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Abstract 

In social networks, counting the number of different cycle sizes can be used to measure the entropy of the network 
that represents its robustness. The exact algorithms to compute cycles in a graph can generate exact results but they 
are not guaranteed to run in a polynomial time. We present an approximation algorithm for counting the number of 
cycles in an undirected graph. The algorithm is regression-based and guaranteed to run in a polynomial time. A set 
of experiments are conducted to compare the results of our approximate algorithm with the results of an exact 
algorithm based on the Donald-Johnson backtracking algorithm. 
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1. Introduction 

Social networks are becoming a trend recently in the 
online community. A social network consists of people 
(i.e. online subscribers or users) and the relations 

between them. Examples of famous social network 
applications include Paltalk, Hi5, Facebook and 
mySpace. Such dynamic and complex networks are 
used to share information and media [1, 2] and many 
applications and systems are developed to mine those 
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complex networks for similar information or media of 
interest to the users [3, 4].
Social networks are further subject to the analysis of 
researchers by studying the flow of communication and 
information exchange within the social network [5, 6] 
and their evolution from different perspectives and 
applications [7]. Such analysis is required in order to 
measure the social network vulnerability to the 
spreading of rumors, diseases, news, viruses etc. In 
addition to the above, an important measure when 
analyzing a social network would be its robustness. The 
robustness measures the strength of the network to 
resist failures and attacks. 
Robustness of a network is measured by finding its 
entropy [8]. Entropy of a network is calculated by the 
evaluation of the cycles  degree distribution, which 
requires counting the number of cycles existing in the 
network. The problem of finding and counting circuits 
and cycles in large graphs has been of interest to 
researchers lately due to its challenging complexity. 
Exhaustive enumeration, even by smart algorithms 
proposed in earlier research, is restricted to small 
graphs as the number of cycles grows exponentially 
with the size of the graph. Therefore, it is believed that 
it is unlikely to find a precise and an efficient algorithm 
for counting circuits. Finding a method of 
approximation to this problem is the alternative.  
Counting cycles in a graph is an NP-Complete problem. 
Hence, in our previous work [9], we proposed a DFS-
XOR-based approximation algorithm to count the 
cycles in un-directed graph. The algorithm starts by 
running depth first search (DFS) on a randomly selected 
vertex of the network. Next, it starts counting the cycles 
starting with the ones that contain that vertex. The 
approximation is achieved from the number of XOR
levels performed in the exact solution. In order to count 
all the cycles we have to perform n XOR levels, equal to 
the number of unique cycles. Our solution was to 
perform z XOR levels where z < n. z is a value decided 
by the user of the algorithm. By doing so, we can adjust 
the calculation time of the algorithm by sacrificing 
some of the accuracy. As z increases the generated 
results become more accurate and the algorithm 
becomes slower and vice versa. If z = n then the 
generated result will be the exact solution, however, it 
will lead to an exponential cost to compute all the n
XOR levels. 

The focus of this research paper will be counting the 
number of cycles in a graph representing a social 
network, which is considered a preliminary step for 
measuring the robustness. We present a new regression-
based approximation algorithm that counts the number 
of cycles in a guaranteed polynomial time. 

2. Related Work 

This section of the research presents several algorithms 
addressing the same problem for counting the number 
of cycles in a given graph. 
The algorithm in [10] is an approximation algorithm 
that has proven its efficiency in estimating large 
number of cycles in polynomial time when applied to 
real world networks. It is based on transferring the 
cycle count problem into statistical mechanics model to 
perform the required calculation. The algorithm counts 
the number of cycles in random, sparse graphs as a 
function of their length. Although the algorithm has 
proven its efficiency when it comes to real world 
networks, the result is not guaranteed for generic 
graphs. 
The algorithm in [11] is based on backtracking with the 
look-ahead technique. It assumes that all vertices are 
numbered and start with vertex s. The algorithm finds 
the elementary paths, which start at s and contain 
vertices greater than s. The algorithm repeats this 
operation for all vertices in the graph. The algorithm 
uses a stack in order to track visited vertices. The 
advantage of this algorithm is that it guarantees finding 
an exact solution for the problem. The complexity of 
the algorithm is O((V+E)(C+1)). Where, V: number of 
vertices. E: number of edges. C: number of cycles. The 
time bound of this algorithm depends on the number of 
cycles, which grows exponentially in real life networks.  
Hangbo Liu and Jiaxin Wang [12] presented an 
algorithm based on cycle vector space methods. A 
vector space that contains all cycles and union of 
disjoint cycles is formed using the spanning of the 
graph. Then, vector math operations are applied to find 
all cycles. This algorithm is computationally complex, 
since it investigates all vectors and only a small portion 
of them could be cycles.  
We propose an approximation algorithm named 
Regression-based approximation algorithm that have an 
advantage over the algorithm proposed in [5] and [9]. It 
can guarantee the correctness of the results for all graph 
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types. Moreover, our approximation algorithm is more 
time efficient when it comes to real life problems of 
counting cycles in graphs, because their complexity is 
not dependant on the factor of number of cycles, and 
can guarantee a polynomial time execution.  

3. Cycles Counting Algorithms 

Counting cycles in graphs is an NP-Complete problem. 
NP-Complete problems are a challenging area for 
computer scientists since until now there is no 
algorithm discovered to solve them in polynomial time.  
The idea of updating an existing algorithm in order to 
enhance its performance is tricky. Usually, there is a 
tradeoff between the accuracy of the algorithm and its 
cost [9]. Designers will have to sacrifice a certain 
accuracy percentage for the sake of gaining an 
enhancement in the time or space complexities of the 
algorithm. 
The challenge faced is to develop approximation 
algorithms that give an approximate solution for the 
problem of counting the number of cycles in a 
guaranteed polynomial time. 

3.1. Exact Algorithm 

With this algorithm we are interested in finding the 
number of cycles for each possible cycle length. We 
developed an algorithm to find all the simple cycles in a 
graph that is based on an algorithm created by Johnson 
[13]. The algorithm is based on backtracking technique. 
It starts with node s, which is the vertex with the least 
ID, and begins to enumerate all cycles that passes 
through s. This is done by building a simple path 
starting from s using a stack to save the vertices. 
Whenever s is encountered again, a cycle is created and 
printed. Addition to that any vertex is currently in a 
path (stored in the stack) is being blocked so it cannot 
be added again to the stack. When a node is finished 
(the algorithm passes through all of its edges), it is 
being popped from the stack and unblocked for future 
use. After enumerating all the cycles with s is a 
common node, the algorithm removes s from the graph 
G and starts the process with the second least vertex. 
These steps are repeated until G has two nodes. Since 
our graph is undirected, the equation 

(1) 

is used to convert from directed cycles to undirected 
cycles. Where Cd  is the total number of cycles in the 

directed version of the original undirected graph (i.e. 
replace each undirected edge with two directed edges in 
opposite directions). Cun  is the total number of cycles 
in the undirected graph and e is the total number of 
edges in the graph. 

The pseudo code for this algorithm is shown in 
Algorithm 1. We summarize the algorithm with these 
steps: 

(i) Assign IDs for all the nodes in the graph. 
(ii) Choose node S as the node with least ID. 
(iii) Initialize a path by making S is the root of the 

path. 
(iv) Start a depth first traversal using S as the root, 

for each new unblocked node add it to the 
current path. 

(v) If S is found again, then a new cycle is found 
and displayed. 

(vi) When a node is finished, it set to unblocked so 
that it can be used in other circuits. 

(vii)After finishing all the nodes, remove S from 
the graph and start again from step 2. 

(viii) If S is the last node in the graph, end 
the algorithm. 

Before finding the cycles, a simplification process is 
applied to the graph that removes nodes and edges that 
cannot be a part of any cycle. This speeds up the 
Johnson algorithm. This process can be summarized 
with these steps: 

(i) Multi edges between the same nodes are 
considered as one edge. 

(ii) Remove nodes with degree less than 2 because 
these nodes are leaves that will never form a 
cycle. 

(iii) Remove cut-edges, which are edges that if 
removed from a graph, the graph will be 
divided into two or more subgraphs. 

We noticed that steps from 2 to 7 are similar and 
repeated for each node, the only difference is that the 
graph has one less node than its previous. Using this we 
can parallelize the algorithm by creating N-1 threads, 
each thread is responsible of finding cycles originating 
from its root. 
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The complexity of Johnson's algorithm is O((n + e)c)
where n is the number of nodes, e is the number of 
edges and c is the number of circuits in the graph. To 
have a sense of how the cycles  computation problem is 
an NP-complete, Table 1 summarizes the results of the 
algorithm running on complete graphs which has the 
worst case running times. See Figure 1 for the details of 
the exact algorithm. 

Table 1. Exact algorithm execution time. 

Number of nodes Number of cycles Time (msec)
5
8
11
13

37
8018
5488059
710771275

313
906
31671
3188079

3.2. Regression-based Approximation Solution 

Here, we propose an efficient approximation algorithm 
that is based on the work in [14]. It is based on the 
algorithm that has been introduced in [10]. Some 
modifications on the algorithm has been introduced to 
give more accurate results. The new algorithm uses 
curve fitting (regression) to estimate the number of 
circuits (cycles) in an undirected graph and provides 
analytical results for the typical entropy of circuits in 
sparse random graphs. The approximation in this 
algorithm is based on a statistical mechanics approach. 
It uses a Bethe approximation technique [15], and 
iterations of the Belief Propagation equations and an 
approximation method to approximate the statistical 
mechanics model and find the cycles distribution. Two 
methods can be used as an approximation algorithms 
Monte Carlo simulation or Bethe approximation. Bethe 
is used here because of the well-known correspondence 
between both Bethe and Belief Propagation. First of all, 
the graph is reduced; all leaf nodes (nodes with degree 
1 or 0) are removed from the graph. Each edge of the 

graph is initialized with a random positive value y
(0)

.
Each edge is iterated from its initial value until 

convergence reaching to a fixed value of y
*

.
Convergence is determined according to some accuracy 
level. In this algorithm, the convergence is considered

Figure 1. Pseudo code for the Exact Algorithm 

to be satisfied when yT 1 yT 0.001 . The value 
y  represents the probability that the edge is present in 
a cycle c . The y value can be calculated using the 
following equation:  

yi j
T 1

u m i j
ym i
T

1 0.5u2 m,n i j m nym i
T yn i

T  (2)  

where u  is a positive real value. Then from all y 's two 
values are calculated; CL and  
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uyi j

* yj i
*

1 uyi j
* yj i

*(i, j ) E
 (3) 

R 1
N

ln 1 0.5u2 ym i
* yn i

*
m,n i j m ni V

1
N

ln(1 uyi j
* yj i

* )
(i, j ) E

L ln(u)
N

(4) 

CL eRN (5)  

where   
i  is the set of neighbors of node i .
i j  is the set of neighbors of i  except j .

N  is the number of nodes in the graph.  
CL  is the number of cycles of size L .

Refer to [5,14] for further details on the above 
equations. 
The procedure explained above is repeated starting 
from an initial value of u u0  to u umax . Where 
u0  and umax  are greater than 0. At each iteration step, 
a new distribution point (L,CL )  is produced. The 
iteration step for u  is 0.0001 at the early stages of the 
algorithm. This value is not fixed. It will be changed 
when Lnew Lold 0.001  (i.e. the progress in L  is 
slow). If this condition is satisfied, u is increased by 
10%. As noticed from the equations above, the output 
at each step (L,CL )  depends on u . At specific stages 
of the iteration (when u  gets large), much iteration is 
wasted giving nearly the same point. To avoid this 
condition, a jump in u  is made. This algorithm yields a 
plot of (L,CL )  points. To extract the needed 
distribution points (3 to n ), we use regression. Based 
on a work done by [16], the guassian equation models 
the cycles  distributions of a graph. 

y a.e
( x b
c
)2

(6)  

We used Equation 6 to fit the curve and find the 
function that represents the distribution. The pseudo 
code for this algorithm is shown in Figure 2. This 
algorithm has a running time that has a polynomial 
growing trend with the graph size and logarithmically 

with the required accuracy. Since the algorithm uses the 
adjacency matrix to represent the graph, the space 
complexity is O(2n2 ) .

4. Experiments 

The scope of the experiments is to compare the results 
of running an algorithm (based on Donald Johnson 
backtracking algorithm) that finds an exact solution in 
super power hardware with results of running the 
approximate solutions introduced in the paper in a 
limited power hardware. We have used a real social 
network extracted from the Paltalk with 26 nodes. 

4.1. Exact Algorithm  

In this experiment [8] a grid of 30 Mac Pro machines 
watch with two 2.66 dual core Intel processors, which 
gives a total of 319.2 GHZ processor power. One extra 
machine is used to control the grid and distribute the 
tasks to the machines (called clients). The controller 
follows these steps: 1- read the network from the 
database, 2-Create the graph based on the chosen 
model, 3- divide the algorithm into threads and 4-
submit each thread as a task to the clients. XGrid has 
been used as the distributed computing protocol that is 
developed by Apple and preinstalled on Mac OS X 
Leopard. The code was written to be compiled and run 
under Java 5. With this setup, each thread (mentioned 
above) can be executed on a single core, which gives us 
a parallelism of 120 threads at a time. 
The application was running for 11 hours to generate 
the obtained results. The actual entropy was computed 
as 2.21, and the actual probability distribution is shown 
in Figure 3. The same experiment was re-run on a 
regular Intel Core Duo based laptop with 2GB of RAM 
and it took 22 hours to calculate the same entropy and 
probability distribution. This proves that throwing extra 
hardware and resources to solve an NP problem would 
only yield a marginal improvement in the performance. 
However, advising better algorithms would yield a 
better performance as we will show in the next set of 
experiments. 

4.2. Regression-based Approximation Solution 

 For this experiment, we have used a regular Intel Core 
Duo based laptop with 2GB of RAM. Figure 3 shows a 
comparison between the probability distribution of the 
cycles (from which we compute the entropy) of the 
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three algorithms. It is very obvious that Regression-
based approximation algorithm had a better matching 
distribution to the actual distribution related to the 
DFS-XOR-based approximation algorithm. The 
approximation entropy was computed as 2.19 with an 
error of less than 1%. The new Regression-based 
approximation solution reached this accuracy in only 
140 seconds (using a slower machine). Hence, the 
performance of Regression-based approximation 
algorithm is three orders of magnitude less than the 
running time of DFS-XOR-based approximation 
solution, and five orders magnitude less than the exact 
algorithm. 

5. Conclusion and Future Work 

Counting the number of cycles in a social network is 
usually used to calculate the entropy of that network. 
This entropy is used to measure the robustness and 
stability of the network. Finding the exact number of 
cycles is an NP problem, hence we have proposed an 
approximation algorithm that is regression-based. 
Although the approximation algorithm discovers only a 
small percentage of the cycles in the network, the 
calculated entropy is very accurate. This is due to the 
fact that those algorithms are able to find a similar 
probability distribution of the cycles to the actual 
network. However, the approximate algorithms are 
using limited resources and a few orders of magnitude 
less time to execute. The developed algorithm can be 
further enhanced to be applied to directed graphs, and 
other networks. 

Figure 2. Pseudo code for Regression-based Approximation 
Algorithm 

Figure 3. Comparison of the probability distribution of the three different algorithms 
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Regression-based ApproximationAlgo(G)
Input: Undirected graph G.
Output: Array A[1..n] of size n which contains the cycle 

count of each length.

1: Begin
2: A[1] A[2] 0

3: Reduce G by removing all leaves nodes

4: U 0

5: Points null set of points

6: while(L < n)

7: begin
8:       y = random number between 0 and 10 ( do for 

all edges)

9:      while(|ynew - y|<0.0001 for all edges)

10:            Calculate ynew using equation 2 for all edges 

twice

11:            y ynew

12:       L equation 3

13:       CL equation 5

14:       Add (L,CL) to points 

15:       u u + 0.0001

16:       if( |Lnew-Lold|<0.001)
17:             u u * 1.1

18: end
19: for(i = 3 to n)

20: begin
21:       Find two points that surround i( Lp< i < Lp+1)
22:       Calculate Ci using interpolation 
23:       A[i] Ci

24: end
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