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Abstract

Curve fitting is a fundamental task in many research fields. In this paper we present results demonstrating the

fitting of 2D images using CUDA (compute unified device architecture) on NVIDIA graphics processors via

particle swarm optimization (PSO). Particle swarm optimization is particularly well-suited to implementation

on graphics processors using CUDA as each CUDA thread can be made to model a single particle in a swarm

with the swarm itself defined by thread blocks.

The motivation for this work was the reconstruction of interferometric photoactivated localization microscopy

(iPALM) data sets. The reconstruction requires the fitting of 2D curves to potentially millions of detected

photoactivation peaks. Additional motivation was to search for a solution that replaces a cluster with a single

desktop machine using multiple CUDA graphics cards.

PSO curve fitting running on the GPU enabled a substantial performance increase over the CPU alone and scaled

well with multiple CUDA cards. The performance gains increase with the number of images to be fit and the

number of cards used. Two NVIDIA Tesla C1060 graphics cards achieved performance comparable to 30 nodes

of the cluster.
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1. Introduction

Interferometric photoactivated localization microscopy

(iPALM) is a novel light microscopy technique for

imaging cellular ultrastructure. iPALM can gener-

ate 3D images of the distribution of properly tagged

molecules [1]. A key step in the iPALM reconstruc-

tion process requires fitting images representing de-

tected photoactivation peaks to a 2D Gaussian sur-

face. This fitting must be done for each of the hun-

dreds of thousands to several millions of peaks in the

iPALM data.

The existing iPALM reconstruction and 3D vi-

sualization, implemented in IDL (Interactive Data
Language, Exelis Visual Information Solutions, Boul-

der, CO, USA), makes use of about 100 nodes of the

Janelia Farm cluster (Howard Hughes Medical Insti-

tute, Janelia Farm Research Campus, Ashburn, VA,

USA). The cluster runs IDL sessions to do the curve

fitting. It is desired, to make iPALM microscopes

more accessible to other researchers, to replace the

cluster with NVIDIA graphics cards using CUDA;
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this work describes a step towards that goal.

The fitting of a 2D Gaussian to data represented

as an image is certainly not new or novel. What

is novel about this work is the particle swarm opti-

mization curve-fitting algorithm, under CUDA, which

we name PSFIT. The results section will show that

this algorithm plays the performance gains possible

with the GPU against the inherent slowness of the

particle swarm approach to curve-fitting in order to

arrive at a solution that meets the particular goal of

liberating the iPALM reconstruction from the clus-

ter. The PSFIT algorithm itself is general and appli-

cable to any situation where the same function must

be fit to many thousands or more data sets.

Particle swarm optimization (PSO) [2] is an al-

gorithm that searches through a space, in this case

the space of function parameters, in order to locate

the global minimum or maximum. It is modeled af-

ter the swarm movements of flocks of birds or schools

of fish. PSO has been successfully applied in a vast

multitude of areas from neural networks [3] and med-

ical image registration [4] to electrical power sys-

tems [5] and feature selection for classification [6].

In particular, PSO has been applied to curve fitting

[7].

Graphics processors offer a unique environment

for the implementation of highly parallel algorithms,

especially through the use of the CUDA architec-

ture. As with PSO, a large number of applications

have been found for the GPU, including GPU-based

PSO [8] [9]. The work in these last two references is

particularly relevant and differences between these

approaches to PSO on the GPU and that of the present

paper will be discussed below.

Next we describe the actual implementation of

the PSFIT algorithm. After this we present results

demonstrating the performance gains achieved with

the CUDA implementation. A discussion of the re-

sults, including limitations, and the general applica-

bility of the PSFIT algorithm, follows. Finally, we

conclude with some thoughts on possible future di-

rections for this work.

2. Methods

For this work we use the simplest, or canonical, PSO

algorithm. The canonical PSO algorithm is outlined

in Figure 1. In the continuous parameter case, PSO

populates the parameter space with a swarm of “par-

ticles” where the particles can be viewed as points

in the n-dimensional parameter space. The goal of

PSO is to move these particles through the parameter

space in a way that searches for the global minimum

(or maximum, here we only consider minima) with-

out becoming trapped in local minima that might

stymie other optimization techniques.

In applying PSO to curve fitting, we combine the

usual least-squares metric with PSO searching. In

this case, each particle in the swarm represents a

candidate curve with the objective function measur-

ing the deviation between the candidate curve and

the supplied data in a least-squares sense. As in nor-

mal least-squares, this deviation is to be minimized.

With the swarm, this minimization is found in the

tension between the best position found by each par-

ticle and that of the entire swarm (the global best, in

Figure 1). In this work, the photoactivation peak im-

ages, each localized to an 11x11 pixel region, were

fit to,

z(x,y) = p0 + p1exp(−1
2
(( x−p4

p2
)2 +( y−p5

p3
)2))

in order to determine the peak location, (p4, p5) and

spread around the peak, p2
2 and p2

3.

CUDA requires the same operations to be per-

formed by each thread of the GPU. The threads are

grouped into blocks of up to 512 threads. Each thread

in a block has access to up to 16k bytes of shared

memory but it is not possible for threads to commu-

nicate with threads outside their own block. Blocks

are conceptually arranged in a grid, according to the

design of the problem.

To implement PSO under CUDA we assigned

each swarm particle to one thread and defined each

swarm as one block. The number of particles was

fixed at 256 to make use of that many threads per

block. This number worked well as it maximized the

GPU usage according to NVIDIA’s occupancy cal-

culator. Therefore, each block represented a swarm
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1. Given

(a) �xi - a particle position in the search space,

i = 1 . . .n

(b) �vi - a velocity associated with each�xi

2. Initialization for each�xi

(a) �xi = (�bmax−�bmin)�U +�bmin

(b) �vi =�0

(c) x̂i =�xi - the particle’s best position

(d) �g =�xi, if f (�xi)< f (�g) - swarm best position

3. Iteration for each�xi

(a) �vi← ω�vi + c1�r1(x̂i−�xi)+ c2�r2(�g−�xi)

(b) �xi←�xi +�vi

(c) x̂i =�xi, if f (�xi)< f (x̂i)

(d) �g =�xi, if f (�xi)< f (�g)

4. Repeat iteration step until convergence

Figure 1: The canonical particle swarm optimization

algorithm. The algorithm conducts a search of the

space representing the function to be minimized (or

maximized) by moving a swarm of particles through

the space and testing the function value at each par-

ticle. The tension between the best location found

by the swarm and the best location found by each

individual particle directs the search. Here�bmin and
�bmax define the bounds of the search space, mini-

mum and maximum, for each dimension, while ω ,

c1, and c2 are constants with typical values of 0.9,

2.0, and 2.0 respectively. Finally, �U , �r1 and �r2 are

random vectors with components drawn uniformly

from the range [0,1) and f () is the fitness function

to be minimized (or maximized). The PSFIT algo-

rithm uses the swarm to minimize the mean-squared

error between the given function values (the image

intensity values) and those of a 2D Gaussian with

the components of the particle position acting as the

parameters of the fit function.

dedicated to fitting a single photoactivation peak im-

age. The blocks were laid out as a grid of n rows by

128 columns. The number of rows was a function of

the number of input images and was set to a multi-

ple of 128 in order to efficiently access GPU global

memory. This arrangement scaled readily to other

GPU configurations and enabled the straightforward

addition of multiple GPU cards.

The heart of the PSFIT algorithm is the k particle
CUDA kernel which is outlined in Figure 2.

Initialization

The canonical PSO algorithm sets the initial par-

ticle velocities to zero and the initial particle posi-

tions (in parameter space) to random values. In this

case, the particle positions are restricted to a speci-

fied domain which was determined empirically from

Gaussian fits to test images. This restriction pre-

vents particles from flying off wildly and also limits

the search space to better improve the probability of

swarm convergence. The allowed particle velocities

are also restricted to prevent excessively rapid parti-

cle motion. The reduced χ2 for this initial position is

used as the function value for the initial best position

of the particle. Since all particles are implemented

as threads, these operations in code become simple

updates to individual components of the velocity or

position vectors for a single particle; “looping” over

particles is handled by the thread scheduler inside

the graphics card hardware.

The swarm best, the best position found by any

particle (thread), is computed at this point. This is

an operation over threads, therefore, only one thread

is used for this calculation. Since the positions and

velocities for each swarm are stored in shared mem-

ory, a single thread can access all the particle best

positions and determine which of them has the low-

est χ2 value. All other threads in the block must

of necessity sit idle while this updated swarm best

is found. Afterwards, the threads are synchronized

and execution begins again in unison. Thread spe-

cific operations are used in several other key places

in the kernel.

Iteration

For any one particle in the swarm, iteration is the
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1. Initialization

(a) Set particle velocity components to zero.

(b) Set particle position components to a ran-

dom value within the given constraints (this

becomes the initial particle best position).

(c) Calculate the χ2 for this position.

(d) Set the swarm best as the best of all the

threads in the block.

2. Iteration

(a) Update each velocity component restricting

to ±Vmax.

(b) Update each position component restricting

to the given domain.

(c) Calculate the χ2 for the new position, updat-

ing the particle best, if necessary.

(d) Update the swarm best position and list of

last n swarm best positions, if necessary.

3. Output

(a) Copy swarm best position to output mem-

ory.

(b) Update the standard deviation of the last n
swarm best positions for each fit parameter.

Figure 2: Outline of the k particle CUDA kernel.

This kernel represents an individual particle as a

thread of a block where each block represents a

swarm. Each swarm fits a single input image to a 2D

Gaussian returning the fit parameters and estimates

of their uncertainties.

maximum number of times that the swarm will be

allowed to update itself in search of the global min-

imum. This idea is key for the CUDA implemen-

tation, namely, that each particle is restricted to a

pre-specified number of steps in searching the pa-

rameter space. This imposes uniform behavior on

each particle, and by extension each swarm, in its

search for the best fit parameters and allows for effi-

cient parallel fitting of many thousands to hundreds

of thousands of images simultaneously. The num-

ber of swarm iterations necessary to converge is de-

pendent upon the function being fit. In the case of

2D Gaussians, the effect of the number of iterations,

Imax, was investigated and a value of 25 to 30 was

deemed proper.

For an individual particle, the velocity compo-

nent was updated at each iteration according to the

canonical algorithm given in Figure 1. Each par-

ticle requires several pseudo-random values at this

point, as in the initial placement of the particles in

the search space. Each thread made use of the Park

and Miller MINSTD pseudo-random number gener-

ator [10]. Once the new velocity of the particle is

calculated, it is simply added to the existing posi-

tion components to arrive at the new position. The

terms “velocity” and “position” are, of course, used

loosely in this context.

Once a new position is calculated, each compo-

nent is checked to ensure that it is within the allowed

domain. If it is not, the offending component is set to

the boundary value. After this, the χ2 is calculated

using the particle position as the parameter values

of the fit. Next, each iteration concludes by updat-

ing the particle best position if the newly calculated

χ2 is less than any previously discovered by the par-

ticle. Finally, an update of the swarm best position is

done, if warranted. As in the initialization step, only

thread zero of the swarm is used when checking all

particles for a new swarm best.

As part of the search for a new swarm best po-

sition, the list of n previous swarm best positions

is updated by pushing the new best at the end and

dropping the oldest best off the front. These values

are tracked for the swarm in order to calculate un-
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certainties for the final parameter values.

Output

The result of the parameter search consists of the

six parameter values, associated uncertainties and

one reduced χ2. The parameter values and reduced

χ2 are copied to output memory by the first seven

threads of each swarm, each one copying a single

value. The parameter uncertainties are estimated by

the standard deviation of the last n swarm best posi-

tions and copied to output memory as well by thread

zero.

Random number generation

The PSFIT algorithm needs to have access to many

pseudo-random values, here simply referred to as

“random values” with the understanding that they

are generated via some algorithm. Random values

are necessary for the initialization of the swarm and

the determination of initial parameter values (parti-

cle positions). Each iteration of the swarm requires

two additional random values for each particle (thread).

The highly parallel nature of the GPU makes serial

determination of random values difficult in practice.

For PSFIT, the two areas that need random values

can be cleanly separated. The problem becomes one

of selecting pseudo-random number generation al-

gorithms and corresponding seed values. For swarm

initialization, 32-bit integer seed values were deter-

mined rapidly on the CPU, prior to starting the ker-

nel as the number of swarms was known (the num-

ber of images to be fit). These were calculated from

a single hybrid-Tausworthe generator [11] using the

current Unix system time value as a seed. On the

GPU, each thread managed its own Park and Miller

MINSTD generator by storing the seed value in a

register variable, the initial seed selected from those

passed to the GPU from the CPU.

The hybrid Tausworthe generator used on the CPU

is given in Figure 3. The seed value was the integer

returned by the Unix time function, though it could

easily be fixed to produce a completely deterministic

execution environment.

This algorithm was selected for seed generation

unsigned int z1 = 0xff32422;

unsigned int z2 = 0xee03202;

unsigned int z3 = 0xcc23423;

unsigned int z4 = 0x1235;

unsigned int TausStep(unsigned *z, int S1,

int S2, int S3,

unsigned int M) {

unsigned int b = ((*z << S1) ^ *z) << S2;

*z = (((*z & M) << S3) ^ b);

return *z;

}

unsigned int LCGStep(unsigned int *z,

unsigned int A,

unsigned int C) {

*z = (A*(*z)+C);

return *z;

}

unsigned int HybridTaus() {

return TausStep(&z1, 13, 19, 12, 4294967294UL) ^

TausStep(&z2, 2, 25, 4, 4294967288UL) ^

TausStep(&z3, 3, 11, 17, 4294967280UL) ^

LCGStep(&z4, 1664525, 1013904223UL);

}

Figure 3: The hybrid Tausworthe generator used to

create seed values for the GPU. This code was run on

the CPU and very quickly generated a vector of 32-

bit integer seed values, one for each particle of each

swarm. The variable z4 is the seed for the linear

congruential step and was used as the seed for the

entire generator.

because of its favorable characteristics. Since it is

running on the CPU, it must be fast, which it is; there

are no divisions (direct or via modulo arithmetic)

and no floating point operations. Even the linear

congruential step is implemented so as to avoid divi-

sions. Also, the generator has a high period, on the

order of 2121, and it is of a different class of algo-

rithms when compared to the MINSTD for which it

is generating seeds.

The MINSTD algorithm has been in use for a

long time. It is, as its name suggests, a minimum

standard and uses the linear congruential approach

to generating random values. It has known issues

[12], but in this application it was selected for two
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__device__ float rnd(unsigned int *seed) {

*seed = 16807*(*seed) % 2147483647;

return 4.6566128730773926e-10 * (float)(*seed);

}

Figure 4: MINSTD as implemented in CUDA. The

seed value is passed on each call and updated. Mul-

tiplication by the constant saves a floating point

division by the maximum value of 2147483648.

The device label extends standard C to tell the

NVIDIA compiler that this function is to be com-

piled for the GPU and not the CPU.

reasons. First, its implementation is straightforward,

thereby reducing the size of the code, and second,

for any given swarm, the number of random values

necessary, for any particular thread, is on the order

of a few hundred, not millions or tens of millions.

The C implementation, as used in PSFIT, is given in

Figure 4.

Parameter uncertainties
PSO searches a space attempting to minimize or

maximize some objective function. The output of

the search is a point in the search space that, accord-

ing to some criteria, mets this goal of minimizing or

maximizing. There is no concept of how well this

goal has been met, no concept of the uncertainty of

the point selected. To apply PSO to curve fitting,

where the point located represents the parameter val-

ues for the fit function, one would like to have an un-

certainty associated with each value, therefore, the

PSFIT algorithm estimates the uncertainty of each

value by tracking the last n swarm best positions

and, when iteration has ceased, uses the standard de-

viation of these values as conservative estimates of

the uncertainty in the position selected. This empir-

ical approach tracks well with uncertainties calcu-

lated for parameters located using traditional curve

fitting algorithms, at least for the 2D Gaussian func-

tions used here.

Integration with reconstruction software
The iPALM reconstruction software is written in

the IDL language. In order to make use of the CUDA

portion of the reconstruction, it was necessary to

extend the IDL language via a module written in

C. This module acts as a bridge between IDL and

CUDA, converting IDL arrays to values in GPU mem-

ory and vice versa with the output. Additionally, the

C module implements the hybrid Tausworthe pseudo-

random number generator described above to calcu-

late seed values for the particles in all the swarms.

Lastly, the C module coordinates the execution of

kernels on multiple GPU cards, if present in the sys-

tem.

3. Results

Random Seed Generation
The many thousands of MINSTD generators used by

the GPU threads each need a 32-bit seed value. The

seed value, as described above, was supplied by a

vector of seed values pre-computed for each run on

the CPU using the hybrid Tausworthe generator. If

this approach of using one pseudo-random gener-

ator to initialize a second one is to be successful,

it should be expected that the output of the paral-

lel random number generators ought to pass statisti-

cal tests associated with parallel generators. One of

these tests is the block test [13].

In the block test, a set of samples is collected.

The samples are drawn from a number of streams,

each of which is a separate MINSTD generator seeded

with a value drawn from a single hybrid Tausworthe

generator. For each stream, a group of individual

random values is collected. The resulting set of val-

ues, then, should be normally distributed if the streams

are statistically independent. This process is shown

graphically in Figure 5. In our tests, the number of

samples in a set was 20,000. There were 500 streams

each with a group size of three. The number of sets

tested was 100 with a set being considered normally

distributed if its Jarque-Bera test statistic [14] was

below a cutoff of 5.99 (p > 0.05 to accept the null

hypothesis of normality). With these parameters,

94% of the samples created from the combined hy-

brid Tausworthe and MINSTD generator passed the
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block test. For comparison, only 4% of samples cre-

ated from MINSTD generators seeded with values

from another MINSTD generator passed the test.

Effect of Iteration Limits

The number of swarm iterations is a key factor in

the success of the PSFIT algorithm. If the number of

iterations, which must be fixed for all images being

fit, is too few, the swarm is not able to converge to

a meaningful solution. However, if the number of

iterations is too large, the execution time increased

so as to erase the benefit of using the GPU since the

algorithm of O(Niter).

The fits produced by the PSFIT algorithm were

compared to those produced by the IDL CURVEFIT

routine. This routine is based on the CURFIT routine

in Bevington [15] and is a standard gradient-descent,

nonlinear, curve fitting algorithm. In this work, the

output of CURVEFIT is taken to be a gold standard.

The comparison considers the fit parameters to be a

point in a six-dimensional space and calculates the

Euclidean distance between the two sets of parame-

ters as a function of the number of swarm iterations.

Specifically, 50,000 images were fit with PSFIT and

CURVEFIT for each swarm iteration value. The Eu-

clidean distance between the corresponding fits was

calculated and the median of this set was plotted ver-

sus the iteration limit as in Figure 6. As can be, the

swarms quickly converge to values virtually iden-

tical to those found by CURVEFIT. For the iPALM

reconstruction, the iteration limit was set to between

25 and 30.

The PSFIT algorithm running on two Tesla cards

achieved performance comparable to some 30 nodes

of the Janelia Farm Linux cluster [16]. This is an

encouraging report as a key goal of this work is to

eventually replace the cluster with a single desktop

machine using GPUs.

For a test sample of 50,000 images, 30 swarm

iterations per image, the median parameter distance

when compared to CURVEFIT was 0.844 indicat-

ing excellent agreement in the majority of cases. It

should be noted that 6.3% of the test images failed to

fit using CURVEFIT. The failures can be explained

Parameter x 95% CI

xcenter 4.57196 [4.57194, 4.57198]

ycenter 4.81209 [4.81205, 4.81213]

Table 1: Mean and 95% confidence intervals for the

calculated 2D Gaussian peak position for 100,000

fits of a single peak image.

by the need to provide initial guess values for the

parameters which occassionally lead to unstable re-

sults. Particle swarm optimization is a population-

based optimization algorithm and as such does not

require initial guesses. This view gives insight on

why it is more robust than simple gradient descent,

even for a straightforward function like a 2D Gaus-

sian.

The stability of the PSFIT algorithm was exam-

ined. A single photoactivation peak image was fit

100,000 times. The large number of repetitions en-

sures that the 95% confidence intervals for the pa-

rameter mean values is very tight as can be seen for

the center position of the 2D Gaussian in Table 1.

Performance Versus Number of Images
Another key performance factor is the number of

images to be fit. Figure 7 shows the run time per-

formance for PSFIT and CURVEFIT as a function

of the number of images to fit. The PSFIT perfor-

mance includes the time to transfer data to and from

the Tesla C1060. The CURVEFIT results were run

on a Dell computer (Intel 2.66 GHz, 2 cores, 4 GB

RAM, Red Hat Linux 4.3, IDL 6.4). As can be seen,

the CPU case quickly becomes very time consum-

ing and makes iPALM image reconstruction tedious

if done solely on a desktop PC. The slight perfor-

mance gain seen by changing the number of swarm

iterations per image from 30 to 25 needs to be bal-

anced against the imprecision of the results (see Fig-

ure 6). For iPALM reconstruction this imprecision is

acceptable.

Empirically-Derived Parameter Uncertainties
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Figure 5: The structure of the block test. (a) Streams of MINSTD generators seeded from a single hybrid

Tausworthe generator. Sequential samples for each MINSTD, of group size, are totaled to create a single sum

value. This is repeated for each MINSTD stream. The total of the sum values forms a single sample. (b) The

collection of samples is given to the Jarque-Bera test for normality as described in the text. The entire process,

(a) and (b), is repeated to form N tests, always with a new hybrid Tausworthe generator seeded with the Unix

system time.

The empirically-derived PSFIT parameter uncer-

tainties were compared to the CURVEFIT param-

eter uncertainties in a maner analogous to the pa-

rameter values themselves. Figure 8 shows the Eu-

clidean distance between the PSFIT and CURVEFIT
uncertainty values, again viewing each as a point in

a six-dimensional space, as a function of the number

of swarm iterations. As the second plot shows, the

minimum for the 2D Gaussians fit in this case, oc-

curs around 33 iterations reaching a measured min-

imum of 0.295. After this point, the distance in-

creases slightly before leveling off at a mean value

of 0.655. The reason for this decrease followed by

an increase may be due to zigzagging [17], a known

effect where the particle swarm oscillates about the

minimum point.
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Figure 6: The median distance between the parameters found by PSFIT and those found by CURVEFIT for

50,000 photoactivation peak images as a function of the number of swarm iterations. The vertical line marks the

iteration limit used in iPALM reconstruction.

4. Discussion

A pure IDL implementation of the PSFIT algorithm

runs approximately 1000x slower than the IDL in-

strinsic CURVEFIT for the same 2D Gaussian (30

parameter iterations, dual core 2.4 GHz Intel CPU,

2 GB RAM, Fedora 12 Linux) so the performance

gain seen by using CUDA is due to the brute force

speed of the GPU and the number of simultaneous

fits that it can do. This fact helps determine when

the PSFIT algorithm is appropriate, namely, in cases

where there are many, many fits of the same kind. If

only a few or even a few hundreds of fits are needed,

the overhead is such that another approach is likely

to be more performant.

The number of iterations of the swarm necessary

for convergence must be determined empirically. It

is directly related to the complexity of the fit func-

tion. In this present case, the number of necessary

iterations to achieve good convergence was found

to be small, a definite advantage. Like the number

of fits to be performed, the iteration limit must also

be kept in mind when evaluating this approach for a

particular task.

Standard curve fitting algorithms return some no-

tion of the uncertainty in the parameters. The empir-

ical approach to parameter uncertainty used in PS-
FIT tracks well with these uncertainties. Placing this

approach on a surer mathematical foundation is an

area for future work.

The PSFIT algorithm scales directly with the num-

ber of CUDA cards in the system. Improvements in

CUDA hardware, therefore, will immediately trans-

late into improvements in the performance of the al-

gorithm thereby ensuring that the appropriateness of

this approach will not fade with time, in the near
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Figure 7: 2D Gaussian fit execution time as a function of the number of images for both CURVEFIT (dashed)

and PSFIT (solid). The CPU execution time quickly becomes unacceptable while the GPU runtime increases

much more slowly. The PSFIT iteration limit was set to 25. Test performed on a Pentium 4 computer (Intel 2.66

GHz, 2 cores, 4 GB RAM, Red Hat Linux 4.3, IDL 6.4) with a GTX-280 NVIDIA GPU.

term, but only become more attractive.

The treatment of random number generation dif-

fers from that of other researchers. For example,

Zhou and Tan [8] simply generate a large set of ran-

dom numbers on the CPU and transfer them to the

GPU before starting the swarm. Here, only the seeds

for the specific particles of the swarms are generated

ahead of time. Mussi and Cagnoni [9] make use of

the Mersenne Twister kernel supplied by NVIDIA

though they do not state in any detail how it was in-

corporated into the actual particle swarm kernel.

As shown above, the use of two separate random

number generation algorithms, one for the seeds (hy-

brid Tausworthe) and one on the GPU for the par-

ticles (MINSTD) clearly provides excellent results.

Srinivasan et al [13] warn that when using the same

generator for each stream two conditions must be

tested. First is the intra-stream correlation to show

that the values of each stream are suitable random.

This is already known for the MINSTD algorithm.

The inter-stream correlation is shown above to be

good via the block test. Therefore, the approach

chosen here is a sound one.

Multicore CPU implementations, to speed the seed

generation, have not been investigated at present.

This is an area for future work, though it is clear that

the scaling of multiple GPU cards will also apply to

multiple CPUs.

5. Conclusion

In this work a particle swarm optimization based

curve fitting algorithm was developed and imple-

mented on NVIDIA GPUs using CUDA. This algo-
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Figure 8: A comparison of the Euclidean distance between the parameter uncertainties returned by CURVEFIT
and those of PSFIT as a function of the iteration limit. The same image was fit each time. The distance was used

as a convergence of the uncertainties would be reflected as a decrease of the distance when the parameter uncer-

tainties are treated as a point in a six-dimensional space. On the left, the full plot show the rapid convergence of

the swarm with iteration limit. On the right, a close up of the region near the minimum shows a slight increase

in the distance after 33 iterations (blue line) possibly due to the zig-zag effect as mentioned in the text.

rithm was applied to the fitting of many 2D Gaus-

sians to photoactivation peak images as a key part

of the iPALM reconstruction process. The result-

ing GPU implementation was substantially faster at

fitting many hundreds of thousands to millions of

peak images when compared to a single CPU. The

GPU implementation was also effective when scaled

to two NVIDIA Tesla cards achieving performance

comparable to 30 nodes of a Linux cluster. The im-

plementation required some care in the use of pseudo-

random numbers, which are key elements of the par-

ticle swarm optimization algorithm. The algorithm

itself is general and applicable to other functions to

be fit. Future work will investigate this potential.
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