
Received 23 August 2011

Accepted 9 June 2013

 

Sliding Window-based Frequent Itemsets Mining over Data Streams 
using Tail Pointer Table 

Le Wang1,2,3, Lin Feng *1,2, Bo Jin2 
1, School of Computer Science and Technology, 

Dalian University of Technology, 
Dalian 116024, P.R. China, 

lelewater@gmail.com, fenglin@dlut.edu.cn 
2, School of Innovation Experiment, 

Dalian University of Technology, 
Dalian 116024, P.R. China, 

jinbo@dlut.edu.cn 
3, School of Information Engineering, 

Ningbo Dahongying University,  
Ningbo, Zhejiang 315175, P.R. China. 

 

 

 

Abstract 

Mining frequent itemsets over transaction data streams is critical for many applications, such as wireless sensor 
networks, analysis of retail market data, and stock market predication. The sliding window method is an important 
way of mining frequent itemsets over data streams. The speed of the sliding window is affected not only by the 
efficiency of the mining algorithm, but also by the efficiency of updating data. In this paper, we propose a new data 
structure with a Tail Pointer Table and a corresponding mining algorithm; we also propose a algorithm COFI2, a 
revised version of the frequent itemsets mining algorithm COFI (Co-Occurrence Frequent-Item), to reduce the 
temporal and memory requirements. Further, theoretical analysis and experiments are carried out to prove their 
effectiveness. 
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1. Introduction 

Since Agrawal 1 developed the first algorithm Apriori 
for mining frequent itemsets from static sales dataset in 
1994, new algorithms are proposed constantly for 
various sub-domains of frequent itemsets mining, such 
as those for traditional frequent itemsets 2, 3, 4, 5, 6 in 
certain datasets, high utility itemsets 7, 8, 9, 10, 11, frequent 
itemsets in uncertain datasets 12, 13, 14. These approaches 
could be classified into two categories: level-wise 
approaches and pattern-Growth approaches. Apriori 1 is 
a classical level-wise approach; the FP-Growth 
(Frequent Pattern Growth) 2 algorithm is a classical 

pattern-Growth approach. However, in real world there 
are many data streams, such as wireless sensor data, 
transaction flows, call records, and so on. So it has been 
an important research issue in the field of data mining to 
mine frequent itemsets over data streams. 
To handle continuous data streams, time-window is 
commonly used, and it is an efficient approach. 
Depending on the mechanism of the window algorithm, 
three window models can be used to mine frequent 
itemsets (or patterns): landmark window model, damped 
window model, and sliding window model. There are 
many research works on the sliding window-based 
approach, including maximal frequent itemset 15, closed 
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frequent itemsets 16, 17, complete frequent itemsets 18, 19, 

20, 21, and so on. The runtime of such algorithms is 
mainly impacted by the speed of the mining frequent 
itemsets and the updating data. There are three classical 
algorithms for mining frequent itemsets over data 
streams based on the sliding window, such as DST 
(Data Stream Tree) 18, DSP 19, and CPS (Compact 
Pattern Stream) 20. DST and DSP have the same 
structure, but their mining algorithms are different: DST 
mines frequent itemsets with FP-Growth 2, whereas 
DSP mines frequent itemsets with COFI 
(Co-Occurrence Frequent-Item) 3; the COFI algorithm 
consumes less memory than FP-Growth according to 
the paper 19; the memory requirement of CPS is smaller 
than DST/DSP, but the drawback is that it reconstructs 
trees more often, which consumes more time. Moreover, 
CPS also uses FP-Growth to mine frequent itemsets. 
However, these algorithms improve the speed of the 
mining process, but do not consider the efficiency of 
updating data. 
In this paper, we propose a new data structure, called 
TPT-tree (Tail Pointer Table tree), to store the stream 
data of a window, it can improve the efficiency of 
updating data and costs less memory than DST/DSP; 
and propose a corresponding algorithm, called COFI2, 
for mining frequent itemsets over data streams.  

The organization of this article is as follows: Section 2 
discusses related work; Section 3 provides a description 
of the problem and defines relevant terms; Section 4 
introduces a structure TPT-tree and a corresponding 
algorithm; Section 5 shows the experimental results, and 
Section 6 gives conclusions. 

2. Related work 

The algorithms most closely related to our study are 
DST 18, DSP 19, and CPS 20, which mine exact frequent 
itemsets over data streams. The algorithms DST and 
DSP use the same data structure (DST-tree), and mine 
frequent itemsets using FP-growth and COFI 3 
respectively; CPS creates trees with another data 
structure CPS-tree, and mines frequent itemsets using 
FP-growth. This section discusses the two data 
structures and the two frequent itemsets mining 
algorithms in detail.   

2.1.  Data structures: DST-tree and CPS-tree 

To efficiently maintain data of a window to a tree and 
mine frequent itemsets from a window, the algorithms 
DST and CPS maintain data to DST-tree and CPS-tree 
respectively. 

 
Fig. 1. Structure of DST-tree and CPS-tree 

 
The node structure of DST-tree is shown in Fig. 1(a), 
where N is an item name, L is the ID of the pane by 
whose data this node is updated lastly, and P is a list of 
the support numbers of w panes (in the form of [V1,V2,.. 
Vw]; w is the window width). P and L are used to 
effectively delete obsolete data from a tree. Before 
adding new pane data into a tree, obsolete data should be 
deleted from the tree; and when adding new data into a 
tree, P and L should be updated. However, DST does not 
delete obsolete data before performing an operation of 
mining frequent itemsets, and therefore there are some 
invalid nodes on the DST-tree. The number of these 
nodes can increase along the sliding of the window, and 
the invalid nodes can affect the efficiency. 

CPS-tree is proposed based on DST-tree. There are two 
types of nodes on CPS-tree: ordinary nodes and 
tail-nodes. The structure of an ordinary node is shown in 
Fig. 1(b), where N is the item name of the node, and S is 
total support number. The structure of a tail-node is 
shown in Fig. 1(c). When a transaction itemset is added 
into a CPS-tree, its last node is a tail-node, others are 
ordinary nodes. The difference between an ordinary node 
and a tail-node is that there is a pane-support at each 
tail-node; the tail-node has the same structure as that of a 
DST-tree's node. In this way, the CPS-tree saves space 
relative to the DST-tree. When a new pane of data arrives, 
CPS-tree is updated with the new data after the obsolete 
data are deleted. When deleting obsolete data, find all 
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tail-nodes by traversing the tree, and left-shift once the 
pane-support of each tail-node to leave the rightmost 
position for new data.  

2.2.  Algorithms of mining frequent itemsets 

Han 2 proposed the FP-Growth algorithm that generates 
and mines frequent itemsets with the FP-tree. It is a 
classical pattern-Growth approach. It firstly constructs an 
FP-tree and a header table which only maintains frequent 
items, and items in the header table are sorted by their 
frequencies. Then process each item of the header table: 

firstly the item is added to the current conditional base 
(the conditional base is an itemset and is initialized as 
null) to generate a new conditional base, and construct a 
sub header table and a prefix tree for the new conditional 
base; then recursively process each item of the sub header 
table. During the processing, all new generated 
conditional bases are frequent itemsets. Mining of the 
k-itemset is changed to mining of the 1-itemset at the 
most k times by continuously building conditional 
FP-trees. The algorithm does not produce candidate 
itemsets; moreover, the database is scanned twice only.

 
Fig. 2. Process of COFI mining 

 
EI-Hajj and Zaiane 3 proposed the data structure 
COFI-Tree (Co-Occurrence Frequent-Item Tree) and 
the algorithm COFI for mining frequent itemsets. The 
key idea of this algorithm can be described as follows. 
First, scan database twice; the first scan aims to count 
frequency of each item; all items are sorted in the 
descending order of their frequencies; the second scan is 
to build a global FP-tree for maintaining the dataset. 
Once a global tree is built, it can be used to construct a 
COFI-tree for each frequent item X; frequent itemsets 
containing X can be discovered by the COFI-tree.  
The following example shows the process of 
constructing a COFI-tree and mining frequent itemsets. 
Fig. 2(a) is an example database and Fig. 2(b) is its 
global FP-tree. To construct a COFI-tree for item “e”, 
the branches, which are from the node “e” to the root, 
should be taken from the global FP-tree to count 
frequency (support number) of each item on these 
branches; the items are sorted by descending order of 
their frequencies to a local header table; the resulting 
local header table is {a:3, c:2, d:2}. All items of each 
branch have the same frequency as the support number 
of node “e” on the branch. All items of every branch are 
sorted by their local support numbers in ascending order 
and the sorted items are added into the COFI-tree, as 
shown in Fig. 2(c). The first number of every node of 

the COFI-tree is its support number and the second is its 
participation number, which have an initial value set as 
0. The mining process starts with the first item in the 
local header table (i.e., the most frequent item locally), 
for example, item “a” of the local header table 
{a:3,c:2,d:2}; firstly find the first branch that contains 
node “a”, then generate all combinations of all items on 
the branch (except the root node), and add the item “e” 
to each combination; and the frequency of each itemset 
(combination) is that of the node “a”, that is 2. These 
itemsets are candidate itemsets and are saved. After this 
step, the participation numbers of all nodes on the 
branch should increase by 2, and the result is shown in 
Fig. 2(d). The second node “a” on the COFI-tree is 
processed in the same way, and we get a new candidate 
itemset {ae:1}. Each new candidate itemset should be 
compared with every one of the existing candidate 
itemsets. If it doesn't exist in the set, add it into the set; 
otherwise accumulate its support number. COFI goes on 
working till the participation number of each node on 
COFI-tree equals the support number; see Fig. 2(e). 

3. Description of the problem 

In this section, we provide the definitions for key terms 
that explain the concepts of mining frequent itemsets 
over data streams. 

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

27



 Le Wang et al. 
 

Let I = {i1, i2, i3, … , iN} be a set of literals, called item 
set. A set X = {ij, … , ik} ⊆ I, (j ≤ k and 1 ≤ j, k≤ N) is 
called an itemset. An itemset with k items is denoted as 
a k-itemset. A transaction T = (TID, Z) is a couple where 
TID is a unique identifier and Z is a subset of I. A 
transaction itemset Z is said to contain X, if X ⊆ T.Z. A 
transaction database {T1, T2, T3, … , Tn} is called DB. 
The support number of an itemset X in DB is the 
number of transactions containing X. 
A data stream DS (Data Stream) can formally be 
defined as an infinite sequence of transactions, DS = 
{T1,T2, … , Tm,…}, where Ti is the ith arrival of 
transactions. A sliding window W can be referred to as a 
set of all transactions between the ith and jth (where j>i) 
arrival of transactions and the size of W is |W| = j – i. 
Each window consists of a fixed number of panes, and a 
pane of data contains a fixed number of transactions. 
Let the window slide pane by pane, that is, each slide of 
the window introduces a new pane and removes the 
obsolete pane from the current window. 
The support number of an itemset X in a window W is 
the number of transactions in W that contain X. 
Therefore, an itemset is called frequent in W if its 
support number is not less than the minimum support 
number, min_sup. Given DS, |W|, and min_sup, finding 
the itemsets in W, whose support numbers are not less 
than min_sup, is a problem of mining frequent itemsets 
from data streams wtih the sliding window mechanism. 
Let t = {i1,i2,i3, … , ik} be a sorted transaction, where ik 
is the tail item. If t is inserted into a tree in this order, 

then the node of the tree that represents the tail item is 
defined as a tail-node for t; the nodes that represent 
other items except the tail-item are defined as ordinary 
nodes. A node has a parent, but its parent does not have 
a pointer pointing to it, this node is called a virtual 
node. 

4. TPT-tree 

First, data streams are continuous and unbounded. 
Second, data streams are not necessarily uniformly 
distributed, and their distributions usually change with 
time. Thus we no longer have the luxury of performing 
multiple data scans to find frequent itemsets over data 
streams; it is essential to be efficient in terms of both 
time and memory during mining from data streams. To 
address this issue, a new data structure is proposed to 
improve the time- and memory-efficiency of such types 
of algorithms. 

4.1.  Structure of TPT-tree 

 
Fig. 3. Structure of TPT-tree 

 
Fig. 4. A simple case study of the TPT algorithm 
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The structure of TPT-tree is illustrated in Fig. 3. There 
are two types of nodes: one is ordinary node, as shown 
in Fig. 3(a), where N is the item name of each node, and 
S is a support number (we call S the total support 
number); the other is tail-node, as shown in Fig. 3(b), 
where C is the tail support number of a tail-node (the 
tail support number of a tail-node Tn is the number of 
itemsets whose tail-nodes are Tn). The tail pointer table 
is shown in Fig. 3(c), which is used to delete obsolete 
data. 
We use an example to illustrate construction of three 
types of tree structures: DST-tree, CPS-tree, and 
TPT-tree, as shown in Fig. 4. 
Fig. 4(a) is an example data stream, with both the size 
of window and the size of pane are 3. The transaction 
itemsets are added to a DST-tree in lexicographic order; 
Fig. 4(b) is the result of the first three panes of data 
added to a DST-tree. When sliding to the second 
window, according to the algorithm DST, the fourth 
pane of data are appended to the tree, as shown in Fig. 
4(c) (this is also the result when sliding to the second 
window); note that after the fourth pane of data are 
appended, the data of the first pane are not actually 
deleted from the tree, for example, there are two 
identical nodes “d,1:0:0,1”.  
The construction of CPS-tree is as follows: the first 
pane of data are added to a tree in lexicographic order; 
note that the last node of the transaction that is added to 
the tree is a tail-node, such as the node “d” in the 
transaction {a, c, d}. After the first pane is added, all 
items on the tree are re-sorted by descending order of 
their support numbers; now CPS-tree is converted into 
an FP-tree. The second pane of data is added to the tree 
in descending order of the support number in the first 
pane. After the second pane is added, again re-sort all 
items by descending order of their support numbers and 
reconstruct the CPS-tree to an FP-tree. The third pane of 
data is added by the same method. Fig. 4(d) shows the 
tree after the third pane is added.  
Fig. 4(e) shows the tree after the fourth pane is added to 
the tree (in the same way as the third pane) and the first 
pane is deleted. The deletion process of the first pane is 
as follows: traverse the CPS-tree to find all tail-nodes; 
update the support number to be the value (total support 
number - tail-node’s the leftmost pane-support) for all 
nodes between the tail-node and the root, and left-shift 

once the tail-node’s pane-support list, leaving the 
rightmost position for recording new data. 
When constructing a CPS-tree, if a tail-node that is to be 
added to the tree already has a corresponding ordinary 
node, we simply convert this ordinary node to a 
tail-node. For example, when adding transaction itemset 
{a} of the second pane, simply convert the node “a,3” 
under root to a tail-node “a,4,0:1:0”, where “4” is total 
support number of the node, and “0:1:0” is the 
pane-support list for 3 panes of data, and the middle “1” 
is support number of the tail-node in the second pane. 
Just as on a CPS-tree, the nodes on a TPT-tree are of 
two types: the ordinary nodes and the tail-nodes, as 
shown in Fig. 3. The construction of TPT-tree is as 
follows: when transaction itemsets are added to a tree in 
lexicographic order, we only update support number of 
each tail-node. For example, when adding transaction 
itemset {a,c,d} of the first pane, we only update the tail 
support number of the node “d” as “d,0,1”, where “1” is 
tail support number of the node. Fig. 4(f) shows a 
TPT-tree after the first window data are appended; and 
Fig. 4(g) shows the tree after the processing of the 
second sliding window, that is, after the fourth pane is 
added and the first pane is deleted. The deletion process 
is discussed in detail in Section 4.2. 
When a tail-node that is to be added to a tree already has 
a corresponding ordinary node, we also simply convert 
this ordinary node to a tail-node. For example, when 
adding transaction {b} of pane 4, simply convert the 
node “b,0” (as shown in Fig. 4(f)) under root to a 
tail-node “b,0,1”(as shown in Fig. 4(g)), where “1” is 
support number of the tail-node. 
Theorem 1: Assume 3 types of data structures are 
constructed in the same order (e.g. lexicographic order 
or frequency order), TPT-tree requires the least memory 
for maintaining transaction itemsets. 
Proof: Assume 3 types of data structures are 
constructed in the same order (e.g. lexicographic order), 
they have the same branches, but their node structures 
are different. Each node maintains support number of 
each pane on a DST-tree. On a CPS -tree, each ordinary 
node maintains a total support number, and each 
tail-node maintains support number of each pane and a 
total support number. On a TPT-tree, each ordinary 
node maintains a total support number, and each 
tail-node maintains only 2 support numbers no matter 
how much panes a window consists. Thus TPT-tree 
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requires the least memory for maintaining transaction 
itemsets. 

4.2.  Data-updating algorithms 

When a new pane comes, two important processes occur: 
deleting obsolete data and adding new data. 
The algorithm of deleting old data is shown in Fig. 5(a). 
Mainly its work is to process each obsolete tail-node 
which is recorded in the tail pointer table. If a tail-node 
is a virtual node, the support numbers of itself and its 
parent are deducted by one (line 3 and line 10); if its 

support number is 0 and it has no children node, it is 
deleted from the tree (line 15), and then we continue 
processing its parent: if its parent is also a tail-node and 
has a support number of 0 and has no children, it will be 
deleted, and its parent is processed (line 12-20). 
The algorithm for adding new data is shown in Fig. 5(b). 
Transaction itemsets are sorted and added to the tree 
(line 3-4); then, the support number of its tail-node TP 
is increased by one (line 6), and the pointer TP is stored 
to the tail pointer table (line 7). The variable P in the 
algorithm is the looping counter. 

Algorithm 3: Mining frequent itemsets over cofi-tree
Input: T, ht (headtable), mini_support
Output: FI (frequent itemsets) 
Method:
Begin
(1)   root = T.root;
(2)   For each item  item1 in ht
(3)          CS = NULL; // a set for candidate itemsets 
(4)          For each node  node1 whose item name is
                          item1
(5)        CS0 =  all combinations of items between  

node1 and root;
(6)        For each element X in CS0
(7)        Y = X∪{item1}∪{root.N};
(8)        Y.support  =  node1.S; 
(9)        Add itemset Y to CS ;
(10)        Enf For
(11)          End For
(12)          delete infrequent itemsets from CS;
(13)          FI = FI∪CS;
(14)  End For
End

                (c)COFI2 algorithm

Algorithm 2: Inserting data into T
Input: T ,Stream_data, Pane_size, 

Initial_sort_order, Tail_Pointer, w
Output: T
Method:
Begin
(1)  p = 0;
(2)  While (p != Pane_size)
(3)         Tr = transaction from the current location in Stream_data;
(4)         Insert Tr into T according to Initial_sort _order ;
(5)         TP = Tr’s tail node;
(6)         TP.C = TP.C + 1;
(7) Save TP to Tail_Pointer[w];
(8) p = p + 1;
(9)  End While
End

    (b)Inserting data into a TPT-tree

Algorithm 1: deleting old data from T
Input: T , Tail_Pointer, w
Output: T
Method:
Begin
(1) For each tail pointer TP in Tail_Pointer[w]
(2) IF(TP.S = = -1) // a virtual node
(3) TP.C = TP.C - 1;
(4) TEMP = TP.parent;
(5) IF(TP.C = =  0) 
(6) delete node TP from tree T;
(7) End IF
(8) TP = TEMP;
(9) End IF
(10) TP.C = TP.C - 1;
(11)
(12) While (TP.C = = 0)
(13) TEMP = TP.parent;
(14) IF(TP has no child) 
(15) delete node TP from tree T;
(16) TP = TEMP;
(17) Else
(18) Break;
(19) End IF
(20) End While
(21) End For
End

 (a)Deleting obsolete data from a TPT-tree  
Fig. 5. Algorithms based on TPT-tree and COFI2 

 
Table 1. Differences in data processing methods among the three algorithms 

Processing of one batch of data 
during window sliding Adding data Deleting data 

DST/DSP 

1. Sort items of all transaction itemsets; 
2. Add sorted itemsets to a tree and modify support number of 
each node; 
3. Record the updated batch of each node; 
4. Modify support number of each node. 

 

CPS 

1. Reconstruct a CPS-tree; 
2. Sort items of a transaction itemset; 
3. Add sorted itemsets to a tree and modify support number of 
each node; 
4. Modify the header table. 

1. Traverse a CPS-tree and delete obsolete 
data; 
2. Modify the header table. 

TPT 

1. Sort items of all transaction itemsets; 
2. Add sorted itemsets to the tree and only modify the tail 
support number of the tail-nodes; 
3. Insert tail-nodes to tail pointer table. 

1. Modify tail support numbers of 
tail-nodes through scanning the tail pointer 
table. 

 
Table 1 shows a comparison of the three different 
processes for data updating of three types of data 

structure. We can see that CPS is the most complex one. 
When adding a new pane data, convert the tree to an 
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FP-tree and modify the header table; when deleting a 
pane, a traversal of the tree and modification of the 
header table are needed. A comparison of the runtime of 
TPT and DST is discussed in detail in Section 5.1.  

4.3.  Frequent itemsets mining algorithm 

To improve the efficiency of frequent itemsets mining, a 
TPT-tree can be reconstructed to achieve as much prefix 
sharing as possible among transaction itemsets in the 
current window; after a TPT-tree is reconstructed, it can 
be as compact as an FP-Tree that is constructed using 
the same transaction itemsets. We adopt the tree 
reconstruction approach from that used in the CPS 

algorithm. The basic idea of reconstruction is the same 
as that in CPS, with a difference in processing tail-nodes; 
i.e., during the reconstruction of a tree, if the tail-node A 
is to be merged to the tail-node B, the following steps 
are performed: 
(1) Accumulate A’s tail support number to B’s tail 

support number; 
(2) Convert node A to a virtual node, and its parent is 

B. 
The purpose of converting A to a virtual node is to find 
node A from the TPT-tree and modify the tail support of 
both nodes A and B when deleting obsolete data 
containing A.  

Algorithm 4: ReconstructingTree
Input: H, T
Output: Ts
//H: a header table maintaining items in descending order of 
support number
//T: a TPT-tree, items in each brach is not in order of H.
//Ts: a TPT-tree, items in each brach is in order of H.

Method:
Begin
(1)   root = T.root
(2)   For each branch Br in T
(3)          TN = the first tail-nodes in Br;
(4)          path Pj  is from tail-node TN to root
(5)                  IF( Pj is a processed path)
(6)                        Continue;
(7)                  Else IF (Pj is a sorted path)
(8)                        Process_path(Pj);
(9)                  Else
(10)                       Sort_path(Pj);
(11)                       Proces_path(Pj);
(12)                End IF
(13)            End For
(14)      End For
(15)  Return T;
End

Process_path(p)

Begin
(1)  A = tail node of path p;
(2)   For each node n in path p
(3)          For each sub-path sp from n to tail-node B 

// B ≠ A
(4)                 IF (items in sp are at below of n in the 

order of H)
(5)                      IF (sp is a sorted path)
(6)                          Process_path(sp)
(7)                      Else
(8)                          Sort_path(sp)
(9)                      End If
(10)                Else // not at below of n in the order of 

H
(11)                    sp = path from n1 to B; 

    //n1 is a ancestor node of n, and 
    //items from n1 to B are at below of 
    //n1 in the order of H;

(12)                    Sort_path(sp)
(13)                End IF
(14)         End For
(15)  End For
End

Sort_path(p)
Begin
(1)   A = tail node of path p;
(2)   For each node Nd on path p from parent node of A
(3)         IF Nd  just has one tail-node A
(4)             Delete node Nd  from T;
(5)         Else
(6)              Break;
(7)         End IF
(8)   End For
(9)  Sort items in p in the order of H;
(10)  Insert sorted items S into T at the below of 

node pn with a tail-node B;
(11)  IF B is not a new node
(12)      IF B is not a tail-node
(13)          A.parent = B.parent; A.N = B.N;
(14)          Move B.children to A.children;
(15)       Else
(16)          B.C += A.C;
(17)          A.parent = B; A.S = -1; //A is  a virtual node
(18)       End IF
(19)  Else
(20)       A.N = the last item in S;
(21)       A is as the tail node of S;
(22)  End If
End

root

a,0,1

c,0,2 b,0

c, 0,1

d,0,1

b,0,1

d,0,2c,0,1

T.root

T2.root

T1.root

root

a,0,1

c,0,2

b,0,1

d,0,2c,0,1 a,0

c,0,1

d,0,1

Tree T Tree Ts

(a)  The algorithm of reconstructing TPT-tree

(b) An example of reconstructing TPT-tree

root

a,0,1

c,0,2 b,0

c, 0,1

d,0,1

b,0,1

d,0,2c,0,1

Tree T

a,0

c, 0,1

 
Fig. 6. Reconstruction Algorithm of TPT-tree and an example 

 
Fig. 6(a) shows the detailed algorithm of reconstructing 
a TPT-tree. Fig. 6(b) is an example of the reconstruction 
process for the tree in Fig .4(g) (this tree is now denoted 
as tree T in Fig. 6(b)). The following steps reconstruct 
tree T: 

(1) Sort all items in T by the ascending order of their 
support numbers and get a sorted header table H = 
{b:6, a:5, c:5, d:3}. 

(2) Process the first tail-node “a,0,1” on the branch 
“root-a-c” of tree T. There is only one item “a” on 
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the path “root-a”, so no sorting is needed and we 
can process the sub tree whose root is “a,0,1” (the 
sub tree is denoted as T1, as shown in Fig. 6(b)): 

(2.1) Process the tail-node “c,0,2” in T1. On the path 
from this tail-node to T1.root, the order of all items 
is identical with the order of H, and this tail-node 
has no children, so no further process is needed. 

(2.2) Process another tail-node “c,0,1” in T1. Because 
the order of items on the path from this tail-node to 
T1.root is not identical with the order of H, we sort 
these items (“a”, “b” and “c”) by the order of H, 
add these sorted items (“b”, “a” and “c”) to the tree 
(the resulting tree is T1 in Fig. 6(b)), and move the 
children nodes of the old tail-node to the new 
tail-node; and then, along the path from the old 
tail-node to T1.root (“c-b-a-root”), remove those 
nodes that have no children (that is, node “c” and 
“b” are removed consecutively). The resulting tree 
is the tree T’ in Fig. 6(b). Next step is to process 
recursively the sub tree whose root is “c,0,1” (this 
sub tree is denoted as T2, as shown in Fig. 6(b)).  

(2.2.1)T2 has one tail-node “d,0,1”; this tail-node has no 
children, and the items on the path from this node 
to T2.root are identical with the order of H, so no 
further process is needed. 

(3) Using the above method，go on processing the 
tail-node “b,01” in tree T. The final resulting tree is 
tree Ts in Fig. 6(b).  

After a TPT-tree is reconstructed, we can adopt COFI, 
COFI2 or FP-Growth for mining frequent itemsets of 
each window.  
COFI2 is a revised version of COFI, to improve the 
efficiency of memory usage and runtime. When mining 

frequent itemsets containing a certain item, COFI 
maintains all candidate itemsets until all the nodes on 
the COFI-tree have been processed. Although a 
COFI-tree is pruned, the size of all combinations of all 
items may still be large if a branch contains many items; 
this situation will not only cost a large amount of 
memory, but also slow down the efficiency of matching 
identical itemsets among the candidate itemsets. To 
address this issue, our proposed approach COFI2 can 
maintain less number of candidates by generating 
candidate itemsets as late as possible and deleting 
infrequent itemsets as early as possible.  
Fig. 2(c) is an example of the mining process of COFI. 
When generating all combinations of the items of a 
branches containing node “a”, each itemset of the 
combinations must contain item “e”, but may not 
contain item “a”, and the number of the combinations is 
8. However COFI2 requests that each itemset of the 
combination must contain both items “a” and “e”; and 
the size of the combination is 4. This is considered as 
generating candidate itemsets as late as possible. When 
dealing with the second node “a” on the COFI-tree, 
COFI2 generates only itemset {ae:1}. Then search the 
candidate itemsets for this itemset, and if it is found, we 
accumulate its support number; otherwise, we insert the 
itemset to the candidate itemsets. After finishing the 
processing of all nodes “a”, the infrequent itemsets in 
the candidate itemsets can be deleted, because the 
itemsets that contain item “a” have been generated, and 
it is impossible to generate other itemsets that contain 
item “a” when processing other nodes. This way the 
infrequent itemsets can be deleted as early as possible 
without waiting for the whole tree to be processed.  

Table 2. Differences between COFI and COFI2 

Algorithms Differences of candidate itemsets Differences of tree structure 

COFI 
 

1. When processing an item on the COFI-tree, generate an itemset combination of all 
the items from the corresponding node to the root (inclusive) as the candidate itemsets; 
2. After finishing the processing of all nodes on the COFI tree, delete the infrequent 
itemsets in the candidate itemsets. 

Node contains participation count 
and support count. 
 

COFI2 

1. When processing an item on the COFI-tree, generate an itemset combination of all 
the items from the corresponding node to the root (including itself and the root) as the 
candidate itemsets; 
2. After finishing the processing of this item, delete the infrequent itemsets from the 
candidate itemsets. 

Node contains support count. 

 
In addition, the nodes on the COFI-tree do not need a 
counter to store the participation count in algorithm 
COFI2. The COFI2 algorithm is shown in Fig. 5(c). 
When adding a new itemset Y to the set of itemsets CS, 
we only accumulate its support number if itemset Y 

exists in CS; otherwise insert this itemset to CS (line 9 in 
Fig. 5(c)). 
Table 2 shows the comparison of COFI and COFI2. The 
main difference between the two algorithms is that (1) 
the time of generating and deleting candidate itemsets is 
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different, the sizes of the candidate itemsets are also 
different; (2) the tree structures are different. 
Theorem 2: The performance of COFI2 outperforms 
COFI in terms of running time and space. 
Proof: When an item Q on a COFI-tree is processed, 
each itemset of the combinations generated by COFI 
may not contain this item Q, but it must contain the item 
of the root; however each itemset of the combinations 
generated by COFI2 must contain Q and the item of the 
root. Because the items used to generated combination in 
two algorithms are same, the number of combinations 
generated by COFI2 must less than that by COFI. 
Meanwhile, because the number of combinations 
generated by COFI2 is less, the merging of two 
combinations would cost less time. In addition, the 
nodes on the COFI-tree of algorithm COFI2 do not 
maintain participation count; this reduces memory and 
processing time. 
Summarizing the above, the performance of COFI2 
outperforms COFI in terms of time and space. 

5. Experimental analyses 

In this section, we evaluate the performance of the 
proposed algorithm TPT (TPT-tree and COFI2) and 
compare it with the algorithms DST (DST-tree and 
COFI) on four datasets: connect4, connect20, kosarakt 
and T40I10D100K. The datasets connect4, kosarakt and 
T40I10D100K were obtained from FIMI Repository 22; 
we take the first 20 dimensions of connect4 as the 
dataset connect20. connect4 and connect20 are dense 
datasets; kosarakt and T40I10D100K are sparse datasets.  
T40I10D100K is a synthetic dataset generated by IBM 
Data Generator and other three datasets are real-world 
datasets. All algorithms were written in Java 
programming language. The configuration of the testing 
platform is as follows: Windows XP operating system, 
2G Memory, Intel(R) Core(TM) i3-2310 CPU @ 2.10 
GHz; Java heap size is 1G. 
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Fig. 7. Evaluation on varied minimum support threshold 
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Fig. 8. Evaluation on accumulated batches 

 
We evaluated the execution time of our algorithm under 
varied minimum support threshold. Fig. 7 shows the 
running time comparison of TPT and DST under four 
datasets, respectively. On the experiments of Fig. 7, the 
number of each batch data is set as 3000, thus the 
datasets connect4, connect20, kosarakt and 
T40I10D100K are divided into 23, 23, 330 and 33 panes, 
respectively; on these four datasets, mining operation 
was performed on 21, 21, 328 and 31 consecutive 
windows respectively; DST removed the obsolete nodes 
before performing each operation of mining frequent 
itemsets. Because there will be more frequent itemsets 
under a smaller minimum support threshold, the total 
running time will increase along with the decrease of the 
threshold; and from the results on Fig. 7, we can see that 

our algorithm TPT outperforms DST on different 
minimum support thresholds. For example, when the 
minimum support threshold (min) is 90% on the dataset 
connect4, TPT spends 510.141 seconds while DST 
spends 761.578 seconds.  
Because data streams are continuous data flows along 
time, the accumulated performance of the algorithm 
should also be evaluated. Fig. 8 shows the running time 
comparison of TPT and DST under different batch index, 
and Fig. 9 is the running time comparison under varied 
batch-size. 
From Fig. 8 we can see that the performance advantage 
of algorithm TPT accumulates along with the 
accumulation of batches, and it is stable.
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Fig. 9. Evaluation on varied batch-size 

 
In Fig. 9, the running time decreases along with the 
increase of batch-size, because, for a fixed length 
dataset (which is the circumstance of our testing 
datasets), the more the number of transactions of each 
batch contains, the less the number of windows in a 
dataset will be. Fig. 9 shows that our algorithm TPT 
outperforms DST on varied batch-sizes. For example, 
when the batch-size (p) is 1000 on the dataset connect4, 
TPT spends 1625.25 seconds while DST spends 
2454.734 seconds. 
Concluding the above experiments, we can see that our 
proposed algorithm TPT has achieved a better 
performance than DST under varied minimum support 
thresholds and varied batch-sizes, and its advantage is 
stable along with the accumulation of the data flow 
process. 

6. Conclusions 

To improve the overall performance of the frequent 
itemsets mining algorithm over data streams, the 
efficiency of updating data and mining frequent itemsets 
should be considered. This study proposes a new data 
structure TPT-tree and gives the corresponding 
algorithm TPT. We also propose the algorithm COFI2 
for mining frequent itemsets; meanwhile apply it to 
mine frequent itemsets over data streams. Theoretical 
and experimental analysis also shows that the 
performance of our proposed algorithm TPT (TPT-tree 
and COFI2) outperforms the algorithm DST (DST-tree 
and COFI) in terms of running time and memory space. 
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