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Abstract

This paper is focused on α-generalized semantic resolution automated reasoning method in linguistic
truth-valued lattice-valued propositional logic. Concretely, α-generalized semantic resolution for lattice-
valued propositional logic (Ln×L2)P(X) is equivalently transformed into that for lattice-valued propo-
sitional logic LnP(X)(i ∈ {1,2, · · · ,n}). A similar conclusion is obtained between the α-generalized
semantic resolution for linguistic truth-valued lattice-valued propositional logic LV (n×2)P(X) and that for
lattice-valued propositional logic LV (n)P(X)(i∈{1,2, · · · ,n}). Secondly, the generalized semantic resolu-
tion for lattice-valued propositional logic LnP(X) based on a chain-type truth-valued field is investigated
and its soundness and weak completeness are given. The Presented work provides some foundations
for resolution-based automated reasoning in linguistic truth-valued lattice-valued logic based on lattice
implication algebra.
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1. Introduction

Theorem mechanical proving is an important re-
search direction of the study automated reasoning,
its aim is to achieve the mechanization of theo-
rem proving, resolution-based automated reasoning
is one way of automatic reasoning.

Since its introduction in 1965, automated rea-
soning based on Robinson’s resolution principle 1

has been extensively studied in the context of find-
ing natural an efficient proof systems to support a

wide spectrum of computational tasks. They are
widely applied to areas such as artificial intelligence,
logic programming, problem solving and question
answering systems, database theory, and so on.

For improving the efficiency of resolution prin-
ciple, in 1967, Slagle 2 presented the semantic reso-
lution method, as one of the most important refine-
ments of resolution principle, its main idea is re-
straining the type and the order of clauses partic-
ipated in the process of resolution reasoning. Se-
mantic resolution strategy can effectively reduce the
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redundant clauses and increase the efficiency of rea-
soning based on resolution principle. Like Robin-
son’s resolution principle, the semantic resolution
method is also sound and complete in predicate
logic.

With the non-classical logic in the application of
information science, computer science and artificial
intelligence increasingly important, automated rea-
soning based on various kinds of non-classical logic
has become an active area of research 3,4,5,6,7,8,9.

Lattice-valued logic is an important case of
multi-valued logic, can describe phenomenon in real
world. In 1993, Xu 14 introduced a new logical alge-
bra structure-lattice implication algebra with incom-
parable elements by combining lattice and impli-
cation algebra, consequently, lattice-valued propo-
sitional logic system 10,11,15and lattice-valued first-
order logic system 12 based on lattice implication al-
gebra were proposed, the research work related on
lattice implication algebras and lattice-valued logic
system based on lattice implication algebra were
collected in Ref.[10].

Based on the work mentioned above, α-
resolution principle based on lattice-valued propo-
sitional logic and α-resolution principle based on
lattice-valued first-order logic were given in Ref.[16,
17], which can be used to prove whether a logic for-
mula is false or not in logic systems based on lat-
tice implication algebras. Consequently, Xu et al.
18 presented α-generalized resolution principle for
general generalized clausal set in lattice-valued logic
system, and moreover its soundness and weak com-
pleteness were given. The difference between α-
resolution and α-generalized resolution is that the
reasoning rule is based on generalized clause and
the reasoning rule of generalized resolution princi-
ple is based on general generalized clause(some or-
dinary logical formulae). For this characteristic of
α-generalized resolution principle, it make the reso-
lution procedure more natural and intuitive.

In real uncertainty reasoning problem, most in-
formation, which are always propositions with truth-
values, can be very qualitative in nature, i.e. de-
scribed in natural language, usually, in a quantita-
tive setting the information is expressed by means
of numerical values, However, when we work in

a qualitative setting, that is, with vague or impre-
cise knowledge, this cannot be estimated with an
exact numerical value, Then, it may be more re-
alistic to use linguistic truth values instead of nu-
merical values 20,21,22,23. In 2006, based on sym-
bolic approaches, Xu 24 proposed linguistic truth-
valued lattice implication algebra, this algebraic
model can be applied for linguistic truth-valued au-
tomated reasoning and uncertainty reasoning. In
2007, Xu 25 proved the weak completeness of reso-
lution in a linguistic truth-valued propositional logic
which truth-value field is linguistic truth-valued lat-
tice implication algebra. Except for technical means
of judging resolution pair, the executive way of
Robinson’s resolution principle coincides with that
of α−resolution in lattice-valued logic LP(X), so,
applying semantic resolution strategy to the pro-
cess of α−resolution like that in classical logic can
increase the efficiency of α−resolution in lattice-
valued logic. In the present paper, based on the pre-
cious works, we establish the generalized semantic
resolution method on linguistic truth-valued lattice-
valued propositional logic and it can treat the un-
certainty information with linguistic valued in real
world.

The paper is structured as follows: Section 2
as a preliminary gives an overview of some con-
cepts and results about linguistic truth-valued lat-
tice implication algebra and lattice-valued proposi-
tional logic system. Section 3 discusses the equiv-
alence of generalized semantic resolution based on
linguistic truth-valued lattice-valued propositional
logic LV (n×2)P(X) and generalized semantic resolu-
tion on lattice-valued propositional logic LV (n)P(X).
In Section 4 the generalized semantic resolution on
lattice-valued propositional logic LnP(X) based on
a chain-type truth-valued field is investigated and its
soundness and weak completeness are given. Sec-
tion 5 contrives a corresponding resolution reason-
ing algorithm as a foundation for the implementa-
tion purpose. The paper is concluded in Section 6.

2. Preliminaries

In this section, we will give some elementary con-
cepts, the details can be seen in the Ref.[13].

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors

161



α-Generalized Semantic Resolution Method in Linguistic Truth-valued Propositional Logic LV (n×2)P(X)

Definition 1. 14 Let (L,∨,∧,O, I) be a bounded lat-
tice with an order-reversing involution ′, the greatest
element I and the smallest element O, and

→: L×L−→ L

be a mapping. L = (L,∨,∧,′ ,→,O, I) is called
a lattice implication algebra(LIA) if the following
conditions hold for any x,y,z ∈ L:

(I1) x→ (y→ z) = y→ (x→ z);
(I2) x→ x = I;
(I3) x→ y = y

′ → x
′
;

(I4) x→ y = y→ x = I implies x = y;
(I5) (x→ y)→ y = (y→ x)→ x;
(l1) (x∨ y)→ z = (x→ z)∧ (y→ z);
(l2) (x∧ y)→ z = (x→ z)∨ (y→ z).
In this paper, we denote L as a lattice implica-

tion algebra (L,∨,∧,′ ,→,O, I).

Example 1. 14,13 (Boolean algebra). Let (L,∨,∧,′ )
be a Boolean lattice. For any x,y ∈ L, define x →
y = x′∨ y, then (L,∨,∧,′ ,→) is an LIA.

Example 2. 14,13 (Łukasiewicz implication alge-
bra on a finite chain Ln) Let Ln be a finite chain,
Ln = {ai|1 6 i 6 n} and a1 < a2 < .. . < an, define
for any a j,ak ∈ Ln,

a j ∨ak = amax{ j,k},
a j ∧ak = amin{ j,k},
(a j)′ = an− j+1,
a j → ak = amin{n− j+k,n}.
Then Ln = (Ln,∨,∧,′ ,→,a1,an) is an LIA.

Example 3. 14,13 Let L = {O,α,β ,γ,δ , I}. The
ordering relation on L is given by Fig. 1. For any
x,y ∈ L, define x∨ y = Sup(x,y),x∧ y = Inf(x,y),
and operations on L are defined in Tab. 1. Then
(L,∨,∧,′ ,→,O, I) is an LIA.

O

δ
α

γ
β

I

Fig. 1. Hasse Diagram of L.

Table 1. The Operations on L

x x′ → O α β γ δ I
O I O I I I I I I
α γ α γ I β γ β I
β δ β δ α I β α I
γ α γ α α I I α I
δ β δ β I I β I I
I O I O α β γ δ I

Example 4. 20,24 Let Ln = {d1,d2, · · · ,dn},
d1 < d2 < · · · < dn, L2 = {b1,b2}, b1 < b2,
(Ln,∨Ln ,∧Ln ,

′
Ln

,→Ln ,d1,dn) and (L2,∨L2 ,∧L2 ,
′
L2

,→L2

,b1,b2) be two Lukaisewicz implication algebras.
For any (di,b j),(dk,bm) ∈ Ln×L2, define

(di,b j)∨ (dk,bm) = (di∨Ln b j,dk∨L2 bm);
(di,b j)∧ (dk,bm) = (di∧Ln b j,dk∧L2 bm);
(di,b j)′ = (d′i ,b

′
j);

(di,b j)→ (dk,bm) = (di →Ln b j,dk →L2 bm),
Then Ln×L2,∨,∧,′ ,→,(d1,b1),(dn,b2) is a lat-

tice implication algebra, denoted as Ln×L2.

Example 5. 20,24 Denote MT ={ f , t}, which is
called as the set of meta truth values. The lattice im-
plication algebra of defined on the set of meta truth
values is called a meta linguistic truth-valued lattice
implication algebra, where f < t, the operation ′ is
defined as f ′ = t and t ′ = f , the operation → is de-
fined as: →: MT ×MT −→MT , x→ y = x′∨ y.

Example 6. 20,24 Denote ADn = {ai|1 6 i 6 n},
a1 < a2 < · · · < an, and ai(i = 1,2, · · · ,n) be mod-
ifier of meta language, the operations on ADn are
defined as, for any a j,ak ∈ ADn,

a j ∨ak = amax{ j,k};
a j ∧ak = amin{ j,k}
(a j)′ = an− j+1;
a j → ak = amin{n− j+k,n}.
Then (ADn,∨,∧,′ ,→,a1,an) is a lattice implica-

tion algebra, and it is called modifier lattice implica-
tion algebra.

Definition 2. 20,24 Let ADn = {a1,a2, · · · ,an} be a
set with n modifiers and a1 < a2 < · · · < an, MT =
{ f , t} be a set of meta truth values and f < t, de-
note LV (n×2) = ADn ×MT , define a mapping σ :
LV (n×2) −→ Ln×L2,

σ((ai,mt)) =
{

(d′i ,b1) when mt = f ,
(di,b2) when mt = t.

(1)
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Then σ is a bijection mapping, denote its inverse
mapping as σ−1, for any x,y ∈ LV (n×2), define

x∨ y = σ−1(σ(x)∨σ(y)),
x∧ y = σ−1(σ(x)∧σ(y)),
x′ = σ−1((σ(x))′),
x→ y = σ−1(σ(x)→ σ(y)),
Then LV (n×2) =(LV (n×2),∨,∧,′ ,→,(an, f ),(an, t))

is called a linguistic truth-valued lattice implication
algebra generated by ADn and MT , its elements are
called linguistic truth-values, and σ is an isomorphic
mapping from LV (n×2) to Ln×2.

Proposition 1. 14,13 Let L be a lattice implication
algebra. Then for any x,y,z ∈ L, the following con-
clusions hold:

(1) I → x = x and x→ O = x′;
(2) O→ x = I and x→ I = I;
(3) x→ y > x′∨ y;
(4) x 6 y if and only if x→ y = I;
(5) If x 6 y, then x→ z > y→ z and z→ x 6 z→

y.

Proposition 2. 13 All LIAs form a proper class.

Proposition 3. 10 For any finite cardinal number
k > 2, there exists an LIA with the cardinal number
k.

Definition 3. 10,11 Let X be a set of propositional
variables, T = L ∪ {′,→} be a type with ar(′)=1,
ar(→)=2 and ar(α)=0 for any α ∈ L. The proposi-
tional algebra of the lattice-valued propositional cal-
culus on the set X of propositional variables is the
free T algebra on X is denoted by LP(X).

Theorem 4. 10,11 LP(X) is the minimal set Y which
satisfies:

(1) X ∪L⊆ Y.
(2) if p,q ∈ Y , then p′, p→ q ∈ Y.

Definition 4. 10,11 A valuation of LP(X) is a propo-
sitional algebra homomorphism ν : LP(X)→ L.

Specially, when the field with valuation of LP(X)
is an LV (n×2), this specific LP(X), i.e. LV (n×2)P(X),
is a linguistic truth-valued lattice-valued propor-
tional logic system. Similarly, the truth-valued do-
main of LnP(X) is a Lukasiewicz implication alge-
bra Ln.

Definition 5. 16 A lattice-valued propositional log-
ical formula f is called an extremely simple form,

in short, ESF, if a lattice-valued propositional log-
ical formula f ∗ obtained by deleting any constant
or literal or implication item appearing in f is not
equivalent to f .

Definition 6. 16 A lattice-valued propositional logi-
cal formula f is called an indecomposable extremely
simple form, in short, IESF, if:

(1) f is an ESF containing connective → and ′.
(2) for any g ∈ LP(X), if g ∈ f in LP(X), then

g is an ESF containing connective → and ′ at most,
where

LP(X) = (LP(X)� =,∨,∧,′ ,→) is a lattice im-
plication algebra.

LP(X)�= = {p|p ∈ LP(X)}, p = {q ∈
LP(X)|q = p}.
Definition 7. 16 All the constants, literals and IESFs
are called generalized literals. Here, the definition of
literal is the same as that in classical logic.

Definition 8. 18 Let g1,g2, · · · ,gn be generalized
literals in LP(X). A logical formula Φ is called a
general generalized clause if these generalized lit-
erals are connected by ∧,∨,→,′ and ↔, denoted by
Φ(g1,g2, · · · ,gn).

Definition 9. 18 A general generalized clause G in
LP(X) is called a constant claue if only constants
exist in G. Particularly, if for any valuation γ , such
that γ(G) = α , then G is called an α-constant clause.
If for any valuation γ , such that γ(G) 6 α , then
G is called an α-false constant clause, denoted by
α−¤.

Definition 10. 18 (α-Generalized Resolution Prin-
ciple) Let Φ and Ψ be general generalized clauses
in LP(X), g and h generalized literals in Φ and Ψ,
respectively. α ∈ L and α < I. If g∧h 6 α , then

Rα−g(Φ,Ψ) = Φ(g = α)∨Ψ(h = α)

is called an α-generalized resolvent of Φ and Ψ,
where g and h are called generalized resolution lit-
erals.

Definition 11. 18 Let G be generalized clause and
g be a generalized literal occurring in G, A(G) and
A(g) be the atom sets of G and g respectively, we
say G and g are independent if A(G)∩A(g) =∅.
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Definition 12. 18 Let g be generalized literal in
LP(X), we say g is normal if there exists a valuation
γ such that γ(g) = I.

Definition 13. 18 A general generalized literal
clause S is normal if all the IESFs in S are normal.

3. The Equivalence Among Generalized
Semantic resolution methods

In this section, we discuss the relation be-
tween generalized semantic resolution for linguis-
tic truth-valued lattice-valued propositional logic
LV (n×2)P(X) and generalized semantic resolu-
tion for lattice-valued propositional logic system
LV (n)P(X).

Definition 14. Let (N,E1,E2, · · · ,Eq)(q > 1) be
general generalized clauses consequence in lattice-
valued propositional logic LP(X), v be a valua-
tion in LP(X), O an order of generalized literals
occurring in these clauses. Finite general gen-
eralized clauses consequence (N,E1,E2, · · · ,Eq) is
called α-generalized semantic clash on O and v(α-
generalized Ov clash for short), if the following con-
ditions hold:

1) v(Ei) 6 α , 1 6 i 6 q;
2) Let R1 = N, for any i = 1,2, · · · ,q, there exists

α-generalized resolution formula Ri+1 of Ri and Ei,
the resolution generalized literal in Ei is the leftmost
generalized literal in Ei according to G ;

3) v(Ri+1) 6 α;
Rq+1 is called the resolvent of this clash,

E1,E2, · · · ,Eq are called electrons and N is called the
core of this clash..

Definition 15. Suppose S is a set of general general-
ized clauses in LP(X), α ∈ L, an α-generalized res-
olution deduction ω = {D1,D2, · · · ,Dm} is called an
α-generalized semantic resolution deduction from S
to the general generalized clause Dm, if

(1) Di ∈ S(i = 1,2, · · · ,m), or
(2) There exists r1,r2 < i, such that Di is α-

generalized semantic resolution formula of Dr1 and
Dr2 .

If there exists an α-generalized semantic reso-
lution deduction ω from S to an α-constant clause,

then ω is called an α-generalized semantic refuta-
tion of S.

Theorem 5. 28 Let g1,g2 be generalized liter-
als in lattice propositional logic (Ln×L2)P(X), v1
be a valuation in (Ln ×L2)P(X), α = (di,b2) ∈
Ln×L2, then g1 ∧ g2 6 α if and only if g1,g2 are
interpreted in LnP(X) and g1∧g2 6 di.

Theorem 6. 28 Let g1,g2 be generalized liter-
als in lattice propositional logic (Ln×L2)P(X), v1
be a valuation in (Ln ×L2)P(X), α = (di,b1) ∈
Ln ×L2, and di < dn, if for any j = 1,2, · · · ,m,
gM

j 6 g j when gM
j ,g j are interpreted in LnP(X), then

g1 ∧ g2 6 α if and only if g1,g2 are interpreted in
LnP(X) and g1∧g2 6 di.

Theorem 7. 28 Let g be a generalized literal in lat-
tice propositional logic (Ln×L2)P(X), v1 be a val-
uation in (Ln×L2)P(X), α = (di,b2) ∈Ln×L2,
then the following conclusions hold:

(1) v1(g)� α if and only if v2(g) > di;
(2) v1(g) 6 α if and only if v2(g) 6 di, where

v2 = v1|LnP(X).

Theorem 8. 28 Let g be a generalized literal in lat-
tice propositional logic (Ln×L2)P(X), v1 be a val-
uation in (Ln×L2)P(X), α = (di,b1) ∈Ln×L2,
then the following conclusions hold:

(1) v1(g) > (di+1,b1) if and only if v2(g) > di;
(2) v1(g) 6 α if and only if v2(g) 6 di, where

v2 = v1|LnP(X).

Theorem 9. Let S = C1 ∧C2 ∧ ·· · ∧Cn, where
C1,C2, · · · ,Cn are general generalized clauses in
lattice-valued propositional logic (Ln ×L2)P(X),
v1 be a valuation in (Ln×L2)P(X), α = (di,b2) ∈
Ln×L2, then the following conclusions are equiv-
alent:

(1) There exists an α-generalized semantic reso-
lution deduction from S to α-false clause about val-
uation v1;

(2) There exists an ai-generalized semantic reso-
lution deduction from S to di-false clause about val-
uation v2, where v2 = v1|LnP(X).
Proof.

(1)⇒(2) Let D be an α-generalized semantic res-
olution deduction from S to α-false clause about val-
uation v1, since v2 = v1|LnP(X), from theorem 7, we
have:
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(1) If v1(g) 6 α , then v2(g) 6 di;
(2) If v1(g)� α , then v2(g) > di.
Furthermore, we have any α-resolution pair in D

is also di-resolution pairs in D∗, by theorem 6, and
D∗ is an di-generalized semantic resolution deduc-
tions from S to di-false clause about valuation v2.

(2)⇒(1) we can get the result similarly.

Theorem 10. Let S = C1 ∧ C2 ∧ ·· · ∧ Cn,
where C1,C2, · · · ,Cn are general generalized clauses
in linguistic truth-valued lattice-valued proposi-
tional logic LV (n×2)P(X), v1 be a valuation in
LV (n×2)P(X), α = (ai,b2) ∈ LV (n×2), then the fol-
lowing conclusions are equivalent:

(1) There exists an α-generalized semantic reso-
lution deduction from S to α-false clause on valua-
tion v1.

(2) There exists an ai-generalized semantic reso-
lution deduction from S∗ to ai-false clause on valua-
tion v2, where v2 = v1|LV (n)P(X).
Proof. According to Theorem 9, we can obtain the
result easily.

According to Theorem 9 and Theorem 10, we
can find the fact that: (di,b2)-generalized seman-
tic resolution for lattice-valued propositional logic
(Ln×L2)P(X) based on lattice implication algebra
can be equivalently transformed into di-generalized
semantic resolution for lattice-valued propositional
logic LnP(X). Similarly, (ai, t)-generalized seman-
tic resolution for linguistic truth-valued lattice-
valued propositional logic LV (n×2)P(X) based on
lattice implication algebra is also equivalent to ai-
generalized semantic resolution for lattice-valued
propositional logic LV (n)P(X).

Theorem 11. Let S = C1 ∧C2 ∧ ·· · ∧Cn, where
C1,C2, · · · ,Cn are general generalized clauses in
lattice-valued propositional logic (Ln ×L2)P(X),
v1 be a valuation in (Ln×L2)P(X), α = (di,b1) ∈
Ln ×L2 and d1 < dn, if the following conditions
hold:

(1) For any generalized literal g in S, g4 6 g if
g4 and g are interpreted in LV (n);

(2) For any generalized literal g in S, v1(g) >
(di+1,b1) or v1(g) 6 α , then the following conclu-
sions are equivalent:

(i) There exists an α-generalized semantic reso-
lution deduction from S to α-false clause about val-
uation v1;

(ii) There exists an di-generalized semantic reso-
lution deduction from S to di-false clause about val-
uation v2, where v2 = v1|LnP(X).
Proof. We can prove it similarly to theorem 9.

Theorem 12. Let S = C1 ∧ C2 ∧ ·· · ∧ Cn,
where C1,C2, · · · ,Cn are general generalized clauses
in linguistic truth-valued lattice-valued proposi-
tional logic LV (n×2)P(X), v1 be a valuation in
LV (n×2)P(X), α = (ai,b1) ∈ Ln × L2 and ai > a1,
if the following conditions hold:

(1) For any generalized literal g in S, g4 6 g if
g4 and g are interpreted in Ln;

(2) For any generalized literal g in S, v1(g) >
(ai−1, f ) or v1(g) 6 α , then the following conclu-
sions are equivalent:

(i) There exists an α-generalized semantic reso-
lution deduction from S to α-false clause on valua-
tion v1;

(ii) There exists an an−i+1-generalized semantic
resolution deduction from S to an−i+1-false clause
on valuation v2, where v2 = v1|LV (n)P(X), and for
any propositional variable p(or constant symbol e):

1) If v1(p)(or v1(e))=(a j, t), then v2(p)(or
v2(e)=a j, where a j ∈LV (n);

2) If v1(p)(or v1(e))=(a j, f ), then v2(p)(or
v2(e)=an− j+1, where a j ∈LV (n).
Proof. According to Theorem 11, we can obtain
the result easily.

According to Theorem 11 and Theorem 12,
(di,b1)-generalized semantic resolution for lattice-
valued propositional logic (Ln ×L2)P(X) based
on lattice implication algebra Ln × L2 can be
equivalently transformed into di-generalized se-
mantic resolution for lattice-valued propositional
logic LnP(X) under some conditions. Similarly,
(ai, f )-generalized semantic resolution for linguis-
tic truth-valued lattice-valued propositional logic
LV (n×2)P(X) based on lattice implication algebra
is also equivalent to an−i+1-generalized seman-
tic resolution for lattice-valued propositional logic
LV (n)P(X) under some conditions.

Computing out the α-resolution fields of all gen-
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eralized literals in a general generalized clause set
is the premise for applying α-generalized semantic
method on the general generalized clause set.

The α-resolvability between two generalized lit-
erals not only associates with generalized literals
themselves, but also with the valuation field of the
logic system. In general, the more complex the
structure of generalized literal and valuation field
are, the more difficult to calculate its α-resolution
field. Even the same generalized literal, its α-
resolution field is possible different when it is dis-
cussed in different logic systems. Because of the
structure of chain-type lattice implication algebra
Ln is more simper than that of the product lattice
implication algebra Ln ×L2, so, even the same
generalized literal, α-resolution field of the general-
ized literal in lattice-valued propositional logic sys-
tem (Ln ×L2)P(X) is more complex than that in
lattice-valued propositional logic system LnP(X). In
this section, the main issue is the equivalence be-
tween generalized semantic resolution for a com-
plex lattice-valued propositional logic system and
generalized semantic resolution for a relative simple
lattice-valued propositional logic system. i. e., the
complex problem can be equivalently transformed
into simple problem and the difficult problem can
be equivalently transformed into easier problem.

4. Generalized semantic resolution method in
LnP(X)

In this section, we discuss the generalized semantic
resolution method for lattice-valued propositional
logic system LnP(X) and give the soundness the-
orem and weak completeness theorem of the resolu-
tion deduction.

Theorem 13. (Soundness of α-generalized Ov
deduction) Let S be the set of general general-
ized clauses in lattice-valued propositional logic
LnP(X), v be a valuation of LnP(X), O be an order
of generalized literals occurring in these clauses, if
there exists an α-generalized Ov deduction from S
to α-clause, then S 6 α .
Proof. Followed by the soundness theorem of α-
generalized resolution principle 18 in LP(X).

Theorem 14. (Completeness of α-generalized
Ov deduction) Let S be the set of general gener-
alized clauses in lattice-valued propositional logic
LnP(X), v be an valuation in LnP(X), O be an or-
der of non-constant generalized literals occurring in
these clauses, α ∈ L, if S 6 α and the following con-
ditions hold:

(1) If S∗ do not contains generalized literal g,
then g and S∗ are independent each other, where S∗
is the set of general generalized clause and S∗ ⊆ S;

(2) The truth-value of the rightmost generalized
literal g regarding to O is α-false under valuation v
and g is normal. If there exists a generalized literal
h∈ S such that g∧h 6 α , then g and h have the same
order.

Then there exists an α-generalized Ov deduction
from S to α-false clause.
Proof. Let M be the set of non-constant general-
ized literals occurring in S, we prove it by induction
on |M|.

1. If |M| = 1, then there exists a generalized lit-
eral p, such that p = S 6 α , therefore, there exists an
α-generalized Ov clash (p, p) = p(p = α)∨ p(p =
α) = α . So, there exists an α-generalized Ov de-
duction from S to α-false generalized clause. The
conclusion holds.

2. IF |M|= 2, say M = {p,q}. If S = p∨q, then
generalized clause S = p∨q 6 α by S 6 α , i.e., gen-
eralized clause p∨ q is α-false clause, thus, there
exists an α-generalized Ov clash (p∨ q, p∨ q) =
(p∨q)((p∨q) = α)∨(p∨q)((p∨q) = α) = α . So,
there exists an α-generalized Ov deduction from S
to α-false clause. If S = p∧ q 6 α , then there ex-
ists an α-generalized Gv clash (p,q) = p(p = α)∨
q(q = α) = α or (p∨ q, p∨ q) = (p∧ q)((p∧ q) =
α)∨(p∧q)((p∧q) = α) = α . So, there exists an α-
generalized Ov deduction from S to α-false clause.

3. Suppose the result holds for |M|= n(n > 3).
4. Now we need to prove the result for |M| =

n+1.
4.1. If there exists a general generalized clause

φu in S, such that φu contains one non-constant gen-
eralized literal only and v(φu) 6 α . Since g is nor-
mal, there exists a valuation v0, such that v0(g) = I.

4.1.1) If there exists no generalized literal h ∈ S,
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such that g∧h 6 α , let

S1 = {φ ∗|φ ∗ ∈ S,φ ∗ = φ(g = I)}
Since S1 is α-unsatisfiable, and S contains general-
ized literals g but S1 do not contains it, therefore,
the number of generalized literals in S1 is less than
n. By the hypothesis of induction, there exists an
α-generalized Ov deduction D1 from S1 to α-false
clause, and v satisfies: for any generalized literal
x ∈ S, if x ∈ S1, then v(x) = v1(x), i.e., v is an ex-
pansion of v1. For each α-generalized Ov1 clash
(N1,E11, · · · ,Ei2, · · · ,Eq1), a). If Ei1 = Ei(g = I),
where Ei ∈ S, then we changing Ei1 into its corre-
sponding clause in S; b). If N1 = N(g = I), where
N ∈ S, then we changing N1 into its corresponding
clause in S, in this way, D1 can be expanded to an
α-generalized Ov deduction D11 from S to α-false
clause.

4.1.2) If there exists a generalized literal h ∈ S,
such that g∧h 6 α , let

S1 = {φ ∗|φ ∗ ∈ S,φ ∗ = φ(g = I,h = v0(h))}
Since S1 is α-unsatisfiable, and S contains gener-
alized literals g, h but S1 do not contains them,
therefore, the number of α-resolution pairs in S1
is less than n, by the hypothesis of induction,
there exists an α-generalized Ov1 deduction D1
from S1 to α-false clause, and v satisfies: for any
generalized literal x ∈ S, if x ∈ S1, then v(x) =
v1(x), i.e., v is an expansion of v1. For each α-
generalized Ov1 clash (N1,E11, · · · ,Ei2, · · · ,Eq1), a).
If Ei1 = Ei(g = I), where Ei ∈ S, then we chang-
ing Ei1 into its corresponding clause in S; b). If
N1 = N(g = I), where N ∈ S, then we chang-
ing N1 into its corresponding clause in S, c). If
Ei1 = Ei(h = v0(h)), then we add an α-generalized
Gv clash (φu,Ei) = Ei(h = α) ∨ φu(g = α) on
Ei1; d). If N1 = N(h = v0(h)), then we replace
α-generalized Ov1 clash (N1,E11, · · · ,Ei2, · · · ,Eq1)
with (N,φu,E1, · · · ,Ei, · · · ,Eq), e). If Ei1 = Ei(g =
I,h = v0(h)), then we add an α-generalized Ov
clash (φu,Ei) = Ei(h = α) ∨ φu(g = α) on Ei1
and change constant I occurring in of Ei1 into g;
f). If N1 = N(g = I,h = v0(h)), then we replace
α-generalized Ov1 clash (N1,E11, · · · ,Ei2, · · · ,Eq1)
with (N,φu,E1, · · · ,Ei, · · · ,Eq) and change constant

I of N1 into g, in this way D1 can be expanded to an
α-generalized Ov deduction D11 from S to α-false
clause.

4.2. If there exists no unit general generalized
clause in S, such that the truth value of this gener-
alized clause is less than or equal to α under valu-
ation v, we take the rightmost generalized literal g
regarding to the order G , since g is a normal gen-
eralized literal, there exists a valuation v0, such that
vo(g) = I.

4.2.1. If there exists no generalized literal h ∈ S,
such that g∧h 6 α , let

S2 = {φ ∗|φ ∗ ∈ S,φ ∗ = φ(g = I)}
Then S2 is α-unsatisfiable, and S contain general-
ized literal g but S2 do not, therefore, the number of
α-resolution pairs in S2 is less than n, by the hypoth-
esis of induction, there exists an α-generalized Ov2
deduction D2 from S2 to α-false clause, and v satis-
fies: for any generalized literal x ∈ S, if x ∈ S2, then
v(x) = v2(x), i.e., v is an expansion of v2. We replace
φ ∗ with φ , since g is the rightmost generalized literal
according to O . So, α-generalized Ov2 clash in D2
can be amended to α-generalized Ov clash, in this
way, we get an α-generalized resolution deduction
D21 from S to α-false clause or a unit generalized
clause φu that contains g only or a unit generalized
clause φu that contains h only or a unit generalized
clause φu that contains g and h.

If D21 is an α-generalized Ov deduction from S
to α-false clause, the conclusion holds; Otherwise,
if D21 is an α-generalized Ov deduction from S to
a unit generalized clause φu that contains g only, by
the structure and properties of general generalized
clause, we have: each general generalized clauses in
D21 is less than or equal to its counterpart clause in
D2, hence, D21 is also an α-generalized Ov deduc-
tion from S to α-false clause.

4.2.2. If there exists a generalized literal h ∈ S,
such that g∧h 6 α , let

S2 = {φ ∗|φ ∗ ∈ S,φ ∗ = φ(h = I,g = v0(g))}
Then S2 is α-unsatisfiable, and S contain general-
ized literal g,h but S2 do not, therefore, the number
of α-resolution pairs in S2 is less than n, by the hy-
pothesis of induction, there exists an α-generalized
Ov2 deduction D2 from S2 to α-false clause, and v
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satisfies: for any generalized literal x ∈ S, if x ∈ S2,
then v(x) = v2(x), i.e., v is an expansion of v2.

We replace φ ∗ with φ , since g and h are the right-
most generalized literals according to O . So, α-
generalized Ov2 clash in D2 can be amended to α-
generalized Ov clash, thus, we get an α-generalized
resolution deduction D21 from S to α-false clause or
a unit generalized clause φu that contains g only or
a unit generalized clause φu that contains h only or
a unit generalized clause φu that contains g and h.
If D21 is an α-generalized Ov deduction from S to
α-false clause, the conclusion holds; Otherwise, if
D21 is an α-generalized Ov deduction from S to a
unit generalized clause φu that contains h only or a
unit generalized clause φu that contains g and h, by
the structure and properties of general generalized
clause, we have: each general generalized clauses in
D21 is less than or equal to its counterpart clause in
D2, hence, D21 is also an α-generalized Gv deduc-
tion from S to α-false clause; Otherwise, if D21 is an
α-generalized Ov deduction from S to a unit gener-
alized clause φu that contains g only, then we con-
sider clause set S∪ {φu}, this clause set is α-false
and φu(g = α) 6 α , so there exists a unit general
generalized clause which truth value is less than or
equal to α under valuation v, by the proof of case
4.1, we get an α-generalized Ov deduction D22 from
S∪{g} to α-clause. Connecting D21 and D22, we get
an α-generalized Ov deduction D from S to α-false
clause.

This completes the proof.

Example 7. Let L7 be chain-type lattice implica-
tion algebra with 7 elements, L7 = {ai|1 6 i 6 7},
and O = a1 < a2 < · · · < a7 = I. Suppose that S =
{(x → y)∧ (w∨ u),(x → y)′ ∨ u′,(z → w)′}, where
(x→ y)∧ (w∨u),(x→ y)′∨u′,(z→ w)′ are general
generalized clauses in L7P(X), α = a5, then S 6 α .
Subsequently, we prove the α-unsatisfiability of S
by α-generalized semantic resolution method, let v
be a valuation in L7P(X) of S and O be an order
of generalized literals occurring in S, and v satisfies:
v(x → y) = a6, v(z) = O, v(w) = a5, v(u) = a7, the
order O satisfies: u′ > (x → y)′,w > (x → y)′,x →
y > (x → y)′. Then S1 = {(x → y)′ ∨ u′,(z → w)′},
S2 = {(x → y) ∧ (w ∨ u)}, where S1 is the set of
clauses which truth value is less than or equal to α

under v, S2 is the set of clauses which truth value is
more than α under v. Then

1. (x→ y)′∨u′

2. (z→ w)′

3. (x→ y)∧ (w∨u)
Applying α-generalized semantic resolution

method on S1 and S2, we can get two new α-
generalized resolution formulae:

4. α ∨ [(x→ y)∧ (α ∨u)] by(2)(3)
5. α ∨ (x→ y)′∨ [(x→ y)∧ (w∨α)] by (1)(3)
We input clauses (4), (5) into S2, S1 respectively,

thus, imposing α-generalized semantic resolution
method on S1 and S2, we can get one new gener-
alized resolution formula only:

6. α ∨ (x→ y)′ by (1)(4)
We input clauses (6) into S1, and imposing α-

generalized semantic resolution method on S1 and
S2, we can get two new generalized resolution for-
mulae:

7. α by (3)(6)
8. α by (4)(6)
Connecting these α-generalized resolution for-

mulae above, we get an α-generalized semantic res-
olution deduction ω from S to α-false clause, that is
{(x→ y)′∨u′,(z→w)′,(x→ y)∧(w∨u),α∨ [(x→
y)∧ (α ∨u)],α ∨ (x→ y)′∨ [(x→ y)∧ (w∨α)],α ∨
(x→ y)′,α}.

There rise 4 formulae if we use α-generalized
semantic resolution method.

5. An algorithm for α-generalized semantic
resolution in linguistic truth-valued
lattice-valued proportional logic

From the soundness and weak completeness of α-
generalized semantic resolution, S 6 α if and only
if there exists an α-generalized semantic resolution
deduction from S to α −¤, so we can contrive a
corresponding resolution reasoning algorithm as a
foundation for the implementation purpose.

Algorithm
Let S = {φi|i = 1,2, · · · ,n} be general general-

ized clause set in LnP(X), denote Hi the set of gen-
eralized literals occurring in φi(i = 1,2, · · · ,n).

Step 0. Given a valuation v in LnP(X) for S, and
give a order O for all generalized literals occurring
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in S. Let M = { generalized literal C occurring in S |
C be α-false under valuation v }, N = { generalized
literal C occurring in S | C be α-satisfiable under
valuation v};

Step 1. Set j = 1;
Step 2. Suppose that A0 =∅,B0 = N;
Step 3. Set i = 0;
Step 4. If α −¤ ∈ Ai, then the algorithm ter-

minate, S is α-unsatisfiable; Otherwise, go to next
step;

Step 5. If Bi = ∅, then go to step 8: Otherwise
go to next step;

Step 6. Let Wi+1 = {α-generalized resolvent of
C1 and C2|C1 ∈ M,C2 ∈ M or C2 ∈ Bi, the general-
ized resolution literals in C1 be the leftmost literals
in C1 according to the order O}, suppose that Ai+1={
generalized literal C occurring in Wi+1|C be α-false
under valuation v} and Bi+1={ generalized literal C
occurring in Wi+1 |C be α-satisfiable under valuation
v};

Step 7. Set i = i+1, go to step 4;
Step 8. Let T = A0∪A1∪·· ·∪Ai,M = M∪T ;
Step 9. j = j +1;
Step 10. Let R = {α-generalized resolvent of C1

and C2|C1 ∈ T and C2 ∈ N, the generalized resolu-
tion literals in C1 be the leftmost literals in C1 ac-
cording to the order O} and A0 = { generalized lit-
eral C occurring in R|C be α-false under valuation
v}, B0 = { generalized literal C occurring in R|C be
α-satisfiable under valuation v};

Step 11. Go to step 3.

Theorem 15. (Soundness of algorithm) Let S be
general generalized clause set in LnP(X), α ∈ L,
carry the α-generalized semantic resolution algo-
rithm on S, if the algorithm terminate in step 4, then
S is α-unsatisfiable.

Proof. If the algorithm terminate in step 4, namely
there exists an α −¤ in the α-generalized seman-
tic resolution process, then it follows that S is α-
unsatisfiable from the soundness of α-generalized
semantic resolution deduction.

Theorem 16. (Completeness of algorithm) Let S
be general generalized clause set in LnP(X), α ∈ L,
carrying the α-generalized semantic resolution al-

gorithm on S, if S is α-unsatisfiable, then the algo-
rithm terminate in step 4.

Proof. (1) If there exists a general generalized
clause φ in S, which truth value is less than or equal
to α , then these general generalized clause must oc-
cur in M, according to circular variable i, the gen-
eralized clause φ can be decided by two father gen-
eralized clause from M and B0(namely N), therefore
the resolution formula belongs to W1 and moreover
it also belongs to A1, thus α −¤ ∈ A1, then the al-
gorithm can terminate in step 4.

(2) If there exists a general generalized clause φ
in S, when the algorithm is carried out according to
circular variables, because of the finiteness of gen-
eralized literals occurring in S, so only finite gen-
eralized resolution formulae can be produced in α-
generalized semantic resolution process. The algo-
rithm, hence, can terminate.

6. Conclusions

In real world, some uncertainty phenomena more
suitable be described by natural language than
number values, linguistic truth-valued lattice-valued
logic is one class of important non-classical logic
which valuation fields is a set of linguistic values.
The course of human behavior of thinking resolv-
ing some real problems can be treated as a proof of
soft theorems (some conclusions with uncertainty),
in which a lot of natural language reasoning got in-
volved.

Automated reasoning based on resolution prin-
ciple is an important and efficient method among
many automated reasoning methods. In the present
paper, our main aim is that the α-generalized seman-
tic resolution reasoning for linguistic truth-valued
propositional logic, the method can be used to check
if a clausal set is false in a certain linguistic truth-
valued level. Concretely, the equivalence of α-
generalized semantic resolution based on linguistic
truth-valued lattice-valued propositional logic and
di-generalized semantic resolution on lattice-valued
propositional logic LnP(X) was probed firstly; Sec-
ondly, the ai-generalized semantic resolution on
lattice-valued propositional logic LnP(X) based on
a chain-type truth-valued field was investigated and
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its soundness and weak completeness were given.
We intend to continue this research with the un-

certainty and imprecise information, and we have
also started to study the automated reasoning the-
ory and method in linguistic truth-valued proposi-
tional logic. Future research will be focused on the
generalized semantic resolution method on concrete
clausal set and the applications of α-generalized se-
mantic resolution method.
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