
Received 23 August 2011

Accepted 9 June 2013

Sliding Window-based Frequent Itemsets Mining over Data Streams
using Tail Pointer Table

Le Wang1,2,3, Lin Feng *1,2, Bo Jin2
1, School of Computer Science and Technology,

Dalian University of Technology,
Dalian 116024, P.R. China,

lelewater@gmail.com, fenglin@dlut.edu.cn
2, School of Innovation Experiment,

Dalian University of Technology,
Dalian 116024, P.R. China,

jinbo@dlut.edu.cn
3, School of Information Engineering,

Ningbo Dahongying University,
Ningbo, Zhejiang 315175, P.R. China.

Abstract

Mining frequent itemsets over transaction data streams is critical for many applications, such as wireless sensor
networks, analysis of retail market data, and stock market predication. The sliding window method is an important
way of mining frequent itemsets over data streams. The speed of the sliding window is affected not only by the
efficiency of the mining algorithm, but also by the efficiency of updating data. In this paper, we propose a new data
structure with a Tail Pointer Table and a corresponding mining algorithm; we also propose a algorithm COFI2, a
revised version of the frequent itemsets mining algorithm COFI (Co-Occurrence Frequent-Item), to reduce the
temporal and memory requirements. Further, theoretical analysis and experiments are carried out to prove their
effectiveness.

Keywords: data mining; data streams; frequent itemsets; sliding window; tail pointer table

1. Introduction

Since Agrawal 1 developed the first algorithm Apriori
for mining frequent itemsets from static sales dataset in
1994, new algorithms are proposed constantly for
various sub-domains of frequent itemsets mining, such
as those for traditional frequent itemsets 2, 3, 4, 5, 6 in
certain datasets, high utility itemsets 7, 8, 9, 10, 11, frequent
itemsets in uncertain datasets 12, 13, 14. These approaches
could be classified into two categories: level-wise
approaches and pattern-Growth approaches. Apriori 1 is
a classical level-wise approach; the FP-Growth
(Frequent Pattern Growth) 2 algorithm is a classical

pattern-Growth approach. However, in real world there
are many data streams, such as wireless sensor data,
transaction flows, call records, and so on. So it has been
an important research issue in the field of data mining to
mine frequent itemsets over data streams.
To handle continuous data streams, time-window is
commonly used, and it is an efficient approach.
Depending on the mechanism of the window algorithm,
three window models can be used to mine frequent
itemsets (or patterns): landmark window model, damped
window model, and sliding window model. There are
many research works on the sliding window-based
approach, including maximal frequent itemset 15, closed

International Journal of Computational Intelligence Systems, Vol. 7, No. 1 (February 2014), 25-36

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

25

willieb
Typewritten Text

willieb
Typewritten Text

 Le Wang et al.

frequent itemsets 16, 17, complete frequent itemsets 18, 19,

20, 21, and so on. The runtime of such algorithms is
mainly impacted by the speed of the mining frequent
itemsets and the updating data. There are three classical
algorithms for mining frequent itemsets over data
streams based on the sliding window, such as DST
(Data Stream Tree) 18, DSP 19, and CPS (Compact
Pattern Stream) 20. DST and DSP have the same
structure, but their mining algorithms are different: DST
mines frequent itemsets with FP-Growth 2, whereas
DSP mines frequent itemsets with COFI
(Co-Occurrence Frequent-Item) 3; the COFI algorithm
consumes less memory than FP-Growth according to
the paper 19; the memory requirement of CPS is smaller
than DST/DSP, but the drawback is that it reconstructs
trees more often, which consumes more time. Moreover,
CPS also uses FP-Growth to mine frequent itemsets.
However, these algorithms improve the speed of the
mining process, but do not consider the efficiency of
updating data.
In this paper, we propose a new data structure, called
TPT-tree (Tail Pointer Table tree), to store the stream
data of a window, it can improve the efficiency of
updating data and costs less memory than DST/DSP;
and propose a corresponding algorithm, called COFI2,
for mining frequent itemsets over data streams.

The organization of this article is as follows: Section 2
discusses related work; Section 3 provides a description
of the problem and defines relevant terms; Section 4
introduces a structure TPT-tree and a corresponding
algorithm; Section 5 shows the experimental results, and
Section 6 gives conclusions.

2. Related work

The algorithms most closely related to our study are
DST 18, DSP 19, and CPS 20, which mine exact frequent
itemsets over data streams. The algorithms DST and
DSP use the same data structure (DST-tree), and mine
frequent itemsets using FP-growth and COFI 3
respectively; CPS creates trees with another data
structure CPS-tree, and mines frequent itemsets using
FP-growth. This section discusses the two data
structures and the two frequent itemsets mining
algorithms in detail.

2.1. Data structures: DST-tree and CPS-tree

To efficiently maintain data of a window to a tree and
mine frequent itemsets from a window, the algorithms
DST and CPS maintain data to DST-tree and CPS-tree
respectively.

Fig. 1. Structure of DST-tree and CPS-tree

The node structure of DST-tree is shown in Fig. 1(a),
where N is an item name, L is the ID of the pane by
whose data this node is updated lastly, and P is a list of
the support numbers of w panes (in the form of [V1,V2,..
Vw]; w is the window width). P and L are used to
effectively delete obsolete data from a tree. Before
adding new pane data into a tree, obsolete data should be
deleted from the tree; and when adding new data into a
tree, P and L should be updated. However, DST does not
delete obsolete data before performing an operation of
mining frequent itemsets, and therefore there are some
invalid nodes on the DST-tree. The number of these
nodes can increase along the sliding of the window, and
the invalid nodes can affect the efficiency.

CPS-tree is proposed based on DST-tree. There are two
types of nodes on CPS-tree: ordinary nodes and
tail-nodes. The structure of an ordinary node is shown in
Fig. 1(b), where N is the item name of the node, and S is
total support number. The structure of a tail-node is
shown in Fig. 1(c). When a transaction itemset is added
into a CPS-tree, its last node is a tail-node, others are
ordinary nodes. The difference between an ordinary node
and a tail-node is that there is a pane-support at each
tail-node; the tail-node has the same structure as that of a
DST-tree's node. In this way, the CPS-tree saves space
relative to the DST-tree. When a new pane of data arrives,
CPS-tree is updated with the new data after the obsolete
data are deleted. When deleting obsolete data, find all

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

26

 Sliding Window-based Frequent Itemsets Mining

tail-nodes by traversing the tree, and left-shift once the
pane-support of each tail-node to leave the rightmost
position for new data.

2.2. Algorithms of mining frequent itemsets

Han 2 proposed the FP-Growth algorithm that generates
and mines frequent itemsets with the FP-tree. It is a
classical pattern-Growth approach. It firstly constructs an
FP-tree and a header table which only maintains frequent
items, and items in the header table are sorted by their
frequencies. Then process each item of the header table:

firstly the item is added to the current conditional base
(the conditional base is an itemset and is initialized as
null) to generate a new conditional base, and construct a
sub header table and a prefix tree for the new conditional
base; then recursively process each item of the sub header
table. During the processing, all new generated
conditional bases are frequent itemsets. Mining of the
k-itemset is changed to mining of the 1-itemset at the
most k times by continuously building conditional
FP-trees. The algorithm does not produce candidate
itemsets; moreover, the database is scanned twice only.

Fig. 2. Process of COFI mining

EI-Hajj and Zaiane 3 proposed the data structure
COFI-Tree (Co-Occurrence Frequent-Item Tree) and
the algorithm COFI for mining frequent itemsets. The
key idea of this algorithm can be described as follows.
First, scan database twice; the first scan aims to count
frequency of each item; all items are sorted in the
descending order of their frequencies; the second scan is
to build a global FP-tree for maintaining the dataset.
Once a global tree is built, it can be used to construct a
COFI-tree for each frequent item X; frequent itemsets
containing X can be discovered by the COFI-tree.
The following example shows the process of
constructing a COFI-tree and mining frequent itemsets.
Fig. 2(a) is an example database and Fig. 2(b) is its
global FP-tree. To construct a COFI-tree for item “e”,
the branches, which are from the node “e” to the root,
should be taken from the global FP-tree to count
frequency (support number) of each item on these
branches; the items are sorted by descending order of
their frequencies to a local header table; the resulting
local header table is {a:3, c:2, d:2}. All items of each
branch have the same frequency as the support number
of node “e” on the branch. All items of every branch are
sorted by their local support numbers in ascending order
and the sorted items are added into the COFI-tree, as
shown in Fig. 2(c). The first number of every node of

the COFI-tree is its support number and the second is its
participation number, which have an initial value set as
0. The mining process starts with the first item in the
local header table (i.e., the most frequent item locally),
for example, item “a” of the local header table
{a:3,c:2,d:2}; firstly find the first branch that contains
node “a”, then generate all combinations of all items on
the branch (except the root node), and add the item “e”
to each combination; and the frequency of each itemset
(combination) is that of the node “a”, that is 2. These
itemsets are candidate itemsets and are saved. After this
step, the participation numbers of all nodes on the
branch should increase by 2, and the result is shown in
Fig. 2(d). The second node “a” on the COFI-tree is
processed in the same way, and we get a new candidate
itemset {ae:1}. Each new candidate itemset should be
compared with every one of the existing candidate
itemsets. If it doesn't exist in the set, add it into the set;
otherwise accumulate its support number. COFI goes on
working till the participation number of each node on
COFI-tree equals the support number; see Fig. 2(e).

3. Description of the problem

In this section, we provide the definitions for key terms
that explain the concepts of mining frequent itemsets
over data streams.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

27

 Le Wang et al.

Let I = {i1, i2, i3, … , iN} be a set of literals, called item
set. A set X = {ij, … , ik} ⊆ I, (j ≤ k and 1 ≤ j, k≤ N) is
called an itemset. An itemset with k items is denoted as
a k-itemset. A transaction T = (TID, Z) is a couple where
TID is a unique identifier and Z is a subset of I. A
transaction itemset Z is said to contain X, if X ⊆ T.Z. A
transaction database {T1, T2, T3, … , Tn} is called DB.
The support number of an itemset X in DB is the
number of transactions containing X.
A data stream DS (Data Stream) can formally be
defined as an infinite sequence of transactions, DS =
{T1,T2, … , Tm,…}, where Ti is the ith arrival of
transactions. A sliding window W can be referred to as a
set of all transactions between the ith and jth (where j>i)
arrival of transactions and the size of W is |W| = j – i.
Each window consists of a fixed number of panes, and a
pane of data contains a fixed number of transactions.
Let the window slide pane by pane, that is, each slide of
the window introduces a new pane and removes the
obsolete pane from the current window.
The support number of an itemset X in a window W is
the number of transactions in W that contain X.
Therefore, an itemset is called frequent in W if its
support number is not less than the minimum support
number, min_sup. Given DS, |W|, and min_sup, finding
the itemsets in W, whose support numbers are not less
than min_sup, is a problem of mining frequent itemsets
from data streams wtih the sliding window mechanism.
Let t = {i1,i2,i3, … , ik} be a sorted transaction, where ik
is the tail item. If t is inserted into a tree in this order,

then the node of the tree that represents the tail item is
defined as a tail-node for t; the nodes that represent
other items except the tail-item are defined as ordinary
nodes. A node has a parent, but its parent does not have
a pointer pointing to it, this node is called a virtual
node.

4. TPT-tree

First, data streams are continuous and unbounded.
Second, data streams are not necessarily uniformly
distributed, and their distributions usually change with
time. Thus we no longer have the luxury of performing
multiple data scans to find frequent itemsets over data
streams; it is essential to be efficient in terms of both
time and memory during mining from data streams. To
address this issue, a new data structure is proposed to
improve the time- and memory-efficiency of such types
of algorithms.

4.1. Structure of TPT-tree

Fig. 3. Structure of TPT-tree

Fig. 4. A simple case study of the TPT algorithm

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

28

 Sliding Window-based Frequent Itemsets Mining

The structure of TPT-tree is illustrated in Fig. 3. There
are two types of nodes: one is ordinary node, as shown
in Fig. 3(a), where N is the item name of each node, and
S is a support number (we call S the total support
number); the other is tail-node, as shown in Fig. 3(b),
where C is the tail support number of a tail-node (the
tail support number of a tail-node Tn is the number of
itemsets whose tail-nodes are Tn). The tail pointer table
is shown in Fig. 3(c), which is used to delete obsolete
data.
We use an example to illustrate construction of three
types of tree structures: DST-tree, CPS-tree, and
TPT-tree, as shown in Fig. 4.
Fig. 4(a) is an example data stream, with both the size
of window and the size of pane are 3. The transaction
itemsets are added to a DST-tree in lexicographic order;
Fig. 4(b) is the result of the first three panes of data
added to a DST-tree. When sliding to the second
window, according to the algorithm DST, the fourth
pane of data are appended to the tree, as shown in Fig.
4(c) (this is also the result when sliding to the second
window); note that after the fourth pane of data are
appended, the data of the first pane are not actually
deleted from the tree, for example, there are two
identical nodes “d,1:0:0,1”.
The construction of CPS-tree is as follows: the first
pane of data are added to a tree in lexicographic order;
note that the last node of the transaction that is added to
the tree is a tail-node, such as the node “d” in the
transaction {a, c, d}. After the first pane is added, all
items on the tree are re-sorted by descending order of
their support numbers; now CPS-tree is converted into
an FP-tree. The second pane of data is added to the tree
in descending order of the support number in the first
pane. After the second pane is added, again re-sort all
items by descending order of their support numbers and
reconstruct the CPS-tree to an FP-tree. The third pane of
data is added by the same method. Fig. 4(d) shows the
tree after the third pane is added.
Fig. 4(e) shows the tree after the fourth pane is added to
the tree (in the same way as the third pane) and the first
pane is deleted. The deletion process of the first pane is
as follows: traverse the CPS-tree to find all tail-nodes;
update the support number to be the value (total support
number - tail-node’s the leftmost pane-support) for all
nodes between the tail-node and the root, and left-shift

once the tail-node’s pane-support list, leaving the
rightmost position for recording new data.
When constructing a CPS-tree, if a tail-node that is to be
added to the tree already has a corresponding ordinary
node, we simply convert this ordinary node to a
tail-node. For example, when adding transaction itemset
{a} of the second pane, simply convert the node “a,3”
under root to a tail-node “a,4,0:1:0”, where “4” is total
support number of the node, and “0:1:0” is the
pane-support list for 3 panes of data, and the middle “1”
is support number of the tail-node in the second pane.
Just as on a CPS-tree, the nodes on a TPT-tree are of
two types: the ordinary nodes and the tail-nodes, as
shown in Fig. 3. The construction of TPT-tree is as
follows: when transaction itemsets are added to a tree in
lexicographic order, we only update support number of
each tail-node. For example, when adding transaction
itemset {a,c,d} of the first pane, we only update the tail
support number of the node “d” as “d,0,1”, where “1” is
tail support number of the node. Fig. 4(f) shows a
TPT-tree after the first window data are appended; and
Fig. 4(g) shows the tree after the processing of the
second sliding window, that is, after the fourth pane is
added and the first pane is deleted. The deletion process
is discussed in detail in Section 4.2.
When a tail-node that is to be added to a tree already has
a corresponding ordinary node, we also simply convert
this ordinary node to a tail-node. For example, when
adding transaction {b} of pane 4, simply convert the
node “b,0” (as shown in Fig. 4(f)) under root to a
tail-node “b,0,1”(as shown in Fig. 4(g)), where “1” is
support number of the tail-node.
Theorem 1: Assume 3 types of data structures are
constructed in the same order (e.g. lexicographic order
or frequency order), TPT-tree requires the least memory
for maintaining transaction itemsets.
Proof: Assume 3 types of data structures are
constructed in the same order (e.g. lexicographic order),
they have the same branches, but their node structures
are different. Each node maintains support number of
each pane on a DST-tree. On a CPS -tree, each ordinary
node maintains a total support number, and each
tail-node maintains support number of each pane and a
total support number. On a TPT-tree, each ordinary
node maintains a total support number, and each
tail-node maintains only 2 support numbers no matter
how much panes a window consists. Thus TPT-tree

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

29

 Le Wang et al.

requires the least memory for maintaining transaction
itemsets.

4.2. Data-updating algorithms

When a new pane comes, two important processes occur:
deleting obsolete data and adding new data.
The algorithm of deleting old data is shown in Fig. 5(a).
Mainly its work is to process each obsolete tail-node
which is recorded in the tail pointer table. If a tail-node
is a virtual node, the support numbers of itself and its
parent are deducted by one (line 3 and line 10); if its

support number is 0 and it has no children node, it is
deleted from the tree (line 15), and then we continue
processing its parent: if its parent is also a tail-node and
has a support number of 0 and has no children, it will be
deleted, and its parent is processed (line 12-20).
The algorithm for adding new data is shown in Fig. 5(b).
Transaction itemsets are sorted and added to the tree
(line 3-4); then, the support number of its tail-node TP
is increased by one (line 6), and the pointer TP is stored
to the tail pointer table (line 7). The variable P in the
algorithm is the looping counter.

Algorithm 3: Mining frequent itemsets over cofi-tree
Input: T, ht (headtable), mini_support
Output: FI (frequent itemsets)
Method:
Begin
(1) root = T.root;
(2) For each item item1 in ht
(3) CS = NULL; // a set for candidate itemsets
(4) For each node node1 whose item name is
 item1
(5) CS0 = all combinations of items between

node1 and root;
(6) For each element X in CS0
(7) Y = X∪{item1}∪{root.N};
(8) Y.support = node1.S;
(9) Add itemset Y to CS ;
(10) Enf For
(11) End For
(12) delete infrequent itemsets from CS;
(13) FI = FI∪CS;
(14) End For
End

 (c)COFI2 algorithm

Algorithm 2: Inserting data into T
Input: T ,Stream_data, Pane_size,

Initial_sort_order, Tail_Pointer, w
Output: T
Method:
Begin
(1) p = 0;
(2) While (p != Pane_size)
(3) Tr = transaction from the current location in Stream_data;
(4) Insert Tr into T according to Initial_sort _order ;
(5) TP = Tr’s tail node;
(6) TP.C = TP.C + 1;
(7) Save TP to Tail_Pointer[w];
(8) p = p + 1;
(9) End While
End

 (b)Inserting data into a TPT-tree

Algorithm 1: deleting old data from T
Input: T , Tail_Pointer, w
Output: T
Method:
Begin
(1) For each tail pointer TP in Tail_Pointer[w]
(2) IF(TP.S = = -1) // a virtual node
(3) TP.C = TP.C - 1;
(4) TEMP = TP.parent;
(5) IF(TP.C = = 0)
(6) delete node TP from tree T;
(7) End IF
(8) TP = TEMP;
(9) End IF
(10) TP.C = TP.C - 1;
(11)
(12) While (TP.C = = 0)
(13) TEMP = TP.parent;
(14) IF(TP has no child)
(15) delete node TP from tree T;
(16) TP = TEMP;
(17) Else
(18) Break;
(19) End IF
(20) End While
(21) End For
End

 (a)Deleting obsolete data from a TPT-tree
Fig. 5. Algorithms based on TPT-tree and COFI2

Table 1. Differences in data processing methods among the three algorithms

Processing of one batch of data
during window sliding Adding data Deleting data

DST/DSP

1. Sort items of all transaction itemsets;
2. Add sorted itemsets to a tree and modify support number of
each node;
3. Record the updated batch of each node;
4. Modify support number of each node.

CPS

1. Reconstruct a CPS-tree;
2. Sort items of a transaction itemset;
3. Add sorted itemsets to a tree and modify support number of
each node;
4. Modify the header table.

1. Traverse a CPS-tree and delete obsolete
data;
2. Modify the header table.

TPT

1. Sort items of all transaction itemsets;
2. Add sorted itemsets to the tree and only modify the tail
support number of the tail-nodes;
3. Insert tail-nodes to tail pointer table.

1. Modify tail support numbers of
tail-nodes through scanning the tail pointer
table.

Table 1 shows a comparison of the three different
processes for data updating of three types of data

structure. We can see that CPS is the most complex one.
When adding a new pane data, convert the tree to an

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

30

 Sliding Window-based Frequent Itemsets Mining

FP-tree and modify the header table; when deleting a
pane, a traversal of the tree and modification of the
header table are needed. A comparison of the runtime of
TPT and DST is discussed in detail in Section 5.1.

4.3. Frequent itemsets mining algorithm

To improve the efficiency of frequent itemsets mining, a
TPT-tree can be reconstructed to achieve as much prefix
sharing as possible among transaction itemsets in the
current window; after a TPT-tree is reconstructed, it can
be as compact as an FP-Tree that is constructed using
the same transaction itemsets. We adopt the tree
reconstruction approach from that used in the CPS

algorithm. The basic idea of reconstruction is the same
as that in CPS, with a difference in processing tail-nodes;
i.e., during the reconstruction of a tree, if the tail-node A
is to be merged to the tail-node B, the following steps
are performed:
(1) Accumulate A’s tail support number to B’s tail

support number;
(2) Convert node A to a virtual node, and its parent is

B.
The purpose of converting A to a virtual node is to find
node A from the TPT-tree and modify the tail support of
both nodes A and B when deleting obsolete data
containing A.

Algorithm 4: ReconstructingTree
Input: H, T
Output: Ts
//H: a header table maintaining items in descending order of
support number
//T: a TPT-tree, items in each brach is not in order of H.
//Ts: a TPT-tree, items in each brach is in order of H.

Method:
Begin
(1) root = T.root
(2) For each branch Br in T
(3) TN = the first tail-nodes in Br;
(4) path Pj is from tail-node TN to root
(5) IF(Pj is a processed path)
(6) Continue;
(7) Else IF (Pj is a sorted path)
(8) Process_path(Pj);
(9) Else
(10) Sort_path(Pj);
(11) Proces_path(Pj);
(12) End IF
(13) End For
(14) End For
(15) Return T;
End

Process_path(p)

Begin
(1) A = tail node of path p;
(2) For each node n in path p
(3) For each sub-path sp from n to tail-node B

// B ≠ A
(4) IF (items in sp are at below of n in the

order of H)
(5) IF (sp is a sorted path)
(6) Process_path(sp)
(7) Else
(8) Sort_path(sp)
(9) End If
(10) Else // not at below of n in the order of

H
(11) sp = path from n1 to B;

 //n1 is a ancestor node of n, and
 //items from n1 to B are at below of
 //n1 in the order of H;

(12) Sort_path(sp)
(13) End IF
(14) End For
(15) End For
End

Sort_path(p)
Begin
(1) A = tail node of path p;
(2) For each node Nd on path p from parent node of A
(3) IF Nd just has one tail-node A
(4) Delete node Nd from T;
(5) Else
(6) Break;
(7) End IF
(8) End For
(9) Sort items in p in the order of H;
(10) Insert sorted items S into T at the below of

node pn with a tail-node B;
(11) IF B is not a new node
(12) IF B is not a tail-node
(13) A.parent = B.parent; A.N = B.N;
(14) Move B.children to A.children;
(15) Else
(16) B.C += A.C;
(17) A.parent = B; A.S = -1; //A is a virtual node
(18) End IF
(19) Else
(20) A.N = the last item in S;
(21) A is as the tail node of S;
(22) End If
End

root

a,0,1

c,0,2 b,0

c, 0,1

d,0,1

b,0,1

d,0,2c,0,1

T.root

T2.root

T1.root

root

a,0,1

c,0,2

b,0,1

d,0,2c,0,1 a,0

c,0,1

d,0,1

Tree T Tree Ts

(a) The algorithm of reconstructing TPT-tree

(b) An example of reconstructing TPT-tree

root

a,0,1

c,0,2 b,0

c, 0,1

d,0,1

b,0,1

d,0,2c,0,1

Tree T

a,0

c, 0,1

Fig. 6. Reconstruction Algorithm of TPT-tree and an example

Fig. 6(a) shows the detailed algorithm of reconstructing
a TPT-tree. Fig. 6(b) is an example of the reconstruction
process for the tree in Fig .4(g) (this tree is now denoted
as tree T in Fig. 6(b)). The following steps reconstruct
tree T:

(1) Sort all items in T by the ascending order of their
support numbers and get a sorted header table H =
{b:6, a:5, c:5, d:3}.

(2) Process the first tail-node “a,0,1” on the branch
“root-a-c” of tree T. There is only one item “a” on

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

31

 Le Wang et al.

the path “root-a”, so no sorting is needed and we
can process the sub tree whose root is “a,0,1” (the
sub tree is denoted as T1, as shown in Fig. 6(b)):

(2.1) Process the tail-node “c,0,2” in T1. On the path
from this tail-node to T1.root, the order of all items
is identical with the order of H, and this tail-node
has no children, so no further process is needed.

(2.2) Process another tail-node “c,0,1” in T1. Because
the order of items on the path from this tail-node to
T1.root is not identical with the order of H, we sort
these items (“a”, “b” and “c”) by the order of H,
add these sorted items (“b”, “a” and “c”) to the tree
(the resulting tree is T1 in Fig. 6(b)), and move the
children nodes of the old tail-node to the new
tail-node; and then, along the path from the old
tail-node to T1.root (“c-b-a-root”), remove those
nodes that have no children (that is, node “c” and
“b” are removed consecutively). The resulting tree
is the tree T’ in Fig. 6(b). Next step is to process
recursively the sub tree whose root is “c,0,1” (this
sub tree is denoted as T2, as shown in Fig. 6(b)).

(2.2.1)T2 has one tail-node “d,0,1”; this tail-node has no
children, and the items on the path from this node
to T2.root are identical with the order of H, so no
further process is needed.

(3) Using the above method，go on processing the
tail-node “b,01” in tree T. The final resulting tree is
tree Ts in Fig. 6(b).

After a TPT-tree is reconstructed, we can adopt COFI,
COFI2 or FP-Growth for mining frequent itemsets of
each window.
COFI2 is a revised version of COFI, to improve the
efficiency of memory usage and runtime. When mining

frequent itemsets containing a certain item, COFI
maintains all candidate itemsets until all the nodes on
the COFI-tree have been processed. Although a
COFI-tree is pruned, the size of all combinations of all
items may still be large if a branch contains many items;
this situation will not only cost a large amount of
memory, but also slow down the efficiency of matching
identical itemsets among the candidate itemsets. To
address this issue, our proposed approach COFI2 can
maintain less number of candidates by generating
candidate itemsets as late as possible and deleting
infrequent itemsets as early as possible.
Fig. 2(c) is an example of the mining process of COFI.
When generating all combinations of the items of a
branches containing node “a”, each itemset of the
combinations must contain item “e”, but may not
contain item “a”, and the number of the combinations is
8. However COFI2 requests that each itemset of the
combination must contain both items “a” and “e”; and
the size of the combination is 4. This is considered as
generating candidate itemsets as late as possible. When
dealing with the second node “a” on the COFI-tree,
COFI2 generates only itemset {ae:1}. Then search the
candidate itemsets for this itemset, and if it is found, we
accumulate its support number; otherwise, we insert the
itemset to the candidate itemsets. After finishing the
processing of all nodes “a”, the infrequent itemsets in
the candidate itemsets can be deleted, because the
itemsets that contain item “a” have been generated, and
it is impossible to generate other itemsets that contain
item “a” when processing other nodes. This way the
infrequent itemsets can be deleted as early as possible
without waiting for the whole tree to be processed.

Table 2. Differences between COFI and COFI2

Algorithms Differences of candidate itemsets Differences of tree structure

COFI

1. When processing an item on the COFI-tree, generate an itemset combination of all
the items from the corresponding node to the root (inclusive) as the candidate itemsets;
2. After finishing the processing of all nodes on the COFI tree, delete the infrequent
itemsets in the candidate itemsets.

Node contains participation count
and support count.

COFI2

1. When processing an item on the COFI-tree, generate an itemset combination of all
the items from the corresponding node to the root (including itself and the root) as the
candidate itemsets;
2. After finishing the processing of this item, delete the infrequent itemsets from the
candidate itemsets.

Node contains support count.

In addition, the nodes on the COFI-tree do not need a
counter to store the participation count in algorithm
COFI2. The COFI2 algorithm is shown in Fig. 5(c).
When adding a new itemset Y to the set of itemsets CS,
we only accumulate its support number if itemset Y

exists in CS; otherwise insert this itemset to CS (line 9 in
Fig. 5(c)).
Table 2 shows the comparison of COFI and COFI2. The
main difference between the two algorithms is that (1)
the time of generating and deleting candidate itemsets is

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

32

 Sliding Window-based Frequent Itemsets Mining

different, the sizes of the candidate itemsets are also
different; (2) the tree structures are different.
Theorem 2: The performance of COFI2 outperforms
COFI in terms of running time and space.
Proof: When an item Q on a COFI-tree is processed,
each itemset of the combinations generated by COFI
may not contain this item Q, but it must contain the item
of the root; however each itemset of the combinations
generated by COFI2 must contain Q and the item of the
root. Because the items used to generated combination in
two algorithms are same, the number of combinations
generated by COFI2 must less than that by COFI.
Meanwhile, because the number of combinations
generated by COFI2 is less, the merging of two
combinations would cost less time. In addition, the
nodes on the COFI-tree of algorithm COFI2 do not
maintain participation count; this reduces memory and
processing time.
Summarizing the above, the performance of COFI2
outperforms COFI in terms of time and space.

5. Experimental analyses

In this section, we evaluate the performance of the
proposed algorithm TPT (TPT-tree and COFI2) and
compare it with the algorithms DST (DST-tree and
COFI) on four datasets: connect4, connect20, kosarakt
and T40I10D100K. The datasets connect4, kosarakt and
T40I10D100K were obtained from FIMI Repository 22;
we take the first 20 dimensions of connect4 as the
dataset connect20. connect4 and connect20 are dense
datasets; kosarakt and T40I10D100K are sparse datasets.
T40I10D100K is a synthetic dataset generated by IBM
Data Generator and other three datasets are real-world
datasets. All algorithms were written in Java
programming language. The configuration of the testing
platform is as follows: Windows XP operating system,
2G Memory, Intel(R) Core(TM) i3-2310 CPU @ 2.10
GHz; Java heap size is 1G.

40 38 36 34 32 30
10

20

30

40

50

60

70

(b) On the dataset connect20 (w=3, p=3000)

R
un

ni
ng

 ti
m

e
(S

)

Minimum support threshold (%)

 TPT
 DST

95 94 93 92 91 90
0

200

400

600

800

(a) On the dataset connect4 (w=3, p=3000)

R
un

ni
ng

 ti
m

e
(S

)

Minimum support threshold (%)

 TPT
 DST

0.40 0.36 0.32 0.28 0.24
40

60

80

100

120

140

160

180

(c) On the dataset kosarakt (w=3, p=3000)

R
un

ni
ng

 ti
m

e
(S

)

Minimum support threshold (%)

 TPT
 DST

0.90 0.85 0.80 0.75 0.70
350

450

550

650

750

(d) On the dataset T40I10D100K (w=3, p=3000)

R
un

ni
ng

 ti
m

e
(S

)

Minimum support threshold (%)

 TPT
 DST

Fig. 7. Evaluation on varied minimum support threshold

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

33

5 9 13 17 21
0

10

20

30

40

(b) On the dataset connect20 (w=3, p=3000, min=35%)

R
un

ni
ng

 ti
m

e
(S

)

Index of batch

 TPT
 DST

5 9 13 17 21
20

50

80

110

140

170

200

(a) On the dataset connect4 (w=3, p=3000, min=93%)

R
un

ni
ng

 ti
m

e
(S

)

Index of batch

 TPT
 DST

8 14 20 26 32
50

150

250

350

450

550

(d) On the dataset T40I10D100K (w=3, p=3000, min=0.8%)

R
un

ni
ng

 ti
m

e
(S

)

Index of batch

 TPT
 DST

66 132 198 264 330

10

20

30

40

50

60

70

80

(c) On the dataset kosarakt (w=3, p=3000, min=0.3%)

R
un

ni
ng

 ti
m

e
(S

)

Index of batch

 TPT
 DST

Fig. 8. Evaluation on accumulated batches

We evaluated the execution time of our algorithm under
varied minimum support threshold. Fig. 7 shows the
running time comparison of TPT and DST under four
datasets, respectively. On the experiments of Fig. 7, the
number of each batch data is set as 3000, thus the
datasets connect4, connect20, kosarakt and
T40I10D100K are divided into 23, 23, 330 and 33 panes,
respectively; on these four datasets, mining operation
was performed on 21, 21, 328 and 31 consecutive
windows respectively; DST removed the obsolete nodes
before performing each operation of mining frequent
itemsets. Because there will be more frequent itemsets
under a smaller minimum support threshold, the total
running time will increase along with the decrease of the
threshold; and from the results on Fig. 7, we can see that

our algorithm TPT outperforms DST on different
minimum support thresholds. For example, when the
minimum support threshold (min) is 90% on the dataset
connect4, TPT spends 510.141 seconds while DST
spends 761.578 seconds.
Because data streams are continuous data flows along
time, the accumulated performance of the algorithm
should also be evaluated. Fig. 8 shows the running time
comparison of TPT and DST under different batch index,
and Fig. 9 is the running time comparison under varied
batch-size.
From Fig. 8 we can see that the performance advantage
of algorithm TPT accumulates along with the
accumulation of batches, and it is stable.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

34

5 4 3 2 1
0

30

60

90

120

150

180

(b) On the dataset connect20 (w=3, min=35%)

R
un

ni
ng

 ti
m

e
(S

)

Number of transactions in a batch (K)

 TPT
 DST

5 4 3 2 1
0

500

1000

1500

2000

2500

(a) On the dataset connect4 (w=3, min=93%)

R
un

ni
ng

 ti
m

e
(S

)

Number of transactions in a batch (K)

 TPT
 DST

6 5 4 3 2
50

60

70

80

90

100

110

120

(c) On the dataset kosarakt (w=3, min=0.3%)

R
un

ni
ng

 ti
m

e
(S

)

Number of transactions in a batch (K)

 TPT
 DST

6 5 4 3 2
350

400

450

500

550

600

650

700

(d) On the dataset T40I10D100K (w=3, min=0.8%)

R
un

ni
ng

 ti
m

e
(S

)

Number of transactions in a batch (K)

 TPT
 DST

Fig. 9. Evaluation on varied batch-size

In Fig. 9, the running time decreases along with the
increase of batch-size, because, for a fixed length
dataset (which is the circumstance of our testing
datasets), the more the number of transactions of each
batch contains, the less the number of windows in a
dataset will be. Fig. 9 shows that our algorithm TPT
outperforms DST on varied batch-sizes. For example,
when the batch-size (p) is 1000 on the dataset connect4,
TPT spends 1625.25 seconds while DST spends
2454.734 seconds.
Concluding the above experiments, we can see that our
proposed algorithm TPT has achieved a better
performance than DST under varied minimum support
thresholds and varied batch-sizes, and its advantage is
stable along with the accumulation of the data flow
process.

6. Conclusions

To improve the overall performance of the frequent
itemsets mining algorithm over data streams, the
efficiency of updating data and mining frequent itemsets
should be considered. This study proposes a new data
structure TPT-tree and gives the corresponding
algorithm TPT. We also propose the algorithm COFI2
for mining frequent itemsets; meanwhile apply it to
mine frequent itemsets over data streams. Theoretical
and experimental analysis also shows that the
performance of our proposed algorithm TPT (TPT-tree
and COFI2) outperforms the algorithm DST (DST-tree
and COFI) in terms of running time and memory space.

Acknowledgments

This work is supported by National Natural Science
Foundation of P.R. China (Grant No. 61173163,

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

35

 Le Wang et al.

51105052), and Liaoning Provincial Natural Science
Foundation of China (Grant No. 201102037).

References

 1. R. Agrawal and R. Srikant, Fast algorithms for
mining association rules in large databases, in Proc.
International Conference on Very Large Data
Bases, (Santiago, Chile, 1994), pp.487-487.

 2. J. Han, J. Pei and Y. Yin, Mining frequent patterns
without candidate generation, in Proc. ACM
SIGMOD International Conference on
Management of Data, (Dallas, TX, United states,
2000), pp.1-12.

 3. M. El-hajj and O.R. Zaïane, COFI-tree mining: a
new approach to pattern growth with reduced
candidacy generation, in Proc. IEEE International
Conference on Frequent Itemset Mining
Implementations, 2003),

 4. M. Song and S. Rajasekaran, A transaction
mapping algorithm for frequent itemsets mining,
IEEE Transactions on Knowledge and Data
Engineering 4(18) (2006) 472-481.

 5. T. Hu, S.Y. Sung, H. Xiong, and Q. Fu, Discovery
of maximum length frequent itemsets, Information
Sciences 178(1) (2008) 69-87.

 6. B. Vo, T. Hong and B. Le, DBV-Miner: A
Dynamic Bit-Vector approach for fast mining
frequent closed itemsets, Expert Systems with
Applications 39(8) (2012) 7196-7206.

 7. C.W. Lin, T.P. Hong and W.H. Lu, An effective
tree structure for mining high utility itemsets,
Expert Systems with Applications 38(6) (2011)
7419-7424.

 8. V.S. Tseng, C.W. Wu, B.E. Shie, and P.S. Yu,
UP-Growth: An efficient algorithm for high utility
itemset mining, in Proc. ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, (Washington, DC, United states,
2010), pp.253-262.

 9. C.F. Ahmed, S.K. Tanbeer, B.S. Jeong, and Y.K.
Lee, Efficient Tree Structures for High Utility
Pattern Mining in Incremental Databases, IEEE
Transactions on Knowledge and Data Engineering
21(12) (2009) 1708-1721.

10. Y.C. Li, J.S. Yeh and C.C. Chang, Isolated items
discarding strategy for discovering high utility
itemsets, Data and Knowledge Engineering 64(1)
(2008) 198-217.

11. M. Liu and J. Qu, Mining high utility itemsets
without candidate generation, in Proc. 21st ACM
International Conference on Information and
Knowledge Management, (Maui, HI, United states,
2012), pp.55-64.

12. C.W. Lin and T.P. Hong, A new mining approach

for uncertain databases using CUFP trees, Expert
Systems with Applications 39(4) (2011) 4084-4093.

13. C.K. Leung and F. Jiang, Frequent pattern mining
from time-fading streams of uncertain data, in Proc.
13th International Conference on Data
Warehousing and Knowledge Discovery, (Toulouse,
France, 2011), pp.252-264.

14. C.K. Leung, M.A.F. Mateo and D.A. Brajczuk, A
tree-based approach for frequent pattern mining
from uncertain data, in Proc. 12th Pacific-Asia
Conference on Knowledge Discovery and Data
Mining, (Osaka, Japan, 2008), pp.653-661.

15. Z. Farzanyar, M. Kangavari and N. Cercone,
Max-FISM: Mining (recently) maximal frequent
itemsets over data streams using the sliding window
model, Computers & Mathematics with
Applications 64(6) (2012) 1706-1718.

16. Y. Chi, H. Wang, S.Y. Philip, and R.R. Muntz,
Catch the moment: maintaining closed frequent
itemsets over a data stream sliding window,
Knowledge and Information Systems 10(3) (2006)
265-294.

17. F. Nori, M. Deypir and M.H. Sadreddini, A sliding
window based algorithm for frequent closed itemset
mining over data streams, Journal of Systems and
Software (2012)

18. C.K.S. Leung and Q.I. Khan, DSTree: A tree
structure for the mining of frequent sets from data
streams, in Proc. IEEE International Conference on
Data Mining, (Hong Kong, China, 2007),
pp.928-932.

19. C. Leung and D. Brajczuk, Efficient Mining of
Frequent Itemsets from Data Streams, Sharing Data,
Information and Knowledge (2008) 2-14.

20. S.K. Tanbeer, C.F. Ahmed, B. Jeong, and Y. Lee,
Sliding window-based frequent pattern mining over
data streams, Information Sciences 179(22) (2009)
3843-3865.

21. M. Deypir and M.H. Sadreddini, A dynamic layout
of sliding window for frequent itemset mining over
data streams, Journal of Systems and Software 85(3)
(2012) 746-759.

22. B. Goethals, Frequent itemset mining dataset
repository, http://fimi.cs.helsinki.fi/data/, accessed
Oct. 2010.

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

36

