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Abstract 

Based on the general form of -resolution principle for a lattice-valued logic with truth-values defined in a lattice-
valued logical algebra structure - lattice implication algebra, the further extended -resolution method in this 
lattice-valued logic is discussed in the present paper in order to increase the efficiency of the resolution method. 
Firstly, -quasi-lock semantic resolution method in lattice-valued propositional logic LP(X) is established by 
combining the lock and semantic resolution simultaneously, and its theorems of soundness and conditional 
completeness are proved. Secondly, this -quasi-lock semantic resolution method is extended into the 
corresponding lattice-valued first-order logic LF(X), and its soundness and conditional completeness are also 
established. This extended resolution method will provide a theoretical basis for automated soft theorem proving 
and program verification based on lattice-valued logic. 

Keywords: -Quasi-lock semantic resolution method; resolution-based automated reasoning; general form of -
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1. Introduction 

Since resolution principle based on classical logic was 
proposed by Robinson in 1965 [1], resolution-based 
automated reasoning has been widely applied to various 
areas, such as mathematics, biology, engineering 
technologies. The study about resolution-based 
automated reasoning methods in classical logic attracted 
a lot of researchers’ interest and some important results 
about variation or extension of resolution principle have 
been achieved, such as, in 1965, Wos et al. [2] proposed 
the resolution strategy based on support sets, and its 
soundness and completeness were also obtained. In 
1967, Slagle [3] established semantic resolution method 
and proved its soundness and completeness. Afterwards, 

Loveland [4] and Luckham [5] proposed linear 
resolution method by their respective views. In order to 
select the unique resolution literal during the process of 
resolution, Reiter [6] established ordered resolution 
method and ordered semantic resolution method, but the 
latter did not have completeness, even for ground clause 
sets. In order to improve the efficiency of resolution-
based automated reasoning, in 1971, Boyer proposed 
lock resolution method in his doctoral thesis at the 
University of Texas, and proved its soundness and 
completeness theorems. In 1981, Huang [7] improved 
linear resolution method and established MOL 
resolution method, its soundness and completeness 
theorems were also proved. In 1979, 1985, 1987 and 
1992, Liu [8-11] did in-depth research on the 
compatibility among semantic resolution method, linear 
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resolution method and lock resolution method, as well 
as the corresponding soundness and completeness. 
According to the improvement of semantic resolution 
method, Lu et al. [12] proposed colored resolution 
method and also proved its soundness and completeness 
theorems. In 2005, Cai [13] discussed the realization of 
the resolution method based on the strategy of support 
sets. In 2007, Meng et al. [14] improved the efficiency 
of resolution by checking the correlation of symbols in 
clauses.

From the above short review, in classical logic, there 
are mainly three kinds of resolution-based automated 
reasoning methods, i.e., lock resolution method, 
semantic resolution method and linear resolution 
method. Lock resolution method improves the 
efficiency of automated reasoning through limiting 
resolution literals to each literal equipped with a lock 
and implement resolution by the smallest lock rule. To 
some extent, this method can limit the generation of 
redundant clauses during the process of resolution and 
improve the efficiency of automated reasoning. 
Semantic resolution method and linear resolution 
method improve the efficiency of automated reasoning 
by limiting resolution clauses, which is to say that they 
limit resolution clauses by certain ways respectively, so 
as to reduce the number of redundant clauses occurring 
in the process of resolution and improve the efficiency 
of automated reasoning. In other words, these three 
kinds of resolution-based automated reasoning methods 
improve the efficiency of automated reasoning from two 
different views. If we can establish another method 
containing the benefits of the above three kinds of 
resolution-based automated reasoning methods, i.e., this 
new method reduces the generation of redundant clauses 
by limiting resolution clauses and literals 
simultaneously, then we can further improve the 
efficiency of resolution-based automated reasoning to 
some extent. 

In another aspect, in the real world, people living in 
the environment with much uncertainty often need to 
make judgment with uncertainty (“soft conclusion”) 
based on uncertain environment, information with 
uncertainty (“soft premise”) and knowledge with 
uncertainty (“soft rules”). We call this “soft causal 
relationship” that “soft premise” and “soft rules” draw 
“soft conclusion” as a “soft theorem”. People often 
discover such “soft theorems”, and also need to verify 

their rationality (or correctness) through practice or 
methods. Non-classical logic has been a considerably 
useful formal tool for computer science and AI during 
the past decade. Many-valued logic is a powerful 
extension and development of classical logic, which 
aims to establish the logical foundation for “soft” 
information processing. Lattice-valued logic, as one of 
the most important many-valued logics, extends the 
chain-type truth-valued field to a general lattice in 
which the truth-values are incompletely comparable 
with each other. Lattice-valued logic is thus an 
important and promising research direction that 
provides an alternative logical approach to dealing with 
imprecision and incomparability as well [15]. As the 
automated reasoning method based on resolution 
principle for classical logic is an important class of 
automated reasoning methods in the field of “theorem 
machine proving”, in order to make machines can 
simulate people verifying these “soft theorems”, i.e., 
make machines automatically verify these “soft 
theorems” by reasoning, similar to the academic 
thinking of “theorem machine proving”, it is very 
important for us to establish an appropriate resolution 
principle in non-classical logics including many-valued 
logics even lattice-valued logics and some effective 
resolution methods based on them. With the progress of 
society, more and more uncertain information needs to 
be handled in the real world.  

Taking the above ideas into consideration, the 
resolution principle based on lattice-valued logic with 
truth-value in a lattice-valued logical algebraic structure 
- lattice implication algebras was established by Xu et al.
[16-17], which can be used to prove whether a lattice-
valued logical formula is false at a truth-value level 
(i.e., -false) or not in order to characterize 
incomparability and fuzziness. After that, some 
researchers did further research on the theory of 
resolution-based automated reasoning for the above 
lattice-valued logic and obtained some important results. 
For example, in 2007, Xu et al. [18, 19] discussed the 
relation between -resolution for lattice-valued 
propositional logic LP(X) and that for lattice-valued 
first-order logic LF(X), and pointed out the fact that -
resolution for LF(X) can be equivalently transformed 
into that for LP(X). As an application of -resolution 
principle, Xu et al. [20] studied -resolution-based 
automated reasoning for linguistic truth-valued lattice-
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valued propositional logic LV(n 2)P(X). In 2008, Li [21] 
obtained some properties of -resolution fields and 
filter-resolution fields in lattice-valued propositional 
logic LP(X) respectively, as well as the relation between 

-resolution and filter-resolution in linguistic truth-
valued lattice-valued propositional logic LV(n 2)P(X). In 
2010, He et al. [22] proposed -lock resolution method 
in lattice-valued propositional logic LP(X) and 
established its soundness and weak completeness. To 
further improve the efficiency of -resolution-based 
automated reasoning in lattice-valued logic, in 2010, Xu 
et al. [23] proposed the general form of -resolution 
principle in lattice-valued logic with truth-value in 
lattice implication algebras and proved its soundness 
and weak completeness theorems. In the same year, Xu 
et al. [24] proposed -generalized resolution principle 
based on lattice-valued propositional logic LP(X), and 
its soundness and weak completeness were also 
established. 

As a continuation of the above research work, on the 
basis of lock resolution method and semantic resolution 
method in classical logic, this paper will establish a lock 
semantic resolution method with features of both lock 
resolution method and semantic resolution method for 
lattice-valued logic based on lattice implication algebras, 
which limits the generation of redundant clauses during 
the process of resolution-based automated reasoning by 
limiting resolution clauses and literals simultaneously. 

This paper is organized as follows: in Section 2, 
some preliminary relevant concepts and conclusions 
about lattice-valued logic and the general form of -
resolution principle are reviewed. In Section 3, -quasi-
lock semantic resolution method based on lattice-valued 
propositional logic LP(X) is established, and its 
soundness and weak completeness are also obtained; In 
Section 4, this -quasi-lock semantic resolution method 
is extended into the corresponding lattice-valued first-
order logic LF(X) and its soundness theorem, lifting 
lemma and weak completeness theorem are also proved. 

2. Preliminaries 

In the following, we will introduce some elementary 
concepts and conclusions of lattice-valued logic with 
truth-value in lattice implication algebra and the general 
form of -resolution principle. We refer the readers to 
[15, 23] for more details. 

2.1. Lattice implication algebra 

Definition 1. [15] Let (L, , , O, I ) be a bounded 
lattice with an order-reversing involution , I and O the
greatest and the smallest element of L respectively, and

: L L  L be a mapping. (L, , , , ,O, I ) is
called a lattice implication algebra (LIA) if the 
following conditions hold for any x, y, z

(I1) x (y z)  y (x  z), 
(I2) x  x  I,

(I3) x  y  y  x ,
(I4) x  y  y  x  I implies x  y,
(I5) (x  y)  y (y  x)  x,
(l1) (x y)  z (x  z)  (y  z), 
(l2) (x y)  z (x  z)  (y  z). 

Example 1. [15] ( ukasiewicz implication algebra on 
finite chain) Let Ln  {ai | i  1, 2,…, n}, a1  a2 …  an.
For any 1 j, k n, define

aj  ak amax{j, k},
aj  ak amin{j, k},

(aj) an-j 1,
aj  ak amin{n-j k, n}.

Then (Ln, , , , , a1, an ) is a LIA.

Example 2. [25] Let Ln  (Ln, 1, 1, 1, 1, a1, an) be 
the ukasiewicz implication algebra in Example 2.1. L2

b1 b2 , b1 b2, L2  (L2, 2, 2, 2, 2, b1, b2) is also 
a ukasiewicz implication algebra. For any (ai, bj), (ak,
bm) Ln L2, define

(ai, bj)  (ak, bm)  (ai 1 ak, bj 2 bm), 
(ai, bj)  (ak, bm)  (ai 1 ak, bj 2 bm), 

(ai, bj)  (ai
1 , bj

2 ), 
(ai, bj) (ak, bm)  (ai 1 ak, bj 2 bm). 

Then (Ln L2, , , , , (a1, b1), (an, b2)) is a LIA, 
denoted as Ln L2.

2.2. Lattice-valued propositional logic LP(X) 

Definition 2. [26] Let X be the set of propositional 
variables, (L, , , , , O, I ) be a LIA, T L  { , }
be a type with ar( )  1, ar( )  2 and ar(a)  0 for any 
a . The proposition algebra of the lattice-valued 
proposition calculus on the set X of propositional 
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variables is the free T algebra on X and denoted by 
LP(X). 

Definition 3. [26] The set of formulas of lattice-
valued propositional logic LP(X) is the least set Y 
satisfying the following conditions:

(1) X Y,
(2) L Y,
(3) if p, q Y, then (p), (p, q) Y,

where X is the set of propositional variables, L is the set 
of constants.

In the following, we denote (p) as p  and (p, q)
as p q.

Definition 4. [26] A mapping v: LP(X)  L is called a 
valuation of lattice-valued propositional logic LP(X), if 
it is a T-homomorphism.

Definition 5. [27] Let G  and L. If v(G)  for any 
valuation v of lattice-valued propositional logic LP(X), 
we say G is always less than or equal to  (or G is -
false), denoted by G .

Definition 6. [15] A lattice-valued propositional logical 
formula G in lattice-valued propositional logic system 
LP(X) is called an extremely simple form, in short ESF, 
if a lattice-valued propositional logical formula G
obtained by deleting any constant or literal or 
implication term occurring in G is not equivalent to G.

Definition 7. [15] A lattice-valued propositional logical 
formula G in lattice-valued propositional logic system 
LP(X) is called an indecomposable extremely simple 
form, in short IESF, if the following two conditions hold: 

(1) G is an ESF containing connectives  and  at 
most,

(2) for any H , if H G in LP(X) , then H is an 
ESF containing connectives  and  at most, where
LP(X)  ( , , , , ) is a LIA,  { p |

p  }, p  {q | for any valuation v in LP(X), v(q)

v(p)}, for any p , q , p q p q , p q p q ,

( p ) p , p q p q .

Definition 8. [15] All the constants, literals and IESFs 
in LP(X) are called generalized literals. Here, the 
definition of literal is the same as that in classical logic.

The disjunction of a finite number of generalized 
literals is a generalized clause.  

Definition 9. [23] Let Ci  pi1 …
iimp be generalized 

clauses of LP(X), Hi  { pi1,…, }
iimp  the set of all 

disjuncts occurring in Ci, i  1, 2,…, m,  L. For any 
i  {1, 2,…, m}, if there exist generalized literals xi  Hi

such that x1  x2 …  xm , then

C1(x1 ) C2(x2 ) … Cm(xm )

is called an -resolvent of C1, C2,…, Cm, denoted by 
Rp(g- (C1(x1), C2(x2),…, Cm(xm)), x1, x2 , …, xm are called 
an -resolution group.

Definition 10. [22] Let C be a generalized clause in 
lattice-valued propositional logic LP(X). C is called a 
locked generalized clause if each disjunct occurring in 
C is assigned a positive integer in its lower left corner 
(the same disjunct appearing in different locations can 
be labeled different positive integer). The positive 
integer is called a lock of the disjunct.

2.3.  Lattice-valued first-order logic LF(X) 

Definition 11. [17] Suppose V and F are the set of 
variable symbols and that of functional symbols in 
lattice-valued first-order logic LF(X), respectively, the 
set of terms of LF(X) is defined as the smallest set J
satisfying the following conditions:

(1) V J,
(2) for any n  N, if f (n) F, then for any t0, t1,…, tn

 J , f (n)( t0, t1,…, tn)  J .

Remark 1. f (0) is specified as a constant symbol.

Definition 12. [17] Suppose P is the predicate symbol 
set in lattice-valued first-order logic LF(X). The set of 
atoms of LF(X) is defined as the smallest set A t

satisfying the following condition:
For any n  N, if P (n)  P, then P (n)(t0, t1,…, tn)  A 

t for any t0, t1,…, tn  J.

Remark 2. P (0) is specified as a certain element in L.
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Definition 13. [17] The set of formulas of lattice-valued 
first-order logic LF(X) is defined as the smallest set F  
satisfying the following conditions:

(1) A t F,
(2) if p, q  F, then p q F,
(3) if p  F, x is a free variable in p, then ( x) p,

( x) p F.

Remark 3. Note that p  p  O, p  q  ( p  q)  q, 
p  q  (p  q ) , p  q  ( p  q)  (q  p). 
Therefore, if p, q F, then p , p q, p q, p q F.

Definition 14. [17] Suppose G F , FG is the set of all 
functional symbols occurring in G, PG is the set of all 
predicate symbols occurring in G, and D ( ) is the 
domain of interpretation. An interpretation of G over D 
is a triple ID  D, D, D , where,

D : FG  UD
( )n

Df : D n  D | n N
               f (0) (0)

Df , (0) 0( )Df D  { (0)
Df } D, D (0) is a 

non-empty set,
       f (n) ( )n

Df (n N +), 

D : PG  VD
( )n

DP : D n  L | n N
      p (0) (0)

Dp , (0) 0( )Dp D  { (0)
Dp } L

      p (n) ( )n
Dp (n N +). 

In lattice-valued first-order logic LF(X), the 
definitions of generalized literal and generalized clause 
are similar to those in lattice-valued propositional logic 
LP(X).  

Definition 15. [17] Let G F,  L. If D(G)  for 
any interpretation ID D, D, D  in lattice-valued 
first-order logic LF(X), G is said to be -false, denoted 
by G .

In the following, the definitions of substitution, 
renamed substitution, ground substitution, instance, 
ground instance are the same as those in classical logic. 

Definition 16. [23] Let Ci  pi1 …
iimp be generalized 

clauses without common variables in LF(X), Hi

{pi1,…, }
iimp  the set of all disjuncts occurring in Ci, i  1, 

2,…, m,  L. If there exist generalized literals xi  Hi

and a substitution  such that x1  x2 …  xm ,
then

C1 (x1 ) C2 (x2 ) … Cm (xm )
is called an -resolvent of C1, C2,…, Cm, denoted by 
Rf(g- (C1(x1), C2(x2),…, Cm(xm)). x1, x2,…, xm are called 
an -resolution group.

occurring in the following is always less than I.

3. -Quasi-Lock Semantic Resolution for 
Lattice-Valued Propositional Logic LP(X) 

Definition 17. Let v0 be a valuation in lattice-valued 
propositional logic LP(X),  L. N, E1,…, Eq are sets 
composed of some locked generalized clauses in LP(X). 
The sequence (N, E1,…, Eq ) is called an -quasi-lock 
semantic clash ( -QLS clash for short) w.r.t. v0, if N, 
E1,…, Eq satisfy the following conditions:

(1) for any generalized clause
ri

C Ei, v0( ri
C ) ,

where i  1, 2,…, q,
(2) let R0

C N
C . For any i  1, 2,…, q, there exists 

an -resolvent Ri of Ni and Ei, where N1  N, N2  {R1}
N2 , N2  N and for any i  3,…, q, Ni  {Ri 1} Ni ,

Ni  N {R1,…, Ri 2} ,  
(3) for any generalized clause 

ri
C  Ei, the -

resolution literal 
ri

g of
ri

C is the one that has the 
smallest lock among disjuncts occurring in

ri
C , i  1, 

2,…, q,
(4) for any generalized clause 

tj
C  Nj, the -

resolution literal 
tj

g of
tj

C is the one which is non- -
false under valuation v0 and has the smallest lock 
among non- -false disjuncts (under v0) occurring in 

tj
C , where j  1, 2,…, q,

(5) v0(Rq) ,
Rq is called the -QLS resolvent of this clash. E1,…, Eq

are called electrons and N is called the core of this 
clash.

Remark 4. For any generalized clause C 
occurring in Definition 17, if there exists the same 
disjunct occurring in different locations of C, then 
retain the one with the smallest lock and delete others. 
For example, let C 4 g 5 g 6 g 9 h 8 h be a 
locked generalized clause, if g and h are different 
disjuncts, then we rewrite C as C 4 g 8 h.

(2) For any disjunction
ri

h occurring in Ei, v0( ri
h )

i  1, 2,…, q. In fact, let generalized clause
ri

C Ei

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

422



X. Zhong, Y. Xu, J. Liu, S. Chen 

and
r r ri i iC C h , if v0( ri

h ) then v0( ri
C ) which 

is a contradict to v0( ri
C )

For any generalized clause C  N, v0(C) In
fact, if there exists a generalized clause C  N such 
that v0(C ) , then there is no -resolution literal 
occurring in C  by condition (4) of Definition 17, which 
means there is no -QLS clash.

(4) Since the -QLS resolvent Rq satisfying v0(Rq)
, to obtain the -QLS resolvent as soon as possible, 

the previous -QLS resolvent must be involved in the 
next resolution, i.e, for the i-th resolution, Ri 1 Ni. As 
the generalized clauses C1, C2,…, Ck (C1, C2,…, Ck and 
Ri 1 constitute resolution generalized clauses) not only 
occur in Ei, but also in N, R1,…, Ri 2, hence Ni  {Ri 1}

Ni , Ni  N {R1,…, Ri 2}.
(5) If i 2, then let N2 A1 A2 and A1 . Otherwise,

let Ni A1 A2, i  3,…, q. The construction of A1 and 
A2 is as follows:

Step 1: Let A {R | R {R1,…, Ri 2}}. For any 
R A , R satisfies the following conditions:

1> the -resolution literal of Ri 1 does not occur in
R ,

2> the -resolution literals of Ri 1 and R  do not 
come from the same generalized clause of N.

Step 2: For any generalized clause D A , if there 
exists D A  such that each disjunct of D is a disjunct 
of D , then delete D .

Step 3: After step 2, we can obtain a set, denoted by
A1.

Step 4: Let A2  {C | C N}. For any C  A2, C
satisfies the following conditions:

1> the -resolution literal of Ri 1 does not come 
from C ,

2> for any generalized clause E A1, the -
resolution literal of E does not come from C .

Example 3. Let C1 1(x  y) , C2 2(x  y) 3(y
z) 4(s  a3) , C3 5(s  a4) 6(r  t) be three 
locked generalized clauses in lattice-valued 
propositional logic L9P(X) based on L9 and S C1

C2  C3  C4, where L9 is the ukasiewicz implication 
algebra with nine elements, x, y, z, r, s, t are 
propositional variables, a3, a4  L9. Suppose a5

L9, v0 is the valuation of L9P(X) such that v0(x) I, v0(y)
 a8, v0(z) a3, v0(s) I, v0(r) a7, v0(t) a2, then we 

can obtain an -QLS clash (N, E1,…, Eq) by Definition
17. 

In fact, since v0(C1) a2 , v0(C2) a8 , v0(C3)
a4 , so we can obtain an -QLS clash (w.r.t. v0) (N,

E1, E2, E3 ): N  {C2}, E1  {C1}, E2  {C1}, E3  {C3}
and the -QLS resolvent R3 of this clash is 6(r  t)

, where R1 3(y  z) 4(s  a3) , N2  {R1}, R2

4(s  a3) , N3  {R2}.
If we let E1  {C3}, E2 E3 {C1}, then there is no 

-QLS clash. Therefore, we can obtain the fact that -
QLS clash is affected by the order of electrons. 

Example 4. Let C1 1(x  y), C2 2(x  z) 6(s  t),
C3 3y 4(y  z), C4 5(s  t) 7(r (a2, b1)) be 
four locked generalized clauses in lattice-valued 
propositional logic (L9 L2)P(X) based on L9 L2 and
S C1  C2  C3  C4, where L9 L2 is the same LIA 
with eighteen elements as that in Example 2, x, y, z, r, s,
t are propositional variables, (a2, b1) L9 L2. Suppose

 (a6, b2) L9 L2, v0 is the valuation of (L9 L2)P(X)
such that v0(x) I, v0(y)  v0(z)  (a2, b2), v0(s)  (a8, b2), 
v0(t)  (a6, b1), v0(r)  (a7, b1), then we can obtain an -
QLS clash (N, E1,…, Eq) by Definition 17.

In fact, since v0(C1)  (a2, b2) , v0(C2)  (a8, b1) // 
(here // means incomparable), v0(C3) I , v0(C4)

(a4, b2) , so we can obtain an -QLS clash (w.r.t. v0)
(N, E1, E2, E3 ): N  {C2, C3}, E1  {C1}, E2  {C1}, E3

{C4} and the -QLS resolvent R3 of this clash is 7(r
(a2, b1)) , where R1 4(y  z) 6(s  t) , N2

{C2, R1}, R2 6(s  t) , N3  {R2}.

Definition 18. Suppose S  C1 C2 … Cm, where 
C1, C2,…, Cm are locked generalized clauses in lattice-
valued propositional logic LP(X), v0 is a valuation in 
LP(X) and L. { 1, 2,…, t } is called an -
quasi-lock semantic resolution deduction (w.r.t. v0)
( -QLS resolution deduction for short) from S to 
generalized clause t, if it satisfies the following 
conditions:

(1) i is a generalized clause occurring in S or
(2) i is an -QLS resolvent, where the core 

and electrons of i are composed of j (j i) or
generalized clauses occurring in S.

Theorem 1. (Soundness) Suppose S  C1 C2 … Cm,
where C1, C2,…, Cm are locked generalized clauses in 
lattice-valued propositional logic LP(X), L. v0 is a 
valuation in LP(X) and { 1, 2,…, t } is an -QLS 
resolution deduction (w.r.t. v0) from S to generalized 
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clause t. If t is an -false generalized clause, then S
, i.e., if t , then S .

Proof. According to the soundness of the general form 
of -resolution principle in lattice-valued propositional 
logic LP(X) [23], we can obtain the result easily. 

Theorem 2. (Conditional Completeness) Let S  C1

C2 … Cm, where C1, C2,…, Cm are locked 
generalized clauses in lattice-valued propositional logic 
LP(X). v0 is a valuation of LP(X) and  L. If the 
following conditions hold:

(1) S ,
(2) S , where S  {Ci | v0(Ci) , i {1, 2,…, 

m}},
(3) there exists at least a locked generalized clause 

Cj {C1, C2,…, Cm}, such that for any disjunct g of Cj,
v0(g)
then there exists an -QLS resolution deduction (with 
respect to v0) from S to an -false generalized clause.

Proof. Suppose Hi is the set of all disjuncts occurring in 
Ci and |Hi| wi, i  1, 2,…, m. Let K(S) be equal to the 
number of disjuncts occurring in S minus that of 

generalized clauses occurring in S, i.e., K(S)
1

m

i
i

w m.

We have the following two cases.  
Case 1: If K(S)  0, then S is composed of unit 

generalized clauses, i.e., each generalized clause 
occurring in S includes only one generalized literal. 
Since S , so all generalized literals occurring in S
compose an -resolution group. As the condition (2) of 
Theorem 2 holds, so we have S S S  and S , S

, where S  {Cr | Cr is a generalized clause occurring 
in S, v0(Cr) }, S  {Ct | Ct is a generalized clause 
occurring in S, v0(Ct) }. Let N S , E S , then (N,
E) is an -QLS clash and its -QLS resolvent is an 

-false generalized clause. Therefore the result holds.
Case 2: Suppose the result holds for K(S) n, n  0. 

Now we need to prove the result for K(S) n.
1) Let K(S) n, so S has at least one non-unit 

generalized clause. Suppose t is the largest lock of -
false disjuncts (under v0) occurring in non-unit 
generalized clauses of S. Let Ci Ci t g, where Ci  is 
non-empty and v0(t g) .

Suppose S1 C1 … Ci-1 Ci  Ci+1 … Cm, so 
S1 and K(S1) n. According to induction hypothesis, 

there exists an -QLS resolution deduction D1  from S1

to an -false generalized clause. 
a. If v0(Ci ) , then v0(Ci) . In each -QLS 

clash (N , E1 ,…, Eq ) of D1 , Ci  can only be an 
element of electrons. If there exists k {1, 2,…, q} such 
that Ci  Ek , then replace Ci  with Ci. Since the lock t
of disjunct t g is bigger than or equal to any other lock 
occurring in generalized clause Ci , so the -QLS 
resolvent Rk of Ek and Nk  is equal to Rk t g, where Ek

is the set obtained by replacing Ci  occurring in Ek  with 
Ci, Rk  is the -QLS resolvent of Ek  and Nk . Since v0(t

g) , so t g can not be the -resolution generalized 
literal of Rj (j k, k 1,…, q). Hence, after changing Ci

to Ci, the sequence (N , E1 ,…, 1kE , Ek, 1kE ,…, Eq ) is 
also an -QLS clash and its -QLS resolvent equals to 
Rq t g.

Since disjuncts of an -false -QLS resolvent 
(under v0) are composed of the following two parts: 

(i) disjuncts occur in the core and are -false under 
v0,

(ii) disjuncts occur in non-unit generalized clauses 
of electrons and are not -resolution literals, 
so, in each -QLS clash (N , E1 ,…, Eq ) of D1 , if 
there exists k {1, 2,…, q} such that R Ek  is an 
original -QLS resolvent, which is generated by 
the clash with Ci  as an element of electrons, then after 
changing R  to R t g, the sequence (N , E1 ,…, 1kE ,
Ek, 1kE ,…, Eq ) is also an -QLS clash and its -QLS 
resolvent is equal to Rq t g, where Ek is the set 
obtained by replacing R  occurring in Ek  with R t g,
and Rq  is the -QLS resolvent of clash (N , E1 ,…, Eq ). 

b. If v0(Ci ) , then Ci  can only be an element 
occurring in the core of each -QLS clash (N , E1 ,…,
Eq ) of D1 . Since tg is not the -resolution literal of 
each generalized clause occurring in the core N ,
so (N , E1 ,…, Eq ) is also an -QLS clash and its -
QLS resolvent is equal to Rq tg, where N is the set 
obtained by replacing Ci  occurring in N  with Ci t g,
and Rq  is the -QLS resolvent of clash (N , E1 ,…, Eq ). 

Hence, after changing all Ci  occurring in each -
QLS clash of D1  to Ci and modifying the corresponding 

-QLS resolvent, we can obtain a resolution deduction 
D1. From the above discussion, we can get that D1 is an 

-QLS resolution deduction from S to an -false 
generalized clause or t g.
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If D1 is an -QLS resolution deduction from S to an 
-false generalized clause, then the result holds. 

If D1 is an -QLS resolution deduction from S to t g,
then let S2  C1 … Ci-1 t g  Ci+1 … Cm.
Obviously, S2  and K(S2) n. According to induction 
hypothesis, there exists an -QLS resolution deduction 
D2 from S2 to an -false generalized clause. Connecting 
D1 and D2, we can obtain an -QLS resolution 
deduction from S to an -false generalized clause. 

2) If t occurring in 1) does not exist, then disjuncts 
occurring in non-unit generalized clauses of S are not -
false under v0. As S , so for any G S , G is a unit 
generalized clause. Since S , for any (g1, g2,…, gm)
H1 H2 … Hm, we have g1 g2 … gm . Let N
{C1, C2,…, Cm} S . According to Definition 17, there 
exists an -QLS clash (w.r.t. v0) (N, E1,…, Eq), and 
its -QLS resolvent is an -false generalized clause, 
where Es S , s  1, 2,…, q. Hence, the result holds.       

Example 5. Let C1  (x  y), C2  (x  z)  (s  t), 
C3 y  (y  z)  (s (a4, b1)), C4  (s  t)  (r
(a2, b1)) , C5 r (a5, b1) be five generalized clauses in 
lattice-valued propositional logic (L9 L2 )P(X) and S
C1  C2  C3  C4  C5, where (a4, b1), (a2, b1), (a5, b1)

L9  L2 and x, y, z, r, s, t are propositional variables. If
 (a6, b1) L9 L2, then S and there exists an -

QLS resolution deduction from S to an -false 
generalized clause.

In fact, we only need to find an -QLS resolution 
deduction from S to an -false generalized clause. Let 
C1, C2, C3, C4, C5 have the following locks: 

C1 1(x  y), 
C2 2(x  z) 3(s  t),
C3 4 y 5(y  z) 6(s (a4, b1)),  
C4 7(s  t) 8(r  (a2, b1)) ,
C5 9(r (a5, b1)). 
Suppose v0 is the valuation in (L9 L2 )P(X) such 

that v0(x)  I, v0(y)  (a5, b1), v0(z)  (a2, b2), v0(s)  (a6,
b2), v0(t)  (a3, b1), v0(r)  (a6, b1). Hence we have v0(C1)

 v0(C2) v0(C3) v0(C4) means 
incomparable) v0(C5) Since the conditions (2) and 
(3) of Theorem 2 hold, so we have the following -
QLS resolution deduction: 

(1) 1(x  y)
(2) 2(x  z) 3(s  t)
(3) 4 y 5(y  z) 6(s (a4, b1))

(4) 7(s  t) 8(r  (a2, b1))
(5) 9(r (a5, b1)) 
(6) 6(s (a4, b1)) 3(s  t) by (1), (2), (3) 
(7) 8(r  (a2, b1)) 3(s  t) by (1), (4), (6) 
(8) 8(r  (a2, b1)) by (4), (7) 
(9) by (5), (8) 

Hence, there exists an -QLS resolution deduction form 
S to an -false generalized clause, i.e., S  In fact, 
there exists four -QLS clashes (N, E1,…, Eq) as 
follows:  

(1) 1
1N  {C2, C3}, 1

1E  {C1}, 1
2E  {C1} and the -

QLS resolvent 1
2R of ( 1

1N , 1
1E , 1

2E ) is 6(s (a4, b1))

3(s  t) , where 1
1R 5(y  z) 6(s (a4, b1)) 3(s

 t) , 1
2N  { 1

1R ,C2}.
(2) 2

1N  { 1
2R , C4}, 2

1E  {C1} and the -QLS 
resolvent 2

1R of ( 2
1N , 2

1E ) is 8(r  (a2, b1)) 3(s  t)
.
(3) 3

1N  {C4}, 3
1E  { 2

1R } and the -QLS 
resolvent 3

1R of ( 3
1N , 3

1E ) is 8(r  (a2, b1)) .
(4) 4

1N  {C5}, 4
1E  { 3

1R } and the -QLS 
resolvent 4

1R of ( 4
1N , 4

1E ) is .

4. -Quasi-Lock Semantic Resolution for 
Lattice-Valued First-Order Logic LF(X) 

Generalized clauses and generalized literals occurring in 
this section always belong to a generalized-Skölem 
standard form, i.e., for any generalized clause C and 
generalized literal g, all variables of C and g are bound 
variables with the quantifier . For any generalized 
clauses C1, C2,…, Cm (m  3) in lattice-valued first-order 
logic LF(X), there exists at least a renamed substitution 
 such that C1 , C2 ,…, Cm  have no common variables. 

Therefore, generalized clauses C1, C2,…, Cm (m  3) 
occurring in the following always have no common 
variables.  

Definition 19. Let ID D, D, D be an interpretation 
in lattice-valued first-order logic LF(X), L and g a 
generalized literal in LF(X). g is called a non- -false 
generalized literal w.r.t. ID, if for any instance g0 of g,

D(g0)  g is called an -pure-false generalized 
literal w.r.t. ID, if for any instance g0 of g, D(g0) g
is called an -para-false generalized literal w.r.t. ID, if 
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there exist instances g01, g02 of g such that D(g01)
and D(g02) Both -pure-false generalized 

literal and -para-false generalized literal w.r.t. ID are 
called -false generalized literal w.r.t. ID.

Definition 20. Let ID D, D, D  be an interpretation 
in lattice-valued first-order logic LF(X), L. N, E1,…,
Eq are sets composed of some locked generalized 
clauses in LF(X). The sequence (N, E1,…, Eq) is called 
an -quasi-lock semantic clash ( -QLS clash for short) 
w.r.t. ID, if N, E1,…, Eq satisfy the following conditions:

(1) for any generalized clause
ri

C Ei, D(
ri

C ) ,
i  1, 2,…, q,

(2) let R0
C N

C . For any i  1, 2,…, q, there exists 
an -resolvent Ri of Ni and Ei, where N1 N, N2  {R1}

N2 , N2  N and for any i  3,…, q, Ni  {Ri 1} Ni ,
Ni  N {R1,…, Ri 2},

(3) for any generalized clause 
ri

C  Ei, the -
resolution literal 

ri
g of

ri
C is the one that has the 

smallest lock among disjuncts occurring in
ri

C , i  1, 
2,…, q,

(4) for any generalized clause
tj

C  Nj, the -

resolution literal
tj

g of
tj

C is the one which not only has 

at least a non- -false instance (w.r.t. ID), and also has 
the smallest lock among disjuncts with non- -false 
instances (w.r.t. ID) occurring in 

tj
C , where j  1, 2,…,

q,
(5) D(Rq)

Rq is called the -QLS resolvent of this clash. N is 
called the core and E1,…, Eq are called electrons of 
this clash.

Remark 5. (1) For any generalized clause C 
occurring in Definition 20, if there exists the same 
disjunct occurring in different locations of C, then 
retain the one with the smallest lock and delete others.

(2) For any disjunction h occurring in Ei, D(h)
i  1, 2,…, q.
(3) In general, there exists at least a generalized 

clause C * N such that D(C *) In fact, if for any 
generalized clause C  N, D(C) , then D(R0) ,
i.e., there does not exist an -QLS clash. If R0 is seen as 
an -QLS resolvent, then this -QLS clash is redundant 
by the construction of R0

Example 6. C1 1(M(x1)  N(x2)) , C2 3(M(b)
N(y1)) 2P(y2), C3 4(Q(z1) P(c)) 5(R(z2) S(c)) 
be four locked generalized clauses in lattice-valued 
first-order logic L9F(X) based on L9, and S 
C1 C2 C3 C4, where x1, x2, y1, y2, z1, z2 are variables 
and b, c are constants. Suppose  a5 and ID D, D,

D  is an interpretation of L9F(X), where D  {b, c},  

3 3 3

( ) ( ) ( ) ( ) ( ), , , , , , ,b c M b M c N b N c P b
b c a a I I a

6 4 4 8 8 2

( ) ( ) ( ) ( ) ( ) ( ), , , , ,P c Q b Q c R b R c S c
a a a a a a .

Then we can obtain an -QLS clash (N , E1,…, Eq) by 
Definition 20.

In fact, since D(C1) , D(C2) , v(C3) , so 
we can obtain an -QLS clash (N, E1, E2): N  {C2}, E1

 {C3}, E2  {C1} and the -QLS resolvent R2 of this 
clash is 5(R(z2) S(c)) , where R1 3(M(b)  N(y1))

5(R(z2) S(c)) , N2  {R1}.

Example 7. C1 1(M(x1)  N(a)) 2(P(a) Q(x2)), 
C2 3(M(b)  R(y1)) 4(S(c) T(y2)), C3 5(N(z1)
R(d)), C4 6(S(u1) T(d)) be four locked generalized 
clauses in lattice-valued first-order logic (L9 L2 )F(X) 
based on LIA L9 L2, and S C1  C2  C3  C4, where
x1, x2, y1, y2, z1, u1 are variables and a, b, c, d are 
constants. Suppose  (a6, b2) L9 L2 and ID D, D,

D is an interpretation of (L9 L2 )F(X), where D  {a,
b, c, d},

2 1 2 1 2 1 2 1

2 2 2 2 2 2 2 2

5 2 3 2 3 2 3 2

4 2

( ) ( ) ( ) ( ), , , , , , , ,

( ) ( ) ( ) ( ) ( ), , , , ,
( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ), , , ,
( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ), , , ,
( , ) ( , ) ( , ) ( , )

( ) (,
( , )

a b c d M a M b M c M d
a b c d I I I I
N a N b N c N d P a
a b a b a b a b I
Q a Q b Q c Q d
a b a b a b a b
R a R b R c R d
a b a b a b a b
S a S
a b 4 2 4 2 4 2

3 1 3 1 3 1 3 1

) ( ) ( ), , ,
( , ) ( , ) ( , )

( ) ( ) ( ) ( ), , , .
( , ) ( , ) ( , ) ( , )

b S c S d
a b a b a b

T a T b T c T d
a b a b a b a b

Then we can obtain an -QLS clash (N , E1,…, Eq) by 
Definition 20.
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In fact, since D(C1) , D(C2) // , v(C3) , v(C4)
, so we can obtain an -QLS clash (w.r.t. ID) (N, E1,

E2): N  {C2, C3}, E1  {C1}, E2  {C4} and the -QLS 
resolvent R2 of this clash is 2(P(a) Q(x2)) , where 
R1 4(S(c) T(y2)) 2(P(a) Q(x2)) , N2  {R1}.

Definition 21. Suppose S  C1  C2 …  Cm, where 
C1, C2,…, Cm are locked generalized clauses in lattice-
valued first-order logic LF(X),  L and ID D, D,

D  is an interpretation in LF(X). { 1, 2,…, t } is 
called an -quasi-lock semantic  resolution 
deduction (w.r.t. ID) -QLS resolution deduction 
for short) from S to generalized clause t, if it 
satisfies the following conditions: 

(1) i is a generalized clause occurring in S or 
(2) i is an -QLS resolvent (w.r.t. ID), where 

the core and electrons of i are composed of j (j
 i) or generalized clauses occurring in S.

Theorem 3. (Soundness) Suppose S  C1  C2 …  Cm,
where C1, C2,…, Cm are locked generalized clauses in 
lattice-valued first-order logic LF(X).  L, { 1, 2,…, 

t } is an -QLS resolution deduction from S to 
generalized clause t. If t is an -false generalized 
clause, then S , i.e., if t , then S .

Proof. According to the soundness of the general form 
of -resolution principle in LF(X)[23], we can obtain 
the result easily. 

Theorem 4. (Lifting Lemma) Let N, E1,…, Eq be sets 
composed of locked generalized clauses in lattice-
valued first-order logic LF(X), ID D , D , D  an 
interpretation in LF(X) and L. N  is the set 
obtained by replacing each locked generalized 
clause C occurring in N with an instance C  of C, and 
Ei  is the set obtained by replacing each locked 
generalized clause Ci occurring in Ei with an instance 
Ci  of Ci, i 1, 2,…, q. If (N , E1 ,…, Eq ) is an -QLS 
clash (w.r.t. ID ) and write its -QLS resolvent as 
Rq , then there exists an interpretation ID D, D,

D  of LF(X) such that (N, E1,…, Eq) is an -QLS 
clash (w.r.t. ID), and Rq  is an instance of Rq,
where Rq is the -QLS resolvent of (N, E1,…, Eq), 
i.e., Fig. 1 holds.

Fig. 1 Transformation Diagram 

Remark 6. In fact, ID D, D, D and ID D , D ,
D satisfy the following conditions:

(1) D D .
(2) For any function symbol f (0) occurring in N,

E1,…, Eq, (0)
Df

(0)
Df .

(3) Let (d1,…, dn) Dn(n N ). For any n-ary 
function symbol f (n) occurring in N, E1,…, Eq:

1> if f (n)(d1,…, dn) occurs in ID , then D(f (n)(d1, …, 
dn)) D (f (n)(d1,…, dn)),  

2> if f (n)(d1,…, dn) does not occur in ID , then D(f
(n)(d1,…, dn)) D (f (n)(d1 ,…, dn )), where (d1 ,…, dn )

Dn and f (n)(d1 ,…, dn ) occurs in ID .
(4) Let (d1,…, dn) Dn(n N ). For any n-ary 

predicate symbol p(n) occurring in N, E1,…, Eq:
1> if p(n)(d1,…, dn) occurs in ID , then D(p(n)(d1,…,

dn)) D (p(n)(d1,…, dn)),  
2> if p(n)(d1,…, dn) does not occur in ID , then

D(p(n)(d1,…, dn)) D (p(n)(d1 ,…, dn )), where (d1 ,…, 
dn ) Dn, p(n)(d1 ,…, dn ) occurs in ID .

Proof. Since for any generalized clauses Cj , Gih

occurring in N  and Ei  respectively, there exist ground 
substitutions j and ih such that Cj

j
jC , Gih

ih
ihG and

generalized clauses occurring in N E1 … Eq have 
no common variables with each other, we can obtain Cj

Cj , Gih Gih , where { ih j | 1 i q, h i, j

Rq

E1 Eq…

-QLS clash 

N E1 Eq

-QLS clash 

N

Rq

…
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}, Cj and Gih are generalized clauses occurring in N
and Ei respectively, i and  are index sets, i  1, 2,…, 
q. As (N , E1 ,…, Eq ) is an -QLS clash (w.r.t. ID ),
hence D (Cj )  and D (Gih ) for any 
generalized clauses Cj , Gih  occurring in N  and Ei  (i

1, 2,…, q), respectively. Suppose ID D, D, D  is an 
interpretation of LF(X), where ID and ID  satisfy Remark 
6. For any disjunct g  occurring in N E1 … Eq ,
the following results hold: 

(1) if g  is an -para-false disjunct (w.r.t. ID ), then g
is an -para-false disjunct (w.r.t. ID), 

(2) if g  is an -pure-false disjunct (w.r.t. ID ), then 
g is an -pure-false disjunct (w.r.t. ID), 

(3) if g  is a non- -false disjunct (w.r.t. ID ), then g
is a non- -false disjunct (w.r.t. ID), 
where g  is an instance of g, g N E1 … Eq.

If N , E1 ,…, Eq  are the sets composed of the 
ground instances of all generalized clauses occurring in 
N, E1,…, Eq respectively, then the above-mentioned 
result (1), (2) are: if g  is an -false disjunct (w.r.t. ID ), 
then g is an -false disjunct (w.r.t. ID). 

Let Ni {Ci1 , Ci2 ,…, Cik }, Ei {Gi1 , Gi2 ,…, 
Gip }, where Cih Cih Gil Gil , Ni {Ci1, Ci2,…, Cik},
Ei {Gi1, Gi2,…, Gip}, h  1, 2,…, k, l  1, 2,…, p.
Since (N , E1 ,…, Eq ) is an -QLS clash (w.r.t. ID ),
so there exist substitution  and disjuncts x1 ,…, xk ,
y1 ,…, yp such that x1 … xk y1 … yp

, where xh  is the non- -false disjunct (w.r.t. ID )
with the smallest lock among non- -false disjuncts 
(w.r.t. ID ) occurring in generalized clause Cth , yl

is the disjunct with the smallest lock occurring in 
generalized clause Gil , xh xh , yl yl , h  1, 
2,…, k, l  1, 2,…, p. Hence the -resolvent Ri  of Ni

and Ei  is Ci1 (x1 ) … Cik (xk )
Gi1 (y1 ) …  Gip (yp ), i.e., Ri Ci1

… Cik  Gi1 …  Gip . According to lift 
lemma of the general form of -resolution principle in 
LF(X) [23], there exists a most general unifier  such 
that , where  is a substitution. Therefore, x1

… xk y1 … yp  and in Cih (or Gil), if 
disjuncts gi1,…,

iirg are equal to xi (or yl) under 
substitution , then all the disjuncts, which are equal 
to xi (or yl) under substitution , are only gi1,…,

iirg .
Hence, the -resolvent Ri of Ni and Ei is Ci1 …
Cik  Gi1 …  Gip where xh  is the disjunct, 
which not only has at least a non- -false instance (w.r.t. 

ID), and also has the smallest lock among disjuncts with 
non- -false instances (w.r.t. ID) occurring in 
generalized clause Cih , yl  is the disjunct with the 
smallest lock occurring in generalized clause Gil ,
h  1, 2,…, k, l  1, 2,…, p. Furthermore, for any 
disjunct g occurring in Cih (or Gil), if D (g ) , then 

D(g ) . Therefore, 

Ri Ci1 … Cip  Gi1 …  Gik

 Ci1 … Cip  Gi1 …  Gik

(Ci1 … Cip  Gi1 …  Gik

Ri

Hence (N, E1,…, Eq) is also an -QLS clash (w.r.t. ID)
and Rq  is a ground instance of Rq, where Rq is the -
QLS resolvent of (N, E1,…, Eq). 

Theorem 5. (Conditional completeness) Let S  C1

C2 … Cm, where C1, C2,…, Cm are locked 
generalized clauses in lattice-valued first-order logic 
LF(X). L, ID D, D, D is an interpretation in 
LF(X) and for any disjunct g occurring in S, g is not an 

-para-false disjuct (w.r.t. ID). If the following 
conditions hold:

(1) S ,
(2) S , where S  {Ci | D(Ci) , i {1, 2,…, 

m}},
(3) there exists at least a locked generalized clause 

Cj occurring in S such that D(g) for any disjunct g
of Cj,
then there exists an -QLS resolution deduction (w.r.t. 
ID) from S to an -false generalized clause.

Proof. Since S according to Herbrand theorem [15], 
there exists a finite ground instance set S0 such that S0

where S0  is the conjunction of all ground 
instances in S0. As for any disjunct g of Cj, D(g)

so for any disjunct g0 of Cj
0, D (g0) where Cj

0

is a ground instance of Cj, Cj
0 S0 and ID D , D ,

D  is an interpretation of LF(X), D D, D D, D

adds the interpretation of the constants only occurring in 
S0 and not in S based on D. Since S  and there is no 

-para-false disjuct (w.r.t. ID) occurring in S, so for any 
generalized clause Ck S , D (Ck

0) , where Ck
0 is a 

ground instance of Ck, Ck
0 S0. According to Theorem 2, 

there exists an -QLS resolution deduction (w.r.t. ID )
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 from S0  to an -false generalized clause. Moreover, 
we can use Theorem 4 to lift  to an -QLS 
resolution deduction (w.r.t. ID) from S to an -false 
generalized clause.                                                       

Example 8. Let C1  (M(f (x1))  N(x2))  (M(x3)
N(a)), C2  (M(f (b))  P(y1))  (Q(y2)  R(c)) , C3

(N(z1))  (N(a) P(z2))  (S(z3) T(d)) , C4  (Q(d)
 R(u1))  (Q(u2)  R(c)), C5  (T(v1)  W(a)) be

five generalized clauses in lattice-valued first-order 
logic (L9 L2 )F(X) and S C1  C2  C3  C4  C5,
where x1, x2, x3, y1, y2, z1, z2, z3, u1, u2, v1 are variables 
and a, b, c, d are constants. If  (a6, b2) L9 L2, then 
there exists an -QLS resolution deduction from S to an 

-false generalized clause
Equip S with the following locks: 
C1 1(M(f (x1))  N(x2)) 9(M(x3)  N(a)) 
C2 2(M(f (b)) P(y1)) 3(Q(y2)  R(c))
C3 4(N(z1)) 5(N(a) P(z2)) 6(S(z3) T(d))
C4 7(Q(d)  R(u1)) 10(Q(u2)  R(c)) 
C5 8(T(v1)  W(a)) .
As there exists ground substitution  {b x1, a x2, f

(b) x3, c y1, d y2, a z1, c z2, c z3, c u1, d u2, d v1}
such that C1 M(f (b))  N(a), C2  (M(f (b))
P(c))  (Q(d)  R(c)) , C3  (N(a))  (N(a) P(c))

 (S(c) T(d)) , C4 Q(d)  R(c), C5  (T(d)
W(a)) , i.e., S C1 C2 C3 C4 C5 , according 
to Theroem 4.3, we only need to prove that there exists 
an -QLS resolution deduction from S  to an -false 
generalized clause

Suppose ID D , D , D  is an interpretation of 
(L9 L2 )F(X), where D  {a, b, c, d},  

2 2 2 2 2 2 2 2

4 1 3 1 2 2 4 1 4 1 3 2

( ) ( ) ( ) ( ) ( ), , , , , , , , ,
( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , .
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

a b c d f b M a M b M c M d
a b c d a a b a b a b a b
N a P c Q d R c S c T d W a
a b a b a b a b a b O a b

Hence, D (C1 ) // , D (C2 ) , D (C3 ) ,
D (C4 ) // , D (C5 ) . Moreover, we can obtain the 

following -QLS resolution deduction :

(1 ) 1(M(f (b))  N(a))
(2 ) 2(M(f (b))  P(c)) 3(Q(d)  R(c))
(3 ) 4(N(a)) 5(N(a) P(c)) 6(S(c) T(d))
(4 ) 7(Q(d)  R(c))

(5 ) 8(T(d)  W(a))
(6 ) 3(Q(d)  R(c)) 4(N(a)) 6(S(c) T(d))

by (1 ), (2 ), (3 )
(7 ) 4(N(a)) 6(S(c) T(d))      by (4 ), (6 )
(8 ) 3(Q(d)  R(c)) 6(S(c) T(d))

by (1 ), (2 ), (7 )
(9 ) 6(S(c) T(d))              by (4 ), (8 )
(10 )                                         by (1 ), (5 ), (9 )

Therefore,  is an -QLS resolution deduction (w.r.t.
ID ) from S  to an -false generalized clause

Let ID D, D, D  be an interpretation of (L9

L2)F(X), where D {a, b, c, d},

2 2 2 2 2 2 2 2

4 1 4 1 4 1 4 1

3 1 3 1 3 1 3 1

( ) ( ) ( ) ( ), , , , , , , ,

( ) ( ) ( ) ( ), , , ,
( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ), , , ,
( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ), , , ,
( , ) ( , ) ( , ) ( , )

a b c d f a f b f c f d
a b c d a a a a
M a M b M c M d
a b a b a b a b
N a N b N c N d
a b a b a b a b
P a P b P c P d
a b a b a b a b

2 2 2 2 2 2 2 2

4 1 4 1 4 1 4 1

4 1 4 1 4 1 4 1

3 2

( ) ( ) ( ) ( ), , , ,
( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ), , , ,
( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ), , , ,
( , ) ( , ) ( , ) ( , )

( ) ( ) ( ) ( ) ( ), , , , .
( , )

Q a Q b Q c Q d
a b a b a b a b
R a R b R c R d
a b a b a b a b
S a S b S c S d
a b a b a b a b

T a T b T c T d W a
O O O O a b

According to Theorem 4, after replacing Ci (i
1,…, 5) occurring in  with Ci, we can obtain an -
QLS resolution deduction (w.r.t. ID)  from S to an -
false generalized clause as follows

(1) 1(M(f (x1))  N(x2)) 9(M(x3)  N(a)) 
(2) 2(M(f (b)) P(y1)) 3(Q(y2)  R(c))
(3) 4(N(z1)) 5(N(a) P(z2)) 6(S(z3) T(d))
(4) 7(Q(d)  R(u1)) 10(Q(u2)  R(c))
(5) 8(T(v1)  W(a))
(6) 3(Q(y2)  R(c)) 4(N(z1)) 6(S(z3) T(d))
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by (1), (2), (3) 
(7) 4(N(z1)) 6(S(z3) T(d))

by (4), (6) 
(8) 3(Q(y2)  R(c))  6(S(z3) T(d))

by (1), (2), (7) 
(9) 6(S(z3) T(d)) by (4), (8) 
(10)                                           by (1), (5), (9) 

In fact, there are the following five -QLS clashes 
(N, E1,…, Eq) occurring in  :  

(1) N1
1  {C1, C3}, E1

1  {C2} and the -QLS 
resolvent R1

1 of (N1
1, E1

1) is 3(Q(y2)  R(c)) 4(N(z1))
6(S(z3) T(d)) .

(2) N1
2  {C4}, E1

2  {R1
1} and the -QLS resolvent

R1
2  of (N1

2, E1
2 ) is 4(N(z1)) 6(S(z3) T(d)) .

(3) N1
3  {C1}, E1

3  {C2, R1
2 } and the -QLS 

resolvent R1
3 of (N1

3, E1
3 ) is 3(Q(y2)  R(c))  6(S(z3)

T(d)) .
(4) N1

4  {C4}, E1
4  {R1

3} and the -QLS resolvent 
R1

4 of (N1
4, E1

4) is 6(S(z3) T(d)) .
(5) N1

5  {C1}, E1
5  {C5, R1

4 } and the -QLS 
resolvent R1

5 of (N1
5, E1

5) is .

Remark 7. The main difference between quasi-lock 
semantic (QLS for short) resolution in classical logic 
and -QLS resolution in lattice-valued logic are 
the following two aspects:

(1) Electrons and core of QLS clash in classical 
logic are clauses, but electrons and core of -QLS 
clash are sets composed of generalized clauses.

(2) Each resolution pair of QLS clash are 
composed of two literals, but each -resolution group 
of -QLS clash may include more than two 
generalized literals.

Because of the above difference, for some false 
clause sets in classical logic, which do not have the 
completeness of QLS resolution, may be -QLS 
resolved into empty clause. For example: 

Example 9. Let S  {P(a), ~P(x) Q(y), ~Q(b)} be a 
clause set in classical logic, written as S P(a)  (~P(x)

Q(y)) Q(b). Obviously, S is false and equip S with 
locks as follows: 

(1) 1P(a), 
(2) 3 ~P(x) 2Q(y), 

(3) 4 ~Q(b). 
Let the interpretation I  {~P(a), P(b), Q(a), ~Q(b)}. 
In fact, we can obtain that (1), (2) are false under I

and (3) is true under I. Hence, only (3) is qualified to 
become the core. So we have the following two cases: 

Case 1: According to QLS resolution in classical 
logic, we can obtain a QLS clash ((2), (3)) and the QLS 
resolvent of this QLS clash is 3 ~P(x). Since (3 ~P(x), 4

~Q(b)) is not a resolution pair, so there is not other QLS 
clash. Hence, there does not exist a QLS resolution 
deduction form S to empty clause. 

Case 2: According to -QLS resolution, there exist 
two -QLS clashes (N, E1,…, Eq ) as follows: 

(1) 1
1N  {(3)}, 1

1E  {(2)} and the -QLS 
resolvent 1

1R of ( 1
1N , 1

1E ) is 3 ~P(x),
(2) 2

1N  {(3)}, 2
1E  {(1), 1

1R } and the -QLS 
resolvent 2

1R of ( 2
1N , 2

1E ) is empty clause. 
Therefore, there exists an -QLS resolution 

deduction form S to empty clause. 
In general, -QLS resolution in lattice-valued 

first-order logic LF(X) can not be equivalently 
transformed into that for lattice-valued propositional 
logic LP(X), which means that the lifting lemma is 
usually not true. But we can obtain the conclusion under 
some special cases. 

5. Conclusions 

Combined with the benefits of lock resolution method 
and semantic resolution method in classical logic, -
quasi-lock semantic resolution method for a lattice-
valued logic with truth-valued defined in a lattice-
valued logical algebraic structure- lattice implication 
algebras (LIA) was discussed. Concretely, on the basis 
of the general form of -resolution principle, -quasi-
lock semantic resolution method based on lattice-valued 
propositional logic LP(X) was established, and its 
soundness theorem and condition completeness theorem 
were proved. Secondly, the corresponding -quasi-lock 
semantic resolution method in lattice-valued first-order 
logic LF(X) was proposed, its soundness and condition 
completeness were also established. This will become 
the theoretical foundation for automated reasoning in 
lattice-valued logic based on LIA. Meanwhile, this 
method can be used in areas such as automated theorem 
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proving, program verification, and engineering 
technologies.
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