
Received 13 February 2012

Accepted 14 February 2012

APPROXIMATE CYCLES COUNT IN UNDIRECTED GRAPHS

Maytham Safar
Computer Eng. Dept., College of Eng. & Petroleum, Kuwait University

P.O. Box 5969 Safat 13060, Kuwait,
Email: maytham.safar@ku.edu.kw

 Khaled Mahdi
Chemical Eng. Dept., College of Eng. & Petroleum, Kuwait University

P.O. Box 5969 Safat 13060, Kuwait
Email: khaled.mahdi@ku.edu.kw

Hisham Farahat
Computer Eng. Dept., College of Eng. & Petroleum, Kuwait University

P.O. Box 5969 Safat 13060, Kuwait
Email: hishamfarahat@gmail.com

 Saud Albehairy
Computer Eng. Dept., College of Eng. & Petroleum, Kuwait University

P.O. Box 5969 Safat 13060, Kuwait
Email: saud331@gmail.com

 Ali Kassem
Computer Eng. Dept., College of Eng. & Petroleum, Kuwait University

P.O. Box 5969 Safat 13060, Kuwait
Email: ali.qassim@gmail.com

 Khalid Alenzi
Computer Eng. Dept., College of Eng. & Petroleum, Kuwait University

P.O. Box 5969 Safat 13060, Kuwait
Email: engineer.khalid@gmail.com

Abstract

In social networks, counting the number of different cycle sizes can be used to measure the entropy of the network
that represents its robustness. The exact algorithms to compute cycles in a graph can generate exact results but they
are not guaranteed to run in a polynomial time. We present an approximation algorithm for counting the number of
cycles in an undirected graph. The algorithm is regression-based and guaranteed to run in a polynomial time. A set
of experiments are conducted to compare the results of our approximate algorithm with the results of an exact
algorithm based on the Donald-Johnson backtracking algorithm.

Keywords: Complex networks, social networks, cyclic entropy, cycles

1. Introduction

Social networks are becoming a trend recently in the
online community. A social network consists of people
(i.e. online subscribers or users) and the relations

between them. Examples of famous social network
applications include Paltalk, Hi5, Facebook and
mySpace. Such dynamic and complex networks are
used to share information and media [1, 2] and many
applications and systems are developed to mine those

International Journal of Computational Intelligence Systems, Vol. 7, No. 2 (April 2014), 305-311

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

305

complex networks for similar information or media of
interest to the users [3, 4].
Social networks are further subject to the analysis of
researchers by studying the flow of communication and
information exchange within the social network [5, 6]
and their evolution from different perspectives and
applications [7]. Such analysis is required in order to
measure the social network vulnerability to the
spreading of rumors, diseases, news, viruses etc. In
addition to the above, an important measure when
analyzing a social network would be its robustness. The
robustness measures the strength of the network to
resist failures and attacks.
Robustness of a network is measured by finding its
entropy [8]. Entropy of a network is calculated by the
evaluation of the cycles degree distribution, which
requires counting the number of cycles existing in the
network. The problem of finding and counting circuits
and cycles in large graphs has been of interest to
researchers lately due to its challenging complexity.
Exhaustive enumeration, even by smart algorithms
proposed in earlier research, is restricted to small
graphs as the number of cycles grows exponentially
with the size of the graph. Therefore, it is believed that
it is unlikely to find a precise and an efficient algorithm
for counting circuits. Finding a method of
approximation to this problem is the alternative.
Counting cycles in a graph is an NP-Complete problem.
Hence, in our previous work [9], we proposed a DFS-
XOR-based approximation algorithm to count the
cycles in un-directed graph. The algorithm starts by
running depth first search (DFS) on a randomly selected
vertex of the network. Next, it starts counting the cycles
starting with the ones that contain that vertex. The
approximation is achieved from the number of XOR
levels performed in the exact solution. In order to count
all the cycles we have to perform n XOR levels, equal to
the number of unique cycles. Our solution was to
perform z XOR levels where z < n. z is a value decided
by the user of the algorithm. By doing so, we can adjust
the calculation time of the algorithm by sacrificing
some of the accuracy. As z increases the generated
results become more accurate and the algorithm
becomes slower and vice versa. If z = n then the
generated result will be the exact solution, however, it
will lead to an exponential cost to compute all the n
XOR levels.

The focus of this research paper will be counting the
number of cycles in a graph representing a social
network, which is considered a preliminary step for
measuring the robustness. We present a new regression-
based approximation algorithm that counts the number
of cycles in a guaranteed polynomial time.

2. Related Work

This section of the research presents several algorithms
addressing the same problem for counting the number
of cycles in a given graph.
The algorithm in [10] is an approximation algorithm
that has proven its efficiency in estimating large
number of cycles in polynomial time when applied to
real world networks. It is based on transferring the
cycle count problem into statistical mechanics model to
perform the required calculation. The algorithm counts
the number of cycles in random, sparse graphs as a
function of their length. Although the algorithm has
proven its efficiency when it comes to real world
networks, the result is not guaranteed for generic
graphs.
The algorithm in [11] is based on backtracking with the
look-ahead technique. It assumes that all vertices are
numbered and start with vertex s. The algorithm finds
the elementary paths, which start at s and contain
vertices greater than s. The algorithm repeats this
operation for all vertices in the graph. The algorithm
uses a stack in order to track visited vertices. The
advantage of this algorithm is that it guarantees finding
an exact solution for the problem. The complexity of
the algorithm is O((V+E)(C+1)). Where, V: number of
vertices. E: number of edges. C: number of cycles. The
time bound of this algorithm depends on the number of
cycles, which grows exponentially in real life networks.
Hangbo Liu and Jiaxin Wang [12] presented an
algorithm based on cycle vector space methods. A
vector space that contains all cycles and union of
disjoint cycles is formed using the spanning of the
graph. Then, vector math operations are applied to find
all cycles. This algorithm is computationally complex,
since it investigates all vectors and only a small portion
of them could be cycles.
We propose an approximation algorithm named
Regression-based approximation algorithm that have an
advantage over the algorithm proposed in [5] and [9]. It
can guarantee the correctness of the results for all graph

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

306

types. Moreover, our approximation algorithm is more
time efficient when it comes to real life problems of
counting cycles in graphs, because their complexity is
not dependant on the factor of number of cycles, and
can guarantee a polynomial time execution.

3. Cycles Counting Algorithms

Counting cycles in graphs is an NP-Complete problem.
NP-Complete problems are a challenging area for
computer scientists since until now there is no
algorithm discovered to solve them in polynomial time.
The idea of updating an existing algorithm in order to
enhance its performance is tricky. Usually, there is a
tradeoff between the accuracy of the algorithm and its
cost [9]. Designers will have to sacrifice a certain
accuracy percentage for the sake of gaining an
enhancement in the time or space complexities of the
algorithm.
The challenge faced is to develop approximation
algorithms that give an approximate solution for the
problem of counting the number of cycles in a
guaranteed polynomial time.

3.1. Exact Algorithm

With this algorithm we are interested in finding the
number of cycles for each possible cycle length. We
developed an algorithm to find all the simple cycles in a
graph that is based on an algorithm created by Johnson
[13]. The algorithm is based on backtracking technique.
It starts with node s, which is the vertex with the least
ID, and begins to enumerate all cycles that passes
through s. This is done by building a simple path
starting from s using a stack to save the vertices.
Whenever s is encountered again, a cycle is created and
printed. Addition to that any vertex is currently in a
path (stored in the stack) is being blocked so it cannot
be added again to the stack. When a node is finished
(the algorithm passes through all of its edges), it is
being popped from the stack and unblocked for future
use. After enumerating all the cycles with s is a
common node, the algorithm removes s from the graph
G and starts the process with the second least vertex.
These steps are repeated until G has two nodes. Since
our graph is undirected, the equation

(1)

is used to convert from directed cycles to undirected
cycles. Where Cd is the total number of cycles in the

directed version of the original undirected graph (i.e.
replace each undirected edge with two directed edges in
opposite directions). Cun is the total number of cycles
in the undirected graph and e is the total number of
edges in the graph.

The pseudo code for this algorithm is shown in
Algorithm 1. We summarize the algorithm with these
steps:

(i) Assign IDs for all the nodes in the graph.
(ii) Choose node S as the node with least ID.
(iii) Initialize a path by making S is the root of the

path.
(iv) Start a depth first traversal using S as the root,

for each new unblocked node add it to the
current path.

(v) If S is found again, then a new cycle is found
and displayed.

(vi) When a node is finished, it set to unblocked so
that it can be used in other circuits.

(vii)After finishing all the nodes, remove S from
the graph and start again from step 2.

(viii) If S is the last node in the graph, end
the algorithm.

Before finding the cycles, a simplification process is
applied to the graph that removes nodes and edges that
cannot be a part of any cycle. This speeds up the
Johnson algorithm. This process can be summarized
with these steps:

(i) Multi edges between the same nodes are
considered as one edge.

(ii) Remove nodes with degree less than 2 because
these nodes are leaves that will never form a
cycle.

(iii) Remove cut-edges, which are edges that if
removed from a graph, the graph will be
divided into two or more subgraphs.

We noticed that steps from 2 to 7 are similar and
repeated for each node, the only difference is that the
graph has one less node than its previous. Using this we
can parallelize the algorithm by creating N-1 threads,
each thread is responsible of finding cycles originating
from its root.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

307

The complexity of Johnson's algorithm is O((n + e)c)
where n is the number of nodes, e is the number of
edges and c is the number of circuits in the graph. To
have a sense of how the cycles computation problem is
an NP-complete, Table 1 summarizes the results of the
algorithm running on complete graphs which has the
worst case running times. See Figure 1 for the details of
the exact algorithm.

Table 1. Exact algorithm execution time.

Number of nodes Number of cycles Time (msec)
5
8
11
13

37
8018
5488059
710771275

313
906
31671
3188079

3.2. Regression-based Approximation Solution

Here, we propose an efficient approximation algorithm
that is based on the work in [14]. It is based on the
algorithm that has been introduced in [10]. Some
modifications on the algorithm has been introduced to
give more accurate results. The new algorithm uses
curve fitting (regression) to estimate the number of
circuits (cycles) in an undirected graph and provides
analytical results for the typical entropy of circuits in
sparse random graphs. The approximation in this
algorithm is based on a statistical mechanics approach.
It uses a Bethe approximation technique [15], and
iterations of the Belief Propagation equations and an
approximation method to approximate the statistical
mechanics model and find the cycles distribution. Two
methods can be used as an approximation algorithms
Monte Carlo simulation or Bethe approximation. Bethe
is used here because of the well-known correspondence
between both Bethe and Belief Propagation. First of all,
the graph is reduced; all leaf nodes (nodes with degree
1 or 0) are removed from the graph. Each edge of the

graph is initialized with a random positive value y
(0)

.
Each edge is iterated from its initial value until

convergence reaching to a fixed value of y
*

.
Convergence is determined according to some accuracy
level. In this algorithm, the convergence is considered

Figure 1. Pseudo code for the Exact Algorithm

to be satisfied when yT 1 yT 0.001 . The value
y represents the probability that the edge is present in
a cycle c . The y value can be calculated using the
following equation:

yi j
T 1

u m i j
ym i
T

1 0.5u2 m,n i j m nym i
T yn i

T (2)

where u is a positive real value. Then from all y 's two
values are calculated; CL and

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

308

L
uyi j

* yj i
*

1 uyi j
* yj i

*(i, j) E
 (3)

R 1
N

ln 1 0.5u2 ym i
* yn i

*
m,n i j m ni V

1
N

ln(1 uyi j
* yj i

*)
(i, j) E

L ln(u)
N

(4)

CL eRN (5)

where
i is the set of neighbors of node i .
i j is the set of neighbors of i except j .

N is the number of nodes in the graph.
CL is the number of cycles of size L .

Refer to [5,14] for further details on the above
equations.
The procedure explained above is repeated starting
from an initial value of u u0 to u umax . Where
u0 and umax are greater than 0. At each iteration step,
a new distribution point (L,CL) is produced. The
iteration step for u is 0.0001 at the early stages of the
algorithm. This value is not fixed. It will be changed
when Lnew Lold 0.001 (i.e. the progress in L is
slow). If this condition is satisfied, u is increased by
10%. As noticed from the equations above, the output
at each step (L,CL) depends on u . At specific stages
of the iteration (when u gets large), much iteration is
wasted giving nearly the same point. To avoid this
condition, a jump in u is made. This algorithm yields a
plot of (L,CL) points. To extract the needed
distribution points (3 to n), we use regression. Based
on a work done by [16], the guassian equation models
the cycles distributions of a graph.

y a.e
(x b
c
)2

(6)

We used Equation 6 to fit the curve and find the
function that represents the distribution. The pseudo
code for this algorithm is shown in Figure 2. This
algorithm has a running time that has a polynomial
growing trend with the graph size and logarithmically

with the required accuracy. Since the algorithm uses the
adjacency matrix to represent the graph, the space
complexity is O(2n2) .

4. Experiments

The scope of the experiments is to compare the results
of running an algorithm (based on Donald Johnson
backtracking algorithm) that finds an exact solution in
super power hardware with results of running the
approximate solutions introduced in the paper in a
limited power hardware. We have used a real social
network extracted from the Paltalk with 26 nodes.

4.1. Exact Algorithm

In this experiment [8] a grid of 30 Mac Pro machines
watch with two 2.66 dual core Intel processors, which
gives a total of 319.2 GHZ processor power. One extra
machine is used to control the grid and distribute the
tasks to the machines (called clients). The controller
follows these steps: 1- read the network from the
database, 2-Create the graph based on the chosen
model, 3- divide the algorithm into threads and 4-
submit each thread as a task to the clients. XGrid has
been used as the distributed computing protocol that is
developed by Apple and preinstalled on Mac OS X
Leopard. The code was written to be compiled and run
under Java 5. With this setup, each thread (mentioned
above) can be executed on a single core, which gives us
a parallelism of 120 threads at a time.
The application was running for 11 hours to generate
the obtained results. The actual entropy was computed
as 2.21, and the actual probability distribution is shown
in Figure 3. The same experiment was re-run on a
regular Intel Core Duo based laptop with 2GB of RAM
and it took 22 hours to calculate the same entropy and
probability distribution. This proves that throwing extra
hardware and resources to solve an NP problem would
only yield a marginal improvement in the performance.
However, advising better algorithms would yield a
better performance as we will show in the next set of
experiments.

4.2. Regression-based Approximation Solution

 For this experiment, we have used a regular Intel Core
Duo based laptop with 2GB of RAM. Figure 3 shows a
comparison between the probability distribution of the
cycles (from which we compute the entropy) of the

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

309

three algorithms. It is very obvious that Regression-
based approximation algorithm had a better matching
distribution to the actual distribution related to the
DFS-XOR-based approximation algorithm. The
approximation entropy was computed as 2.19 with an
error of less than 1%. The new Regression-based
approximation solution reached this accuracy in only
140 seconds (using a slower machine). Hence, the
performance of Regression-based approximation
algorithm is three orders of magnitude less than the
running time of DFS-XOR-based approximation
solution, and five orders magnitude less than the exact
algorithm.

5. Conclusion and Future Work

Counting the number of cycles in a social network is
usually used to calculate the entropy of that network.
This entropy is used to measure the robustness and
stability of the network. Finding the exact number of
cycles is an NP problem, hence we have proposed an
approximation algorithm that is regression-based.
Although the approximation algorithm discovers only a
small percentage of the cycles in the network, the
calculated entropy is very accurate. This is due to the
fact that those algorithms are able to find a similar
probability distribution of the cycles to the actual
network. However, the approximate algorithms are
using limited resources and a few orders of magnitude
less time to execute. The developed algorithm can be
further enhanced to be applied to directed graphs, and
other networks.

Figure 2. Pseudo code for Regression-based Approximation
Algorithm

Figure 3. Comparison of the probability distribution of the three different algorithms

0

0.05

0.1

0.15

0.2

3 5 7 9 11 13 15 17 19 21 23 25 27 29

Pr
ob

ab
ili

ty

Cycle Length

Exact Algorithm
Regression-based Approximation Algorithm
DFS-XOR-based Approximation Algorithm

Regression-based ApproximationAlgo(G)
Input: Undirected graph G.
Output: Array A[1..n] of size n which contains the cycle

count of each length.

1: Begin
2: A[1] A[2] 0

3: Reduce G by removing all leaves nodes

4: U 0

5: Points null set of points

6: while(L < n)

7: begin
8: y = random number between 0 and 10 (do for

all edges)

9: while(|ynew - y|<0.0001 for all edges)

10: Calculate ynew using equation 2 for all edges

twice

11: y ynew

12: L equation 3

13: CL equation 5

14: Add (L,CL) to points

15: u u + 0.0001

16: if(|Lnew-Lold|<0.001)
17: u u * 1.1

18: end
19: for(i = 3 to n)

20: begin
21: Find two points that surround i(Lp< i < Lp+1)
22: Calculate Ci using interpolation
23: A[i] Ci

24: end

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

310

References

1. R. Angelova, M. Lipczak, E. Milios, P. Pralat:
Investigating the Properties of a Social Bookmarking and
Tagging Network. International Journal of Data
Warehousing and Mining, (2010), 6(1): 1-19.

2. S. Papadopoulos, A. Vakali, I. Kompatsiaris: The
Dynamics of Content Popularity in Social Media.
International Journal of Data Warehousing and Mining,
(2010), 6(1): 20-37.

3. R. Wetzker, C. Zimmermann, C. Bauckhage: Detecting
Trends in Social Bookmarking Systems: A del.icio.us
Endeavor. International Journal of Data Warehousing
and Mining, (2010), 6(1): 38-57.

4. V. Torra, Y. Narukawa: Word similarity from
dictionaries: Inferring fuzzy measures from fuzzy
graphs. International Journal of Computational
Intelligence Systems (IJCIS), (2008), 1: 19-24.

5. E. Marinari, and G. Semerjian, On the number of circuits
in random graphs, Journal of Statistical Mechanics:
Theory and Experiment (2006).

6. T. Takashita, Y. Abe, T. Itokawa, T. Kitasuka, M.
Aritsugi: Design and implementation of a system for
finding appropriate tags to photos in Flickr from Web
browsing behaviour. International Journal of Web and
Grid Services (2011), 7(1): 75-90.

7. C. Grilo, L. Correia: The influence of the update
dynamics on the evolution of cooperation. International
Journal of Computational Intelligence Systems (IJCIS),
(2009), 2(2): 104-114.

8. K. Mahdi, H. Farahat, and M. Safar, Temporal Evolution
of Social Networks in Paltalk, in Proceedings of the 10th
International Conference on Information Integration and
Web-based Applications & Services (2008).

9. M. Safar, K. Alenzi, and S. Albehairy, Counting Cycles
in an Undirected Graph using DFS-XOR Algorithm, In
the Proceedings of the First International Conference on
'Networked Digital Technologies' (NDT), (2009).

10. E. Marinari, R. Monasson and G. Semerjian, An
algorithm for counting circuits: application to real world
and random graphs, Europhysics Letter, (2006).

11. R. Tarjan, Enumaration of the Elementary Circuits of a
Directed Graph, Cornell University Ithaca,(NY, USA,
1972), Technical Report: TR72-145.

12. H. Liu, and J. Wang, A new way to enumerate cycles in a
graph, International Conference on Internet and Web
Applications and Services.

13. D. Johnson, Finding All the Elementary Circuits of a
Directed Graph. SIAM Journal on Computing(1975) ,
pp. 77-84.

14. K. Mahdi, M. Safar, and H. Farahat Analysis of
Temporal Evolution of Social Networks, In the Journal of
Mobile Multimedia (JMM), Rinton Press (Princeton,
New Jersey, 2009), 5(4) 333-350.

15. Rios, P. D. L., S. Lise and A. Pelizzola, Bethe
approximation for self-interacting lattice trees, (2001)
Europhysics Letters 53 176-182.

16. M. Safar, K. Mahdi and A. Qassim, Universal Cycles
Distribution Function of Social Networks, In the
Proceedings of the First International Conference on
'Networked Digital Technologies' (NDT), (2009).

17. The university of Texas at Austin, Cycles in an
undirected graph,
http://www.me.utexas.edu/~bard/IP/Handouts/cycles.pdf
.

18. J. Yedidia, W.T. Freeman and Y. Weiss, Understanding
Belief Propagation and its Generalizations, Mitsubishi
Electric Research Laboratorie,(2002).

19. Erdos Renyi model:
Rényi_model.

20. T. Takashita, Y. Abe, T. Itokawa, T. Kitasuka, M.
Aritsugi: Design and implementation of a system for
finding appropriate tags to photos in Flickr from Web
browsing behaviour, International Journal of Web and
Grid Services(2011), 7(1): 75-90.

21. R. Angelova, M. Lipczak, E. Milios, P. Pralat:
Investigating the Properties of a Social Bookmarking
and Tagging Network, International Journal of Data
Warehousing and Mining(2010), 6(1): 1-19.

22. S. Papadopoulos, A. Vakali, I. Kompatsiaris: The
Dynamics of Content Popularity in Social
Media, International Journal of Data Warehousing and
Mining(2010), 6(1): 20-37.

23. R. Wetzker, C. Zimmermann, C. Bauckhage: Detecting
Trends in Social Bookmarking Systems:
A del.icio.us Endeavor, International Journal of Data
Warehousing and Mining (2010), 6(1): 38-57.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

311

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

