.565) (15, 2.4) (16, 2.315) (18, 2.2)

Table 3. Network data of third case study

Activity Options

number I II III IV V VI VII

(Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost)

1 (91, 080) (95, 076) (98, 073) (102, 68) (105, 64) (109, 58) (112, 50)

2 (56, 145) (61, 139) (65, 135) (70, 131) (075, 126) (079, 123) (084, 116)

3 (21, 024) (22, 23.5) (23, 023) (25, 22.25) (026, 21.66) (027, 20.5) (028, 20)

4 (84, 018) (88, 17.5) (91, 16.863) (95, 16.222) (098, 15.598) (102, 14.963) (105, 14.4)

5 (28, 9.40) (30, 9.10) (33, 08.60) (35, 8.10) (37, 07.90) (40, 7.70) (42,7)

6 (21, 18.3) (22, 17.85) (23, 17.25) (25, 16.9) (26, 16.25) (27, 15.6) (28, 15)

7 (105, 6.25) (107, 6.05) (110, 5.89) (112, 5.7) (114, 5.4) (117, 5.21) (119, 5)
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Table 3. (Continued)

Activity Options

number I II III IV V VI VII

(Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost)

8 (140, 50) (142, 49.25) (145, 48.495) (147, 47.71) (149, 46.975) (152, 46.22) (154, 45.455)

9 (42, 35) (46, 33.1) (49, 31.01) (53, 29.187) (56, 27.22) (60, 25.271) (63, 23.333)

10 (49, 15) (51, 14.45) (54, 13.89) (56, 13.5) (58, 12.65) (61, 12.25) (63, 11.667)

11 (91, 35) (95, 33.5) (98, 32) (102, 29.9) (105, 28.5) (109, 26.5) (112, 25)

12 (105, 983) (107, 971.25) (110, 960.75) (112, 946.25) (114, 935.5) (117, 921.25) (119, 910)

13 (14, 15) (18, 13.87) (21, 12.17) (25, 10.37) (28, 9.37) (32, 7.47) (35, 6)

14 (84, 42) (89, 41) (93, 40.5) (98, 40.1) (103, 39.5) (107, 38.6) (112, 38)

15 (126, 1477) (130, 1442.1) (133, 1405.2) (137, 1362.5) (140, 1345.5) (144, 1302.2) (147, 1266)

16 (7, 90) (9, 84.2) (12, 76.5) (14, 69.87) (16, 63.5) (19, 57) (21, 50)

17 (35, 69) (37, 66.3) (40, 64.2) (42, 62) (44, 59.4) (47, 56.2) (49, 54.429)

18 (84, 240) (86, 236) (89, 232.5) (91, 227.5) (93, 224.67) (96, 220.1) (98, 216.5)

19 (84, 12) (88, 11.3) (91, 10.5) (95, 10.1) (98, 9.38) (102, 8.57) (105, 8)

20 (273, 258) (278, 254.5) (282, 49.5) (287, 246.3) (292, 242.4) (296, 238.8) (301, 234)

21 (7, 15) (8, 14.47) (9, 14.07) (11, 13.545) (12, 13.146) (13, 12.347) (14, 12)

22 (14, 9) (15, 8.657) (16, 8.223) (18, 7.997) (19, 7.457) (20, 7.456) (21, 7)

23 (42, 40) (44, 38.5) (47, 37.75) (49, 36.37) (51, 35.433) (54, 34.1) (56, 33)

24 (70, 9) (72, 8.654) (75, 8.346) (77, 8.123) (79, 7.52) (82, 7.321) (84, 7)

25 (21, 12) (22, 11.617) (23, 11.34) (25, 11.1) (26, 10.6) (27, 10.39) (28, 10)

26 (196, 965) (201, 958.5) (205, 950.5) (210, 946.4) (215, 937.9) (219, 931.4) (224, 925)

27 (21, 103) (22, 99.1) (23, 94.3) (25, 90.2) (26, 85.5) (27, 81.6) (28, 77.25)

28 (28, 367) (29, 358.7) (30, 350.43) (32, 342.23) (33, 332.67) (34, 325.57) (35, 317)

29 (70, 3.8) (75, 3.6) (79, 3.5) (84, 3.4) (89, 32.8) (93, 31.1) (98, 3)

30 (28, 70) (29, 68.43) (30, 66.267) (32, 65.1) (33, 63.47) (34, 62.07) (35, 60)

31 (7, 6.5) (8, 6.29) (9, 5.9) (11, 5.71) (12, 5.491) (13, 5.150) (14, 5)

32 (14, 8) (16, 7.236) (19, 6.714) (21, 6.204) (23, 5.384) (26, 4.554) (28, 4)

33 (14, 2.4) (15, 2.31) (16, 2.222) (18, 2.124) (19, 1.999) (20, 1.902) (21, 1.8)

34 (84, 7) (88, 6.813) (91, 6.633) (95, 6.295) (98, 5.907) (102, 5.881) (105, 5.6)

35 (105, 3.6) (107, 3.51) (110, 3.41) (112, 3.29) (114, 3.19) (117, 3.14) (119, 3)

36 (133, 100) (138, 96.9) (142, 94.1) (147, 91.405) (152, 88.446) (156, 85.498) (161, 82.609)

37 (7, 14) (8, 13.25) (9, 12.55) (11, 12.07) (12, 11.43) (13, 10.57) (14, 10)

38 (133, 100) (137, 97.54) (140, 95.44) (144, 92.9) (147, 91) (151, 88.4) (154, 86.364)

39 (14, 25) (15, 23.687) (16, 22.522) (18, 20.934) (19, 19.455) (20, 18.156) (21, 16.667)

40 (7, 14) (8, 13.45) (9, 12.57) (11, 12.001) (12, 11.003) (13, 10.546) (14, 10)

41 (14, 10) (18, 9.1) (21, 7.9) (25, 7.2) (28, 5.8) (32, 4.95) (35, 4)

42 (42, 8) (44, 7.597) (47, 7.231) (49, 7.111) (51, 6.597) (54, 6.313) (56, 6)

43 (84, 2.5) (89, 2.376) (93, 2.295) (98, 2.168) (103, 2.053) (107, 1.977) (112, 1.875)

44 (28, 4) (30, 3.753) (33, 3.566) (35, 3.304) (37, 3.124) (40, 2.869) (42, 2.667)

45 (133, 15.2) (137, 14.957) (140, 14.491) (144, 14.210) (147, 13.878) (151, 13.413) (154, 13.127)

46 (140, 40) (146, 38.623) (152, 37.162) (158, 35.570) (163, 34.347) (169, 32.915) (175, 31.5)

47 (133, 95) (137, 93.99) (140, 93.119) (144, 92.991) (147, 91.087) (151, 89.987) (154, 89)

48 (7, 1.4) (8, 1.346) (9, 1.254) (11, 1.209) (12, 1.126) (13, 1.074) (14, 1)

49 (07, 1.15) (08, 1.095) (09, 1.029) (11, 0.979) (12, 0.907) (13, 0.852) (14, 0.8)

50 (07, 3.30) (08, 3.084) (09, 2.877) (11, 2.657) (12, 2.427) (13, 2.209) (14, 2.0)

51 (07, 2.70) (08, 2.510) (09, 2.290) (11, 2.098) (12, 1.905) (13, 1.696) (14, 1.5)

52 (07, 3.00) (08, 2.780) (09, 2.529) (11, 2.267) (12, 2.000) (13, 1.789) (14, 1.5)

53 (14, 0.72) (15, 0.690) (16, 0.642) (18, 0.613) (19, 0.569) (20, 0.542) (21, 0.5)

54 (70, 22.2) (75, 21.60) (79, 20.77) (84, 20.115) (89, 19.4) (93, 18.727) (98, 18)
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Table 3. (Continued)

Activity Options

number I II III IV V VI VII

(Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost) (Time, Cost)

55 (14, 2.0) (15, 1.891) (16, 1.772) (18, 1.674) (19, 1.552) (20, 1.434) (21, 1.333)

56 (07, 4.0) (08, 3.719) (09, 3.514) (11, 3.257) (12, 2.997) (13, 2.752) (14, 2.5)

57 (21, 16.4) (22, 15.687) (23, 14.943) (25, 14.195) (26, 13.497) (27, 12.737) (28, 12)

58 (84, 35) (86, 34.2) (89, 33.1) (91, 32.6) (93, 30.66) (96, 30.744) (98, 30)

59 (77, 495) (86, 459.267) (96, 423.443) (105, 387.526) (114, 351.866) (124, 315.633) (133, 280)

60 (14, 20) (16, 18.29) (19, 16.5) (21, 15.2) (23, 13.44) (26, 11.687) (28, 10)

61 (07, 3.0) (09, 2.5) (12, 2.34) (14, 2.1) (16, 1.567) (19, 1.343) (21, 1.0)

62 (14, 12) (15, 11.46) (16, 10.56) (18, 10.013) (19, 9.256) (20, 8.7) (21, 8)

63 (63, 399) (70, 379.268) (77, 360.121) (84, 338.415) (91, 319.5) (98, 299.8) (105, 280)

64 (91, 79) (98, 72.61) (105, 66.12) (112, 59.41) (119, 52.98) (126, 46.52) (133, 40)

65 (14, 20) (16, 18.2) (19, 16.7) (21, 15) (23, 13.35) (26, 11.87) (28, 10)

66 (14, 12) (15, 11.3) (16, 10.8) (18, 9.9) (19, 9.43) (20, 8.54) (21, 8)

67 (63, 392) (68, 372.13) (72, 355.1) (77, 337) (82, 317.583) (86, 298.54) (91, 280)

68 (21, 4) (22, 3.85) (23, 3.65) (25, 3.49) (26, 3.4) (27, 3.16) (28, 3)

69 (14, 12) (16, 11.01) (19, 9.99) (21, 8.8) (23, 8.001) (26, 6.99) (28, 6)

70 (14, 20) (18, 18.05) (21, 16.05) (25, 14.1) (28, 11.98) (32, 9.98) (35, 8)

71 (70, 85) (74, 76.5) (77, 68.5) (81, 59.5) (84, 51.445) (88, 43.222) (91, 35)

72 (231, 690) (235, 676) (238, 660.5) (242, 644.95) (245, 628.5) (249, 616.2) (252,600)

73 (28, 63) (30, 55.6) (33, 48.8) (35, 41.7) (37, 34.666) (40, 27.06) (42, 20)

74 (119, 85) (123, 82.615) (126, 80.875) (130, 77.625) (133, 76.514) (137, 74.575) (140, 72.250)

75 (84, 35) (85, 34.451) (86, 34.163) (88, 33.145) (89, 33.245) (90, 32.856) (91, 32.308)

76 (133, 440) (137, 434) (140, 426.5) (144, 419.9) (147, 413.2) (151, 406.8) (154, 400)

77 (84, 840) (91, 832) (98, 826.5) (105, 819.9) (112, 813.5) (119, 807) (126, 800)

78 (126, 111.5) (128, 109.68) (131, 106.5) (133, 105.75) (135, 103.75) (138, 101.8) (140, 100)

79 (7, 21.2) (8, 20.4) (9, 20) (11, 19.7) (12, 19) (13, 18.7) (14, 18)

80 (14, 25) (16, 22.8) (19, 20.9) (21, 18.6) (23, 16.7) (26, 14.6) (28, 12.5)

81 (49, 47.8) (50, 46.3) (51, 45.234) (53, 43.857) (54, 42.666) (55, 41.314) (56, 40)

82 (7, 5.3) (8, 5.157) (9, 5.04) (11, 4.9) (12, 4.67) (13, 4.61) (14, 4.5)

83 (140, 105) (144, 101.8) (147, 98.2) (151, 95.121) (154, 91.432) (158, 88.444) (161, 85)

84 (28, 2.8) (30, 2.76) (33, 2.69) (35, 2.639) (37, 2.61) (40, 2.54) (42, 2.5)

85 (28, 2.8) (29, 2.761) (32, 2.689) (36, 2.629) (38, 2.611) (40, 2.53) (42, 2.5)

86 (140, 280) (144, 278.2) (147, 276.8) (151, 275.1) (154, 273.5) (158, 272) (161, 270)

87 (14, 7.5) (16, 7.259) (19, 7.01) (21, 6.739) (23, 6.489) (26, 6.251) (28, 6)

88 (21, 3) (22, 2.865) (23, 2.76) (25, 2.645) (26, 2.49) (27, 2.372) (28, 2.25)

89 (21, 10) (23, 9.2) (26, 8.555) (28, 8.111) (30, 7.42) (33, 6.7) (35, 6)

8. Computational Result and Discussion

Feed forward back propagation neural networks with LM

rule for all activities are trained with time-cost data for

the three case studies considered in this paper as repre-

sented in Table 1, Table 2 and Table 3 respectively. There

are total seven time-cost options available for each activ-

ity for each of the case studies. Training data for ANN

is prepared by picking up first and last time-cost options

and by randomly selecting three more options. Remain-

ing two options of each activity are used as testing data

for the neural network. A three-layer neural network, as

shown in Fig. 3, with one input-‘activity time’ and one

output-‘activity cost’ is used. The training effort is very

less with LM learning rule; it takes 4 to 6 iterations only

(Fig.10). One network is trained for each activity, thus

a total of 7, 18 and 89 ANNs are employed for the three

case studies respectively. An error goal of 10−5 is spec-
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ified. The modeling power of ANNs is validated using

the testing data set. The activity cost is evaluated us-

ing ANNs, and is compared with known cost data and

it is found that cost obtained using neural network is very

close to known data. It clearly enumerates accuracy of

the model.

Fig. 10. ANN training of I activity of first case study

8.1. Computational Results of First Case Study

An initial generation of the first case study is shown in

Fig.11.

Fig. 11. The Initial generation : First case study

It can be seen that the initial generation is distributed

over the solution space and does not gather in one region.

Fig.12 depicts the best achieved tradeoff points and its

convex hull. Since the tradeoff profile does not improve

further, therefore this profile is concluded to be best TCT

profile as searched by ANN-HMH.

Fig. 12. Tradeoff Points and Convex hull of the final gener-

ation population : First case study

8.2. Computational Results of Second Case Study

The best achieved tradeoff points of the second case study

is shown in Fig.13 and it is evident that the tradeoff points

are distributed over the solution space and do not gather

in one region.

Fig. 13. Tradeoff Points of the final generation population :

Second case study
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Table 4. Statistical analysis for tradeoff points

Statistics
First case study Second case study Third case study

Time Cost Time Cost Time Cost

Minimum 60 96200 104 99740 588 8459184

Maximum 105 143500 169 133520 805 9601800

Mean 76.2258 113930 131.2453 105110 709.9944 8641300

Median 75 110800 131 102195 715.5 8506400

Standard deviation 11.2538 13584 16.4140 7847.8 59.3998 263150

Range 45 47300 65 33780 217 1142600

8.3. Computational Results of Third Case Study

The best achieved tradeoff points for the third case study

involving a large problem size with 89 activities are

also well distributed over the solution space as shown in

Fig.14. A very wide range of TCT points is obtained.

The project managers is equipped with flexibility while

carrying out project expediting as per the requirements.

Fig. 14. Tradeoff Points of the final generation population :

Third case study

8.4. Statistical Analysis of Case Studies

Graphical results for first, second and third case study are

shown in Fig.12, Fig.13 and Fig.14 respectively and their

statistical analysis is given in Table 4. The results are self

explanatory.

9. Comparison of ANN-HMH approach with
NNEMOGA

Techniques to solve the nonlinear TCT problems, where

time-cost relationships of each activity in project net-

works is modeled by a function approximation capabil-

ity of ANNs using Back Propagation Neural Network

(BPNN) with Levenberg-Marquardt (LM) learning rule

are scarce in the literature. The second case study has

been solved using Neural Network Embedded Multiob-

jective Genetic Algorithm (NNEMOGA) [9]. As such we

show the comparison of ANN-HMH with NNEMOGA

for the second case study and it is found that ANN-HMH

has better performance results in terms of convergence

and diversity points of view (Fig.15).

Fig. 15. Tradeoff Points of the final generation population

by ANN-HMH and NNEMOGA : Second case study

For comparison purpose convergence criteria and ge-

netic parameters are kept same for both ANN-HMH and

NNEMOGA. Genetic Parameters– total initial population

for the first generation (Parent + offsprings) and muta-
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tion rate (pm) are selected as 540 (60+480) and 0.02 re-

spectively for both approaches. It should be noted that

in the case of ANN-HMH the total initial population,

which is 540, comprises 60 parents and 480 offsprings

where as in the case of NNEMOGA the total initial pop-

ulation (540) comprises parents only. ANN-HMH and

NNEMOGA are run 10 times within same computational

environments (IntelCore2Duo CPU, 1.8 GHz with 2 GB

RAM) and found that ANN-HMH gives the best trade-

off points in 37 generations (average) while NNEMOGA

gives the best tradeoff points in 81 generations (average).

The average time to converge to the final tradeoff profile

is 331.13 seconds for ANN-HMH and 481.36 seconds for

NNEMOGA, which clearly illustrates the superiority of

the proposed ANN-HMH technique.

10. Conclusions

The integrated ANN-HMH approach successfully

demonstrates the realistic nature of TCT analysis and

it does not place any restrictions on time-cost relation-

ship of project activities. Three case studies have been

studied to understand the feasibility and accuracy of the

ANN-HMH approach. Since the nonlinear problems con-

sidered in this paper closely represent real world prob-

lems and the solutions are distributed providing more

options in the solution space, the approach provides a

comprehensive tool to project managers to analyze their

time-cost optimization decisions in a more flexible and

realistic manner and can help to choose the best alterna-

tive over the TCT profiles to execute the real-life projects.
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