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Motion Deblurring for Single Photograph Based on Particle Swarm Optimization
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Abstract

This paper addresses the issue of non-uniform motion deblurring for a single photograph. The main difficulty of
spatially variant motion deblurring is that, the deconvolution algorithm can not directly be used to estimate blur
kernel, due to the kernel of different pixels are different with each other. In this paper we firstly build up the camera
pose space, and take the blurred image as the weighted summation of all possible poses of the latent image. Then
the deblurring problem is converted to searching for the optimized weighted parameters in the pose space. Due to
its high dimension and non-convexity we propose a framework using the particle swarm optimization algorithm to
solve the problem iteratively. We also find that regions with high frequency texture may damage the deblurring
process, which motivates a new latent image prediction method. A non-linear structure tensor with anisotropic
diffusion and a shock filter are combined to smooth the image while keeping the salient edges of it. Experimental
results show that our approach makes it possible to model and remove non-uniform motion blur without hardware

support.
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1. Introduction

Consumer-level cameras often suffer motion blur
caused by hand shake. In many situations there is not
sufficient light and a long exposure is required, and if
the camera is not held still the photos come out blurry.
An example of blurring process is shown in Fig.1. The
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observed image is the integral of all poses of the latent
image over the exposure time. Removing blur from a
single photograph has been a fundamental research
problem and received much attention in the past few
years. With a few exceptions, most of current image
deblurring methods assume a spatially invariant kernel,
and the problem reduces to an image deconvolution
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issue, which is further divided into the blind and non-
blind cases. If the blur kernel is known, it is a non-blind
case and only a latent image must be recovered from the
observed image, and if the blur kernel is unknown it is a
blind deconvolution case, which is a pretty challenging
and ill posed problem. The spatially invariant kernel
often does not hold in practice as in fact there are many
properties of a camera and a scene that can lead to
spatially-varying blur such as depth dependent blur due
to camera translation, roll motion, yaw and pitch motion.

The main difficulty for solving non-unform motion
deblurring is that we can not directly use the
deconvolution algorithm to estimate blur kernel,
because the kernels of different pixels are different with
others. In this paper we propose a new framework to
deal with motion deblurring for a single photograph
from a camera. The key idea of this work is that the
observed blurred image is the integration over the image
taken by the camera over all the poses in its path over
the exposure, and the blurred image can be viewed as a
weighted summation of all possible poses. So we can
solve the deblurring problem by searching the optimized
weighted parameters in the pose space.

The contributions of this work are four manifolds.
Firstly, a new framework is proposed to deal with non-
uniform motion blur for a single photograph, which
mainly includes four steps: latent image prediction,
motion estimation, kernel reconstruction, and image
reconstruction. Based on the proposed framework, we
can address the issue of non-uniform motion deblurring
for a single photograph, even the camera motion with 6
degrees of freedom. Secondly we develop a model
relating the camera motion, the latent image and the
blurred image for a scene with constant depth in the
pose space. Thirdly the particle swarm optimization
(PSO for short) algorithm is introduced into our
to effectively optimize the weighted
parameters in the pose space, and then the result is
refined by an iterative support detection method. Finally,
we find that strong edges do not always help to deblur
image, the region with high frequency texture may
damage the deblurring process, which motivates us a
new latent image prediction method. We combine a
non-linear structure tensor with anisotropic diffusion
and a shock filter to smooth the image while keeping the
salient edges of it. This operation is especially important
as we directly use the gray value of the image in the
PSO algorithm.

framework

The paper is organized as follows. In Section 2, we
survey related work including non-blind deconvolution
and blind decnvolution. Section 3 shows the overview
of the proposed deblurring framework. From Section 4
to Section 6, we give the detail of the framework, that is,
latent image prediction,
deconvolution. In Section 7, the results of the propose
approach are compared with some state-of-the-art
deblurring method. Finally in Section 8 1is the
conclusion.

kernel estimation and

2. Related Works

Removing blur from a single photograph has been a
fundamental research problem and received much
attention in the past few years. If the blur kernel is
known, it is a non-blind case and only a latent image
must be recovered from the observed image. And if the
blur kernel is unknown, it is a blind deconvolution issue,
which is a pretty challenging and ill posed problem. Dai
et al. [3] propose a method to estimate spatially varying
blur kernels based on values of the alpha map. Fergus et
al. [4] recover a blur kernel by using a natural image
prior on image gradients in a variational Bayes
framework. Hirsch et al. [5] also propose a multi-frame
patch-based deblurring approach but do not impose any
global camera motion constraints on the spatially-
varying blur. Jia [6] use transparency maps to get cues
for object motion to recover blur kernels by performing
blind-deconvolution on the alpha matte, with a prior on
the alpha-matte. Joshi et al. [7] predict a sharp image
that is consistent with an observed blurred image. Shan
et al. Krishnan and Fergus [9] propose to solve the
hyper-Laplacian priors by finding the roots of a cubic
and quartic polynomial. Levin et al. [12] segments an
image into several areas of different motion blur and
then each area is deblurred independently. Yuan et al.
[22] propose a progressive multi-scale refinement
scheme based on an edge preserving bilateral
Richardson-Lucy (BRL) method, and Wang et al [26]
improved the RL algorithm based on a local prior. In
[17], Raskar et al. flutter the opening and closing of the
camera shutter during exposure to minimize the loss of
high spatial frequencies. [18] incorporate spatial
parameters to enforce natural image statistics using a
local ringing suppression step. Shan et al. [19] propose a
technique to handle rotational motion blur. Yun and
Woo [23] proposed a linearized proximal altering
minimization method for motion deblurring. They used
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a linearization of the fidelity term and the proximal
function to efficiently solve the motion deblurring issue.
Cai et al. [24] and Lakshman [25] used multiple images
to deal with motion deblurred image.

In this paper we propose a new framework to handle
non-uniform blur. The idea in this paper follows works
of Ankit et al. [1] and Neel et al. [14]. In this work, we
recover the camera motion from which the blur kernels
can be derived in the pose space, rather than try to
recover the spatially varying blur kernels directly. The
main differences between our work and theirs are as
follows, Neel et al. try to recover the camera motion
based on the information from these sensors by
hardware support. Ankit et al. used the framework of
uniform blind deconvolution to deal with the blurred
image by a motion density function. In our work we
propose a new framework which searches the optimized
parameters using PSO in the pose space directly. In
addition, we also propose a new latent image prediction
method, which use nonlinear structure tensor and shock
filter to smooth the image while reconstruct salient
edges. Note that some primary results have been
published in [27].

3. The Proposed Method

Currently most of current image deblurring methods
assume motion blur with a spatially invariant kernel,
which is modeled as the convolution of a latent sharp
image with a shift-invariant kernel plus noise. Blur
process is commonly expressed as:

B=L®K+N (1)
where K is the blur kernel, N is the system noise which
is typically considered to be white Gaussian noise.

Based on (1), one can get the latent image L by
optimizing K and B iteratively even only has the
blurred version of it. However, the spatially invariant
motion often does not hold in practice [12,16], so we
need to setup a more complex model of camera motion.

3.1. Spatially variant model in the pose space

We assume the camera initially lies at the world origin
with its axes aligned with the world axes, and a camera
motion is a sequence of camera poses where each pose
can be characterized by 6 parameters - 3 rotations and 3
translations. During the exposure period of a camera,
the intensity of light from a scene point(X,Y,Z) at an

instantaneous time ¢ is captured on the image plane at a
location (u,,v,) , which can be written as:

Motion Deblurring for Single Photograph

,.v. ) =P(X.Y,Z,1) 2
where P is the camera projection matrix, and it varies

with the camera rotation and translation, which causes
fixed points in the scene to project to different locations
at each sample time, 1 in Eq.2 means that the focal
length is fixed.

For an uncalibrated camera, this is a general 8-
parameter homography, but in the case of a camera with
known internal parameters, the homography H is
parameterized rotation and translation matrix describing
the rotation and the translation of the camera:

H(d)= {M[R+;TNTJM1} (3)

where M is the intrinsic matrix, R and 7 are the
translation and rotation matrix of the camera, dis the
scene depth, and N is the unit vector that is orthogonal
to the image plane. Thus at sample time ¢, the pixel
value of the image is:

1) = 1(H, () (#:351)) (4)
We rewrite (4) in matrix form as:
1=K, (d)I 5)

The observed image B is the integral over the exposure
time 7 of all the warped versions of 7/, plus some
observation noise N :

B=[ (K (d))dt+N (6)

The integration of these projected observations
creates a blurred image, and the projected trajectory of
each point on the image plane is point’s point-spread
function (PSF). Thus, the spatially-varying blur
estimation process is reduced to estimating the
rotations R and translations 7' for times [0---], the scene

depths 4, and the camera intrinsic M . We can get the
information of the camera intrinsic M in the image EXIF
tags. In this work we assume dJ is constant because
usually the customer-level camera has a long focus
length, which is estimated by the method in [17].

In general, a single blurry image has no temporal
information associated with it, so we can not get the
exact motion path at each sample time from it. We
rewrite (6) as:

S
B=| (wK,I)dt+N (7)
In the discrete pose space, it can be formulated as:

S
B=> wKI+N (8)

s=1
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Fig.1 The framework of the proposed algorithm.

where S is the camera pose space, which consists of all
the possible camera poses, w, is

s

corresponding
parameters which indicate the time spent at the pose K, .

All though we can form the pose space taking into
account of all 3 rotation and 3 translation, but 6D pose
space will make the number of the possible camera
poses too huge. Oliver et al. consider that blur from
camera shake is mostly due to the 3D rotation of the
camera [16], while Ankit et al. show that camera motion
can be modeled well by 2D translation and 1D rotation
[1]. In this paper we follow Ankit et al. manner and
setup a 3D pose space with 2D translation and 1D
rotation.

3.2. Process overview

A successful approach for blind deconvolution is
alternately to optimize L and K in an iterative process. In
the latent image estimation and kernel estimation steps
of the process, we respectively solve the equations
similar to:

L=argznin{HB—K*LH+pL(L)} O]

(10)

In (9) and (10), |B- K * || is the data fitting term, for
which the £, norm is usually used, and p, (L) and p, (L)

K =argmin{|B— K * L]+ p (L)}
K

are regularization terms. In this paper we follow this
manner, and Fig.l shows the overall process of our
blind deconvolution method.

To progressively refine the motion blur kernel K and
the latent image L, our method iterates four steps: latent
image prediction, motion  estimation, kernel
reconstruction and deconvolution. Compared with some
previous works [18,2], we divide the kernel estimation
step into two steps: motion estimation and kernel
reconstruction, due to spatially-varying blur. The reason
is that we can not directly use the deconvolution
algorithm to estimate blur kernel because the kernels of
different pixels are different with others. In our
framework we can get the trajectory of the pixel at the

center of the image using PSO algorithm. As we only
consider the translation along the x and y direction and
the rotation along the z-direction, we can get the
trajectory of any pixel according to its relative position
to the pixel at the center of the image.

Algorithm 1: The framework

Input:

Blurred Image B, an all-zeros kernel K , the maximal
number of iterations M and the number of levels of the
image pyramid N .

Build an image pyramid with level index {1,2,...,n}
For i=1:N
For M, =1:M
Predict latent image (Algorithm 2);
Estimate kernel using PSO (Algorithm 3);
Refine and reconstruct kernel;
Deconvolution;
End
End

Output:
Deblurred Image, kernel for each pixel.

4. Latent Image Prediction

In some previous works [2, 21], a shock filter was
used to restore salient edges in latent image. The shock
filter is an effective tool for enhancing image feature,
which can recover sharp edges from blurred step signals
[15]. The evolution equation of a shock filter is
formulated as:

1., =1,-sign(Al)|V1|dt (11)
where 7, is an image at time t, and A/, and V/, are the
Laplacian and gradient of 7, , respectively. dr is the

time step for a single evolution.
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Algorithm 2: Image Prediction

Input:

Blurred Image B, the current number of iteration M, in
the Algorithm 1, the maximal number of iterations M
in the Algorithml, the maximal number of iterations of
the nonlinear structure tensor M, , and the iteration
number of the shock filter M, .

N, =[(1-M,)/M*M,]; % [*] is the rounded up of
*

For ii=1:N,

Smooth the texture of the blurred image B using
equ.(12) .

End

For ji=1:M,

Predict edges of the smoothed image using equ.(11) .
End

Output:
The predicted image.

In the Algorithm 2, we use |7*_| to let the minimal number of iterations

of the nonlinear structure tensor be 1, in order to suppress the noise in the
blurred image.

Insignificant edges make PSF estimation vulnerable
to noise, as discussed in [2, 11]. But it has been found
that salient edges do not always help the deblurring
process. An example is shown in Fig.3. In the Fig.3, the
three step signals have the same observed blurred edges,
but the sparse prior always prefers the smallest intensity
gradient that is consistent with the observation. Neel et
al. [13] use local color statistics to provide a strong
constraint during deconvolution. These constraints help
to reduce over-smoothing around salient edges and
high-frequency texture. Xu and Jia [21] consider that
the edge information could damage kernel estimation if
the scale of an object is smaller than that of the blur
kernel. They select edge map for kernel estimation by
measuring gradients in a sub-window. But it is difficult
to determine which object’s scale is smaller than the
blur kernel due to the fact that we are even difficult to
know what the object is. While inspired by the above
two works, we consider it from another point of view,
that is, if the region has high-frequency texture,
information from it may mislead the deblurring process.

To overcome the issue, one can simplify the texture of
the image while keep the sharp edges of it, which
motivates us a new latent image prediction method. We
firstly use non-linear structure tensor with anisotropic

Motion Deblurring for Single Photograph

Fig.2 Sharp edges (black) and corresponding observed blurred
edges (tan). Different sharp edges may have the same observed
blurred edges.

diffusion [20] to smooth the image, and then use the
shock filter to reconstruct sharp edges. Vector-valued
anisotropic diffusion evolves the original image under
the PDE:

ou, :div[g(zn:VukVuZ]VuiJ (12)
k=1
subject to the reflecting boundary conditions:
6V[g(ZW:VukVukT]Vui]=0 (13)
k=1

where v is a vector with » components, v denotes the
outer normal on the image boundary 6Q . The diffusion
time ¢ determines the amount of simplification:
when 7 =0 the original image is recovered and larger
values of ¢ will result in more pronounced smoothing.

In our work, in the earlier iterations of the latent
image prediction step, we use large iteration number of
nonlinear structure tensor as at this time the latent image
is far away from the original image so we can only
depend on the large scale object with salient edges.
Following the evolution of the latent image, we
gradually reduce the iteration number of nonlinear
structure tensor to allow more detail of the image to join
into the motion estimation.

We give an example in Fig.3 to show the validity of
our method. In Fig.3, from left to right: a blurred image;
the image sharpened by the shock filter with 10
iterations; the images processed by our method, which
are firstly blurred by nonlinear structure tensor with 1, 5
and 10 iterations respectively, then sharpened by the
shock filter with 10 iterations. It is clear that the second
image includes many small scale objects, some of which
are with strong edges and can not be ignored by
truncating gradient maps used in [2]. As discussed
above, these small scale objects can not provide useful
information but may mislead the deblurring process.
While with our method, we can control the detail of the
image by adjusting the number of iterations in the
nonlinear structure tensor.
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Fig.3: Examples of the proposed latent image prediction method. Top row: From left to right: the blurred image, the result of shock
filter with 10 iterations, the rest three images: the result of the predicted image at 1%, 5 and 10™ iterations. Down row: From left to
right: the result of [26] and its magnified views and the result of our algorithm and its magnified views.

5. Kernel Estimation and Reconstruction

In this step we fix L and optimize w, . The energy
E(k)is as follows:

2

E(k)= At (14

V[inKSLJ ~VB
s=1

where A1 is a positive parameter to balance the first item
and the second item.
Optimizing w, is difficult due to the huge number of

possible poses of the camera in the pose space, and the
problem is converted to searching the optimized
weighted parameters in a high dimensional space. In
this paper, we propose to use PSO algorithm to solve
this issue. Compared to other stochastic methods such
as genetic algorithm and ant colony algorithm, PSO is
more suitable for the deblurring issue, because this task
is to search optimized parameters in a high dimensional
space with real numbers.

The PSO algorithm was first described by Kennedy
and Eberhart [8]. The basic PSO (BPSO) algorithm
begins by scattering a number of “particles” in the

function domain space. Each particle is essentially a
data structure that keeps track of its current position x
and its current velocity v . Additionally, each particle
remembers the “best” position it has obtained in the past,
denoted p,. The best of these values among all particles
(the global best remembered position) is denoted p, .

At each time step, a particle updates its position and
velocity by the following equations:
v, t+1) = (15)

wy; (t) + SUY; (t)(pij (t) X (Z)) + Gl (Z)(pgf (Z) X (t))
x;(t+1) = x; (1) +v; (£ +1) (16)

where je{l,2,..,D}, ie{l,2,.,N}, N is the size of the
population and D is the dimension of the space searched,
w is the inertia weight, ¢, and ¢, are two positive
constants, 5 and r, are two random values into the
range[0,1].

Different with general optimization issue, we
normalize the weight of particles at the end of the
iteration, because |jw,|=1 in the equ.(14), where
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w={w}|’,, Dis the dimensional number of the pose

space.

Algorithm 3: Kernel estimation using PSO

Input:
the maximal number of iterations of PSO M, , the

number of particles P,, two accelerated parameters C,
and C, in equ.(15), inertia parameter w, the maximal

and value of position X the maximal value of

max 2

velocity 7, ., kernel size S=h*h.

ax 2

Initialize X, ¥, for each particle.
For i=1:P,
Calculate Fitness using equ.(14).
For j=1:§
Update ¥, using equ.(15) .
IfV, >V,
Vi=Vow's
Else if 7, <0
V,=0
End
Update X, using equ.(16).
If X,>X,,
X/ =X s
Else if X, <0
X, =0
End
Update local best position;
End
Update global best position;
Normalize X, =X,/> X, ;
End =
End

Output:
The kernel of the pixel at the center of the image.

When using PSO algorithm to optimize parameters,
the first is to identify the fitness function. In our work,
the fitness function is just the E(k)in (14). Then we

need to identify the dimension of the each particle,

Motion Deblurring for Single Photograph

which is equal to the total number of possible poses in
pose space. It is clearly that the number of dimension
depends on the resolution of the pose space. As at each
step we only want to recover the relationship between
the predicted latent image and the latent image from the
form iteration, we can set the maximum offset of the 1D
rotation €, and 2D translation 7, in each iteration to

be some small values, typically, 3 degrees and 10 pixels.
For translation, the resolution directly depends on the
maximum offset, while for rotation we use the
following method to determine its resolution. Supposing
the size of image is N*M, we calculate the smallest
value of rotation while drives the point on the image
edge to move a pixel distance by:
M*+N* -4
2MN ]

to be the basic scale of the

0., = arccos( (17)

Then we set 6, /6

rotation dimension. The process of optimizing weighted
parameters by PSO is show as follows:

The result from PSO algorithm will have lot of small
value near to zeros due to PSO use real number and
hardly can make some dimensions of the particle to be
zeros when the corresponding pose is independent with
the blurred image, so we need refine these optimized
parameters. In this paper, we use the isotropic diffusion
(ISD) based Kernel Refinement proposed by Xu and Jia
[21] to exclude the independent points.

With the information projected on the X-Y plane we
can directly get the kernel of the center of the image, as
its rotation is always zero in our pose space. We can
also get the kernel of other points in the image by Eq.18.
In our model, a=4=0, z'=¢.=0, ¢, and ¢, are the

coordinate relative to the center of the image. Then we
can get the kernel of any point in the image based on the
kernel of the image center and the relative coordinate of
the point.

6. Deconvolution

In this step we fix K and optimize L . The energy E(k)is

as follows:

x' cosfcosy  cosasiny +sinasinfcosy sinasiny —cosasinfcosy ¢ || x'
y'| |—cosBsiny cosacosy—sinasinfsiny sinacosy +cosasinfsiny 1, || y' (18)
2| sin f# —sina cos f cosacos ff t ||z
1 0 0 0 11
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E(L)=|L®K -B|+ p|VL| (18)
It is a non-blind deconvolution issue which contains
non-linear penalties for both the data and regularization
terms. This process is similar to the deconvolution in the
motion deblurring framework with spatially invariant
kernel [2,9,18]. In this work we mainly use the fast non-
blind image deconvolution using hyper-laplacian priors
proposed by Krishnan and Fergus [9].

7. Experiments and Results

For all the test in this work, we set the iteration number
of shock filter 10, the maximum iteration number of
nonlinear filter 20 and the minimum iteration number of
it 1. For PSO algorithm, we set cl and c2 both 1, the
maximum iteration number is 50. The inertia weight w
is 0.4. In the energy function, 4 and S are set 1.

Fig.4 shows an example of using PSO to optimize the
weighted parameters of all possible pose in pose space.
Its evolution stops at 14th iteration. We compare the
PSO to RANdom SAmple Consensus (RANSAC) used
in [1]. Although [14] do a similar job with this paper,
their performance mainly depends on the information
from inertial measurement sensors. At the beginning of
the evolution, the convergence speed of RANSAC is
faster that that of PSO, after the 6th iteration the
situation reverses. From the final convergence value it is
clear that in this case PSO can find a better location than
RANSAC. One can improve the algorithm by using
some improved PSO algorithms, however, it is beyond
the content of this paper.

Fig.5 shows some results based on some blurred
images shared by [18]. These images are known to be
uniform blurred, which means that the blur kernels of all
pixels in these images are uniform. From Fig.5 it can be
seen that results of the proposed method are similar or
even better than the method of [18].

Fig.6 show our results for real-world blurred images
of scenes captured using an OLYMPUS u840 camera. It
shows the original blurred image, the deblurred result
using spatially-variant deconvolution by the method
from [1], and our deblurring result. We are deliberate to
shake and rotate the camera to make the blur kernel be
spatially-variation. In this situation, as shown in Fig.6,
although [1] also used spatially-variant kernel, however,
the method used in their work is gradient descent which
is easy to fall into a local optimum value. While our
approach shows a significant improvement over this
approach, as PSO can search the pose space adaptively,

| |
I I I I I v— PSO I
2008 — — b — — 1 — — Ll —_L__L__|—©—RANSAC|_1|

150 |\ — - — —

Best Fitness

100

50

Y5

0
0

No.of generations

Fig.4 One iteration in the proposed framework. First row:
from left to right: the blurred image, the predicted image.
Second row: from left to right: four images in pose space of
the predicted image, the latent image. The third row: the
convergence curves of the algorithm using PSO and
RANSAC respectively. Notices that the latent image contains
more sharpen edges then the blurred one.

and has more opportunities to jump out of the local
optimum position.

8. Conclusion and Future Works

In this paper we propose a new framework to deal with
non-uniform motion blur for a single photograph. The
main idea of this paper is that we take the blurred image
as the weighted summation of all possible poses of the
latent image, and we develop a model relating the
camera motion, the latent image and the blurred image
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Fig.5 Left column: the blurred image; Middel column: deblurring results of [18]; Right column: our results.

for a scene with constant depth in the pose space. diffusion and a shock filter to smooth the image while
Furthermore, we find that regions with high frequency keeping the salient edges of large object in the blurred
texture may damage the deblurring process and we image. Finally we introduce PSO algorithm into our
combine non-linear structure tensor with anisotropic framework to effectively optimize the weighted
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Figure 6: Left: Blurred image download from Internet. Center: The deblurring result of [1] with spatially-variant kernel. Right: The

deblurring result of our work with spatially-variant kernel.

parameters in the pose space. We show that our
approach makes it possible to model and remove non-
uniform motion blur without any hardware support, and
demonstrate its effectiveness with experiments on some
challenge images.

One limitation of our method is that at the early
period of the deblurring process we mainly depend on
the edges of large scale objects in the predicted image.

If these edges are far away from their ‘true’ position in
the latent image, our method may fail. Another
limitation is that PSO used in the framework is a
random algorithm which is unstable and can not ensure
convergence. In the experiments we improve the
stability of the algorithm by using larger number of
particles.
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