

Synthesis Algorithm of Homology Detection Based on AHP

Baojiang Cui
*
, Wenhao Fan, Ce Bian

School of Computer Science, Beijing University of Posts and Telecommunications

Beijing, China

E-mail: cuibj@bupt.edu.cn

Tao Guo, Yongle Hao

China Information Technology Security Evaluation Center

Beijing, China

E-mail: guotao@itsec.gov.cn

Jianxin Wang

School of Information, Being Forestry University

Beijing, China

E-mail: wangjx@bjfu.edu.cn

Abstract

Traditional software homology detection techniques based on text, token, abstract syntax tree in many cases get the

real similarity inaccurately when they work alone. In this paper, a synthesis algorithm based on Analytic Hierarchy

Process (AHP) is proposed, which combines text, token, syntax tree comparison algorithms synthetically according

to their contributions to performance factors such as omission ratio and fall-out ratio. Numerous results indicate that

the synthesis algorithm reflects software homologous similarity more accurately.

Keywords: software homology, Analytic Hierarchy Process, synthesis algorithm.

*
School of Computer Science, Beijing University of Posts and Telecommunications, Beijing, 100876, Beijing, China

International Journal of Computational Intelligence Systems, Vol. 6, No. 6 (November, 2013), 1143-1150

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 1143

willieb
Typewritten Text
Received 16 March 2013

willieb
Typewritten Text
Accepted 29 March 2013

1. Introduction

Software design and development is a knowledgeable

high-technology industry which is growing fast and

updating the society. With the rapid development of

software industry, especially the popularities of open

source software, software’s copy right faces heavier and

heavier thread because of its properties such as high

portability and various forms. The growing number of

software plagiarism seriously damages the original

author's legitimate rights and interests. Homology

detection is obliged to fight against intellectual property

crime.

Currently most software source code homology

detecting techniques are based on text, token and

abstract syntax tree (AST). In early days, Baker
1
 and

Johnson
2
 used text-based comparison algorithm based

on string and fingerprints matching. It is the first

homology detection method on text level. The current

typical text-based detection methods are line and block

comparison ones which support single-line and multi-

line text comparison to detect homologous similarity.

The characteristics of text-based comparison algorithm

are simple to implement, low fall-out ratio, high

omission ratio and weak anti-interference. It can only

detect simply complete plagiarism
3
. The existing

homology detection tools based on text are

UltraCompare, WinDiff, WinMerge, etc.

Token-based comparison algorithm first deletes the

useless characters in the source code, does lexical

analysis on source code, and then replaces source code

terms with special token flags. Thus the source code is

changed into token sequence. Finally the algorithm

detects homologous similarity by comparing the hash

value of the token sequences. Token-based comparison

algorithm has much stronger anti-interference capability

compared with text-based algorithm, but it doesn’t take

structure information of source code into account.

Furthermore, token-based method can only make key

field replace plagiarism detectable
4
 and it has a high

fall-out ratio. Token-based comparison algorithm is

widely used in famous homology detection tools such as

CP-Miner
5
, CCFinder

6
, Winnowing

7
, JPlag

8
 and so on.

Syntax tree-based algorithm first preprocesses the code

to generate the syntax tree which contains the syntax

structure information of the code
9
. Then it calculates

and compares the hash values of target and sample

syntax tree to judge homology. Algorithm based on

syntax tree completes source code analysis on syntax

level and takes syntax structure of source code as judge

basis. So it has characteristics of good anti-interference

capability, can detect lots of plagiarism modes while it

has a particular error detection because of its Hash-

based comparison
10

.

According to analysis above, each of these existing

homology detection algorithms has both advantages and

disadvantages to detect homology of software while

none of them can get the optimal performance. To

achieve better detection result, a synthesis homology

detection algorithm based on Analytic Hierarchy

Process (AHP) is proposed in this paper. This algorithm

balances the contribution of homology detection

algorithms based on text, token and abstract syntax tree

to performance factors such as omission ratio and fall-

out ratio, and reasonably reflects the real similarity

more accurately.

This synthesis homology detection algorithm based on

AHP will be presented in the following sections:

Section 2 compares the contribution of text-based,

token-based and AST-based homology detection

algorithms to performance factors such as omission

ratio, fall-out ratio and performance factors to synthesis

similarity. Section 3 describes the implementation

process of AHP synthesis algorithm. Experiments in

section 4 prove that when code size is large and

plagiarism modes are complex, the result of the

algorithm based on AHP is much closer to the real one

than any result of text-based, token-based, AST-based

algorithms, which shows that AHP-based synthesis

algorithm is more suitable to practical environment

2. Contribution Comparison and Analysis

Code similarity of software reflects their homology

qualitatively and quantitatively. There are many

evaluation factors to evaluate algorithms’ detection

result. Considering their correlation and overlap, factors

are summed up as omission ratio and fall-out ratio.

Algorithms based on text, token, AST have different

performances on different performance factors.

Synthesis homology detection algorithm based on AHP

proposed here optimizes performance factors of

synthesis similarity, and also reflects the real similarity

of source code more accurately.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 1144

Contributions of the three existing homology detection

algorithms to the performance factors and contributions

of performance factors to synthesis similarity are

analyzed in this section.

2.1. Contribution analysis to synthesis similarity

Software code similarity is defined as the proportion of

the homologous part in all code. Errors are unavoidable

in homology detection due to the inherent limitation of

the algorithms and varied plagiarism modes. The

performance factors considered here are omission ratio

(O) which shows missed detection and fall-out ratio (F)

which shows error detection.

Assuming one software source code detection result is

as following:

Table1.Code detection result example

detection result

artificial result
similar code dissimilar code

similar code a c

dissimilar code b d

Detection similarity：𝑆𝑑𝑒𝑡 =
𝑎+𝑏

𝑎+𝑏+𝑐+𝑑

Theoretical similarity：𝑆𝑡ℎ𝑒𝑜 =
𝑎+𝑐

𝑎+𝑏+𝑐+𝑑

Omission ratio：𝑂 =
𝑐

𝑎+𝑐

Fall-out ratio：F=
𝑏

𝑎+𝑏

The assumption here is that ignoring external factors,

there is an ideal homology detection algorithm, whose

detection result has no missed detection and false

positive detection, namely,b = 0, c = 0, then,

𝑆𝑖𝑚𝑑𝑒𝑡 =
𝑎+𝑏

𝑎+𝑏+𝑐+𝑑
= 𝑆𝑖𝑚𝑡ℎ𝑒𝑜 =

𝑎+𝑐

𝑎+𝑏+𝑐+𝑑

This following figure can present this process more

intuitively.

d

b a c

d

a

(a) in practical case (b) in ideal case
Fig. 1.Homology detection result

So we can conclude that for any given positive number

𝜀 , there are positive numbers 𝛿1 ,𝛿2 , such that if 0 <

 𝑂 < 𝛿1 , 0 < 𝐹 < 𝛿2 , then 𝑆𝑖𝑚𝑑𝑒𝑡 − 𝑆𝑖𝑚𝑡ℎ𝑒𝑜 < 𝜀 ,

then the limit for Simdet will be 𝑆𝑖𝑚𝑡ℎ𝑒𝑜 .

𝑆𝑖𝑚𝑡ℎ𝑒𝑜 = 𝑙𝑖𝑚𝑂→0,𝐹→0 𝑆𝑖𝑚𝑑𝑒𝑡 (1)

Defective detection algorithm produces flawed

performance factors, leading to the deviation between

detected and theoretical similarity. It is necessary to

synthesize text, token, AST-based homology detection

algorithms in a certain strategy which can balance and

optimize the three performance factors for the purpose

to draw detected similarity near theoretical one.

How much does synthesis similarity depend on these

performance factors? It is in proportion to the

probability of negative performance factors appearing in

detected code. Considering of homology detection

application fields of this paper, omission ratio is the

most important factor. Manual confirmation is

indispensable after detection so that fall-out ratio is

relatively less significant than omission ratio. Statistical

analysis of experiments demonstrates the importance

ratio of omission ratio to fall-out ratio is 4:1.

2.2. Contribution analysis to performance factors

Factors we mentioned here include omission ratio and

fall-out ratio. Omission ratio and fall-out ratio measure

the synthesis similarity negatively. The higher the

omission ratio and fall-out ratio is, the lower the

accuracy of synthesis similarity is. When comparing the

contributions of text, token, AST-based detection

algorithms to omission ratio and fall-out ratio, this paper

has considered the effect of detection algorithms on the

synthesis similarity positively.

2.2.1Contributions to omission ratio

When it comes to omission ratio, it is considered that

the better detection algorithm is, the more plagiarism

modes it can detect. Common plagiarism modes can be

summarized as: complete copy; identifier rename; data

type change; code segment sequence change; parameter

sequence change, and so on. Table 2 shows the statuses

of text, token and AST-based homology detection

algorithms of common plagiarism modes.

For common plagiarism modes, text-based detection

algorithm can detect only one mode, token-based one

can detect four modes and AST-based one can detect

eight modes. So the importance ratio of text, token,

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 1145

AST-based algorithms is 1:4:8 contributing to omission

ratio.

2.2.2Contributions to fall-out ratio

For fall-out ratio, algorithm quality lies in the

misjudgment of particular statements which are not

homologous. Table 3 shows the statistical data of text,

token and AST Homology detection algorithms to

common false detection modes.

Table 3. Contribution analysis of text, token and AST

homology detection algorithms to fall-out ratio

Algorithm

Misjudgment modes
text token AST

Short expression error correct error correct

Short statements block error correct error correct

Hash value confliction error correct correct error

For common misjudgment modes, there is little false

detection using text-based detection algorithm. Token-

based algorithm detects one mode without mistake and

AST-based one does two. So the importance ratio of

text, token, AST-based algorithms is 3:1:2 contributing

to fall-out ratio.

3. Analytic Hierarchy Process Synthesis

Algorithm

Analytic Hierarchy Process (AHP) is a mathematical

modeling method. The basic idea is that in the premise

of achieving goals the contributions of detection

algorithms to performance factors will be compared

quantitatively and delivered layer by layer. Relative

importance weight from the bottom to the top layer is

confirmed
11

.

The synthesis homology detection algorithm proposed

in this paper is based on text, token and AST, and

considers the performance factors such as omission ratio

and fall-out ratio. This synthesis algorithm also

confirms the contributions of the three algorithms to

synthesis similarity according to their respective

advantages, reflecting the reasonable real one more

accurately.

The formula of synthesis similarity is as below,

Sim=wtxtSimtxt+wtokenSimtoken+wASTSimAST (2)

In Eq. (2), Sim, Simtxt ,Simtoken, SimAST stand for

similarities of synthesis, text, token and AST-based

similarities. wtxt ,wToken,wAST stands for weight of text,

token and AST-based detection algorithm.

Model and weights of the three detection algorithms in

synthesis homology detection are introduced in the rest

of this section.

3.1. Structure of AHP synthesis homology

detection hierarchy analysis model

The structure of AHP hierarchy analysis model is

establishing the evaluation factor system to analyze

objects systematically. It includes goal layer, rule layer

and solution layer. Goal layer is the achieving goal of

the analyzed object, rule layer is the middle part to

achieve the goal and solution layer is the execution

solution chosen objectively.

In previous analysis, text, token and AST-based

detection algorithms have respective advantages in

performance factors of synthesis similarity. The

Table 2. Contribution analysis of text, token and AST homology detection algorithms to omission ratio

Algorithm

Plagiarism modes
text token AST

Complete copy detectable detectable detectable

Rename identifier missing detectable detectable

Change data type missing detectable detectable

Redefine data type missing detectable detectable

Change code segments sequence missing missing detectable

Change parameters sequence missing missing detectable

Multi-line code reconstruction missing missing detectable

Equivalent structure replacement missing missing detectable

Add unrelated statements or variables missing missing missing

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 1146

performance factors reflect the accuracy of detection

similarity directly. In the synthesis homology detection

model, the goal layer is the synthesis similarity. The

rule layer is performance factors evaluating synthesis

similarity. The solution layer is text, token and AST-

based detection algorithms. Fig. 2 is the AHP synthesis

homology detection model.

Synthesis

similarity

Syntax-based

algorithm

Fall-out ratio

Texte-base

algorithm

Token-based

algorithm

Omission ratio

Fig. 2.AHP synthesis homology detection model

3.2. Judgment matrix

The Judgment matrix is the importance matrix whose

element value stands for the relative contribution that

the same layer factors make to the prior layer factors.

The importance degrees of relative contribution are

measured by divisions from one to nine as is shown in

Table 4.

The judgment matrix A=(aij)𝑚×𝑛
 has the following

properties,

aij>0,

aij=
1

aji
 when i≠j,

aij=1 when i=j.

In above description, aij is the importance ratio between

i and j.

Table 5. The contribution judgment matrix of text, token and

AST-based detection algorithms to omission ratio

B1 C1 C2 C3

C1 1 1/4 1/8

C2 4 1 1/5

C3 8 5 1

Table 6. The contribution judgment matrix of text, token and

AST-based detection algorithms to fall-out ratio

B2 C1 C2 C3

C1 1 3 2

C2 1/3 1 1/2

C3 1/2 2 1

Table 7. The contribution judgment matrix of omission ratio,

fall-out ratio to synthesis similarity

A B1 B2

B1 1 4

B2 1/4 1

According to the argument of the second part in this

paper, the importance degree method is used to define

that the degree is m-n+1 when m>n and it is 1/(n-m+1)

when m<n if the ratio of the two factors is m:n. The

contribution judgment matrixes of text, token and AST-

based detection algorithms to the performance factors

omission ratio, fall-out ratio and the contribution

judgment matrix of omission ratio, fall-out ratio to

synthesis similarity are shown in Table5-7.

3.3. Hierarchy weight

Hierarchy weight is divided into single layer weight and

synthesis layer weight. Single layer weight is defined as

Table 4. Importance degree meaning

Importance degrees meaning

1 The first factor is the same important with the other.

3 The first factor is a little more important than the other.

5 The first factor is much more important than the other.

7 The first factor is intensively more important.

9 The first factor is extremely more important.

2,4,6,8 The median of degrees above.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 1147

weight of one layer factors to the prior layer ones. The

synthesis layer weight is the weight of solution layer

factors to the goal layer. The single layer weight is

necessary to calculate the whole layer weight.

The procedure of single weight calculation is as follows,

 Normalize each column of the judgment matrix.

aij =
aij

 akj
n
k=1

(i=1,2,⋯,n)

 Sum up each row of the normalized matrix.

Wi
 = aij

n
j=1 (j=1,2,⋯,n)

 Normalize the vector W =[W1
 ,W2

 ,⋯,Wn
].

Wi=
Wi

 Wi n
i=1

(i=1,2,⋯,n)

Hierarchy single layer weight vector is as bellow：

Table 8. Hierarchy single layer weight vector

B1
single

weight
B2

single

weight
A

single

weight

C1 0.07 C1 0.54 B1 0.80

C2 0.21 C2 0.16 B2 0.20

C3 0.72 C3 0.30

3.4. Consistency inspection

Consistency inspection can use mathematical method to

confirm the rationality of judgment matrixes in the

following procedures.

 Calculate the maximum eigenvalue of judgment

matrixes.

λmax=
1

𝑛

(AW)i

Wi

n
i=1 (3)

 Calculate the consistency index C.I.

C.I.=
λmax-n

n-1
 (4)

In the above equation 𝜆𝑚𝑎𝑥 stands for the maximum

eigenvalue of judgment matrix and n stands for the

order of the judgment matrix.

 Confirm the relative average random index R.I.

Inquire random index Table 9 of the judgment matrix to

get R.I.

 Calculate consistency ratio C.R.

C.R.=
C.I.

R.I.
 (5)

The judgment matrix is acceptable when C.R<0.1. It is

not when C.R.>0.1, in that case it is necessary to modify

the judgment matrix.

Consistency ratios of the four judgment matrixes above

are 0.0922, 0.0089, 0, which are acceptable.

3.5. Synthesis layer weight

The procedure of the synthesis layer weight calculation

is as follows,

The synthesis layer weights of m factors in the (k-1)th

layer to the goal layer are wi

(k-1)
.

The single weights of n factors in the kth layer to the jth

factor of the k-1th layer are p
j

(k)
=(p

1j

 k
,p

2j

 k
,…,p

nj

(k)
).

The synthesis weights of factors in the kth layer to the

goal layer are calculated using Eq. (6).

wi
(k)

= pij
 k wj

 k-1
(i=1,2,⋯,n)n

j=1 (6)

The synthesis layer weight vector is as bellow:

Table 10. Hierarchy synthesis layer weight vector

A C1 C2 C3

synthesis weight 0.16 0.20 0.64

Table 9.Average consistency random index R.I. table the result of 1000 time positive reciprocal matrix calculating

matrix order 1 2 3 4 5 6 7 8

R.I. 0 0 0.52 0.89 1.12 1.26 1.36 1.41

matrix order 9 10 11 12 13 14 15

R.I. 1.46 1.49 1.52 1.54 1.56 1.58 1.59

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 1148

They are the weights of text, token and AST-based

detection algorithms to synthesis similarity. The

formula for synthesis similarity calculation is shown in

Eq. (7).

Sim=0.16Simtxt+0.2SimToken+0.64SimAST (7)

4. Experiment Analysis

The synthesis similarity calculation model proposed in

this paper considers different quality of text, token and

AST-based detection algorithms, and reasonably reflects

the real similarity of expert calculation more accurately

in the practical application environment of multifarious

plagiarism means.

In the experiments, there are tens of thousands lines of

source code with simulative plagiarisms such as copy-

paste, parameter name change, function name change,

type redefinition and multi-line code sequence change.

Several miss detection code segments are added for

verification of text, token and AST-based algorithms.

Experts in the homology field calculate line number of

artificial simulation plagiarized code. The reasonable

real similarity is the ratio of it to the whole number.

4.1. Simulative plagiarism experiment on different

plagiarism method

Simulative plagiarism of open source software emule-

0.42 is taken for example here. In experiments, common

plagiarized methods including variable name change,

function name change, type redefine, parameter

sequence change, code sequence change and synthesis

plagiarism method are designed to detect open source

software emule-0.42. The result of AHP synthesis

detection algorithm and text, token and AST-based ones

are shown in Table 11. The formula of synthesis error

rate is shown as Eq. (8).

𝑒𝑠𝑦𝑛 =
 synthesis similarity-reasonable real similarity

reasonable real similarity
 (8)

From this result we can see that algorithm based on text,

token, AST have respective advantages to different

single plagiarism method which support the rationality

of contribution analysis in section 2. However, for

synthesis plagiarism method, synthesis similarity is

closer to the reasonable one compared with the other

three, which will get further validation in the next

experiment.

4.2. Simulative plagiarism experiment on different

software

In experiments, synthesis plagiarized methods including

copy-paste, parameter name change, function name

change, type redefinition and code sequence change are

designed to detect a large number of open source

software such assnort-2.9.0.3, mysql++3.1.0, ucos2.86,

junit4.7. The result of AHP synthesis detection

algorithm and text, token and AST-based ones are

shown in Table 12.

Plentiful experiments illustrate that compared with any

of text, token and AST-based algorithms, synthesis

homology detection algorithm based on AHP gains a

more accurate similarity and gets a lower error rate

when there are a great quantity of detected code and

various plagiarism means.

Table 11. Experiment on different plagiarism method

similarity

plagiarism mode

text

similarity

token

similarity

syntax

similarity

synthesis

similarity

reasonable

similarity

synthesis

error rate

variable name change 30.79% 62.72% 55.28% 52.85% 56.11% 5.80%

function name change 57.47% 68.78% 61.37% 62.23% 60.97% 2.06%

type redefine 58.94% 70.95% 53.95% 58.15% 58.03% 0.21%

parameter sequence change 68.05% 79.89% 69.38% 71.27% 68.46% 4.10%

code sequence change 41.30% 53.41% 40.53% 43.23% 41.13% 5.11%

synthesis method 54.51% 64.89% 54.51% 56.59% 55.22% 2.47%

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 1149

5. Conclusion

This paper calculates contribution weights of the three

algorithms on synthesis similarity by contribution

analysis based on AHP synthesis homology detection

model in which performance factors omission ratio and

fall-out ratio are taken into account. The synthesis

similarity calculation model balances different

performance quality of text, token and AST-based

detection algorithms on performance factors omission

ratio and fall-out ratio. This model reasonably reflects

the real similarity more accurately by means of artificial

simulative plagiarism and experts’ calculation in the

homology field.

It is verified by artificial simulation of various

plagiarisms and homology detection that homology

detection algorithm based on AHP approaches the

reasonable similarity more closely compared to text,

token and AST-based detection algorithms. The more

complex the detected codes and plagiarisms are, the

more accurately the homology detection algorithm

based on AHP gets the detection result.

Acknowledgements

This work is supported by National Natural Science

Foundation of China (No. 61170268, No. 61272493 and

No. 61100047).

References

1. Brenda S. Baker, A Program for Identifying Duplicated

Code, in Proceedings of Computing Science and

Statistics: 24th Symposium on the Interface, Vol.

24:4957, March 1992.

2. J Howard Johnson, Identifying Redundancy in Source

Code Using Fingerprints, in Proceedings of the 1993

Conference of the Centre for Advanced Studies

Conference(CASCON’93), pp. 171-183, Toronto,

Canada, October 1993.

3. S. Ducasse, M. Rieger and S. Demeyer, A Language

Independent Approach for Detecting Duplicated Code, in

Proceedings of the 15th International Conference on

Software Maintenance, ICSM 1999, pp. 109-118.

4. K. Roy and J.R. Cordy, A Survey on Software Clone

Detection Research, Queen’s School of Computing TR

2007-541, 115 pp. 64-68, 2007.

5. Z. Li, S. Lu, S. Myagmar and Y. Zhou, CP-Miner: A tool

for finding copy-paste and related bugs in operating

system code, in OSDI, pp. 289–302. 2004

6. Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue,

(2002, July), CCFinder: A multilinguistic token-based

code clone detection system for large scale source code.

IEEE Transactions on Software Engineering, 28(7):654–

670.

7. S. Schleimer, D. S. Wilkerson and A. Aiken, Winnowing:

local algorithms for document fingerprinting, in

Proceedings of the 2003 ACM SIGMOD International

Conference on Management of Data (SIGMOD’03), pp.

7685, San Diego, California, June 2003.

8. Lutz Prechelt, Guido Malpohl, and Michael Philippsen,

Finding plagiarisms among a set of programs with JPlag,

in Journal of Universal Computer Science,

8(11):10161038, November 2002.

9. I. Baxter, A. Yahin, L. Moura and M. Anna, Clone

Detection Using Abstract Syntax Trees, in ICSM, pp.

368-377, 1998.

10. S. Bellon, R. Koschke, G. Antoniol, J. Krinke and E.

Merlo, Comparison and Evaluation of Clone Detection

Tools, IEEE TSE,33(9):577-591, 2007.

11. Thomas L. Saaty, Decision making with the analytic

hierarchy process, International Journal of Services

Sciences(Volume 1, Number 1 / 2008) ,pp.83-89.

Table 12.Experiment on different software source code

Similarity

Detected code

text

similarity

token

similarity

syntax

similarity

synthesis

similarity

reasonable

similarity

synthesis

error rate

snort-2.9.0.3 53.87% 72.62% 60.64% 61.95% 62.32% 0.59%

mysql++-3.1.0 31.67% 52.20% 43.06% 43.07% 42.51% 1.31%

ucos-2.86 45.11% 51.57% 47.50% 47.93% 48.47% 1.11%

junit-4.7 33.24% 52.34% 44.02% 43.96% 43.35% 1.41%

ossec-hids-2.5.1 44.50% 62.74% 60.22% 58.21% 59.02% 1.37%

libprelude-1.0.0 52.36% 70.28% 58.98% 60.18% 60.67% 0.81%

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 1150

