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Abstract

A DE approach based on a new measure of population diversity and a novel parameter control mechanism
is proposed with the aim of introducing a good behavior of the algorithm. The ratio of the new defined
population diversity of different generations is equal to that of the population variance, therefore the adap-
tion of parameter can use some theoretical results in'”. Combining with the method in'®, we can adjust
the mutation factor F' and the crossover rate CR at each generation in the searching process. The perfor-
mance of the proposed algorithm (DE-F&CR) is compared to the basic DE and other four DE algorithms
over 25 standard numerical benchmarks provided by the IEEE Congress on Evolutionary Computation
2005 special session on real parameter optimization. The results and its statistical analysis show that the
DE-F&CR generally outperforms the other algorithms in multi-modal optimization.
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1. Introduction

The Differential Evolution algorithm (DE) intro-
duced by Storn and Price! is a stochastic population-
based search method. As one of the best evolution-
ary algorithms (EAs)?, it has proven to be a promis-
ing candidate to solve real value global optimiza-
tion. The DE algorithm also presents simple struc-
ture, convergence speed, versatility and robustness,
with few parameters to be specified. There are two
main processes in differential evolution during the

*Corresponding author (H. Lian)

search for optimum: the variation process which en-
sures the exploration of the search space and the se-
lection process which ensures the exploitation abil-
ities of the algorithm. If the exploitation process is
dominant with respect to the exploration, the popu-
lation loses its diversity and the algorithm is stuck
into a non-optimal state (premature convergence).
On the other hand when the exploration is dominant,
the algorithm does not approach the global optimum
in a reasonable number of generations (slow con-
vergence). Therefore a balance between exploration
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and exploitation is crucial to realize rapid conver-
gence and still avoid premature convergence.

Population diversity can be a way to monitor an
algorithm’ state of exploration and exploitation, it
is important for helping adjust the ability of explo-
ration and exploitation. Diversity can reveal internal
characteristic of a search process. Again, the explo-
ration power of the algorithm depends on the popu-
lation diversity. It is commonly accepted that main-
taining proper population diversity is important to
avoid premature convergence and escape the local
optima. Diversity measures have been used to con-
trol evolutionary algorithms in several studies. The
Diversity-Control-Oriented Genetic Algorithm uses
a diversity measure based on Hamming distance to
calculate a survival probability for the individuals’.
A low Hamming distance between the individual
and the current best individual is translated into a
low survival probability to preserve population di-
versity through the selection procedure. Ursem®
proposed the Diversity-Guided Evolutionary Algo-
rithm which applies diversity-decreasing operators
(selection, recombination) and diversity-increasing
operator (mutation) to alternate between two modes
based on a distance-to-average-point measure. Riget
and Vesterstorm® suggested the attractive and repul-
sive particle swarm optimization (PSO) which used
a diversity measure to control the swarm alternating
between the phases of attractive and repulsive. A
parameter adaption of DE (ADE) based on control-
ling the population variance and multi-population
approach was proposed by Zaharie®. Coelho’ in-
troduced the use of population diversity in order
to guide the attractive or repulsive behavior of DE
algorithms. Coelho, Ursem and Riget all use the
distance-to-average-point as diversity measure to
guide the population in the process of searching for
the optimum, and the results show the algorithms
mentioned above are competitive and powerful.

On the other hand, an essential role in influ-
encing the convergence behavior of the DE algo-
rithm is played by its strategy parameters such as
the population size M, the mutation factor F and
the crossover rate CR. Many studies have shown
that the performance of DE is very sensitive to the
choice of strategy parameters &%10:11.12 The strat-

egy parameters in standard DE are being fixed dur-
ing the optimization process. Later, various adap-
tion mechanisms were proposed to overcome the
hand-tuning problems of the DE control parameters.
Neri and Tirronen'3give a survey of recent advances
in differential evolution. Teo'“proposed a DE al-
gorithm with self-adapting populations and showed
that DE with self-adaptive populations produced
highly competitive results compared to a conven-
tional DE algorithm with static populations. Brest
et al.!> encoded control parameters F and CR into
the individual and adapting them by means of evo-
lution to produce a flexible DE algorithm, called
jDE. Qin et al.'® developed a self-adaptive DE al-
gorithm (SaDE) for constrained real-parameter op-
timization, and the experiments demonstrated that
the SaDE algorithm preformed much better than the
conventional DE algorithm. In'! a fuzzy adaptive
differential evolution algorithm (FADE) was pro-
posed which used fuzzy logic controllers to adapt
the search parameters for the mutation operation
and crossover operation. Ghosh et al.!” described
a simple and effective adaption technique for tun-
ing both F and CR which was based on the objec-
tive function value of individuals in the DE popula-
tion. In’ Coelho considered that the mutation fac-
tor F is the parameter which most critically influ-
ences the performance and robustness. Therefore
only the mutation factor F is adjusted by means of
linearly decreasing. In'® an improved cultural dif-
ferential evolution approach based on the measure
of population’s diversity (CDEMD) was proposed,
which considered the crossover rate CR as the key
factor affecting the DE convergence, so only the CR
is tuned by using the information of population’s di-
versity. Parameters of DE were adapted by control-
ling the population diversity in®!°, the mutation fac-
tor F' and the crossover rate CR are adapted asyn-
chronously basing on some theoretical results on the
evolution of the population variance. For instance,
at odd generations parameters F are adjusted, while
at even generations are adjusted the parameters CR.
It is important to automatically adapt two parame-
ters the crossover rate CR and the mutation factor F
in DE at each generation.

In this paper, a DE approach based on new
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measure of population diversity and two parameters
adapting at each generation is proposed with the aim
of introducing a good behavior of the algorithm. The
ratio of the new defined population diversity of dif-
ferent generations is equal to that of the population
variance, therefore the adaption of parameter can use
some theoretical results in'®. Combining with the
method in'®, we can adjust the crossover rate CR and
the mutation factor F in DE at each generation.

The remaind of the paper is organized as follows.
In Section 2, we introduce the basic differential evo-
lution algorithm. In Section 3, the proposed differ-
ential evolution algorithm (DE-F&CR) is analyzed
in detail. The experimental setup, parameter set-
tings, the experiment results and statistical compar-
isons are shown in Section 4. Finally, our conclu-
sions are provided in Section 5.

2. Differential Evolution Algorithm

As with any other evolutionary algorithm, DE uti-
lizes a population of NP D-dimensional parame-
ter vectors x; j(G),i=1,2,--- ,NP; j=1,2,--- ,D;
G=0,1,2, -, Gyax, where NP denotes the popula-
tion size and does not change during the evolution
process, G denotes subsequent generations in DE.
The general form of DE algorithm:

« Initialize a population of NP individuals: the
initial population should cover the entire search
space as much as possible. In this step, set G = 0
and each individual x; ;(G), i = 1,--- NP, j =
1,---,D is a solution vector generated with ran-
dom values according to a uniform probability
distribution in the D-dimensional problem space.

o For each individual x;(G) = {x;1(G),xi2(G),-- -,
xip(G)},i=1,--- NP, evaluate its fitness based
on the objection function value.

« Mutation operation: for each target vector x;(G) =
{xi,l (G),XLQ(G), Tty xi,D(G)}7 i = 17 e 7NP7 a
mutation vector is generated according to follow-
ing equation:

vi(G) :xrl(G)+F(xrz(G)_xrs(G))’ (D

where  vi(G) = {vi1(G),vi2(G), -+ ,vip(G)}
stands for the mutant vector corresponding to the
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i-target vector, r, r, and r3 are mutually different
integers and also different from the running index
i, randomly selected with uniform distribution
from the set {1,2,---,i—1,i+1,--- ,NP} and
F > 0 is a real parameter, called mutation factor,
which controls the amplification of the different
between two individuals and is usually taken in
the range [0.3,2].

o Crossover operation: in order to increase the
diversity of the perturbed parameter vectors,
crossover is applied in the population. The tar-
get vector is mixed with the mutated vector us-
ing the following scheme to yield the trial vector
Lt,'(G) = {ui,l(G),ui72(G), s ,ui,D(G)}, where

_ { vij(G), if (rj <CR)or (j =ri);

uij(G) =4 " i

x;,j(G), otherwise,

2
for j=1,---,D, rj € [0,1] is the j-th evalua-
tion of a uniform random number generator, r; €
{1,2,---,D} is randomly chosen index which en-
sures that u;(G) gets at least one element from
vi(G), and CR € [0,1] is a recombination or
crossover rate.

« Selection operation: to decide whether or not it
should become a member of generation G + 1, the
trial vector u;(G) is compared to the target vec-
tor x;(G) using the greedy criterion. The selection
operation is described as

. _{ ui(G), [f(ui(G)) < f(xi(G));
xi(G+1) = ;
xi(G), otherwise,

3)
if the objective function f is to be minimized. So
if the new trial vector yields an equal or lower
value of the objective function, it replaces the cor-
responding target vector in the next generation;
otherwise the target is retained in the population.
Hence the population either gets better (with re-
spect to the minimization of the objective func-
tion) or remains the same in fitness status, but
never deteriorates.

Several variants of DE were proposed in' which are
classified using the following notation: DE /x/y/z,
where x specifies the vector to be mutated which cur-
rently can be rand (a randomly chosen population
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vector) or best (the best vector of the current gen-
eration), y is the number of difference vectors used,
z denotes the crossover scheme. Studies in?° have
shown that the version DE /best /2 /7 appears to per-
form better in most cases.

3. Proposed Differential Evolution Algorithm

The DE algorithm we considered in this paper is the
most general case:
2 = AXpest + (1 _)L)xrl +F[(Xr2 _xrs) +6(xr4 _xrs)]7
4)
where ry, 1,13, 14,15 are five mutually different ran-
dom integers in [1,NP]|, A € [0,1] represents the
coefficient of the convex combination between the
best individual of the population and a randomly se-
lected individual, 6 =0 or 1, F > 0 is a real pa-
rameter and called mutation factor, which controls
the amplification of the different between two in-
dividuals and is usually taken in the range [0.3,2].
Obviously, it consists most frequently used vari-
ants of DE such as DE/rand/1/bin for A = 0
and 0 = 0; DE /best/1/bin for A =1 and § = 0;
DE /best /2 /binfor A =1 and 6 = 1.

3.1. DE using the diversity measure
The“distance-to-midpoint” measure diversity is de-

fined as follows:

diversity = ———

&)
where x;”“" x””” are maximum and minimum val-
ues of the i-th dlmensmn N is the population size, n
is the dimensionality of the problem, x; ; is the j-th
value of the i-th individual, X; is the j-th value of the
midpoint X.

A new dimension-wise diversity measure of the
population is defined as:

. 1 S & (x0(G) —xi(G))?
dW(X(G)):NM(M_l)j;i,kZ:I (-xmaxj xmjm,j)Z
(6)

)

where Xynqx, j» Xmin,j are maximum and minimum val-
ues of the population’s search region in j-th dimen-
sion, M is the population size, N is the dimension-
ality of the problem, x; ;(G) is the j-th value of the
i-th individual in G-th generation, and

& (x,(G) —x j(G))?

div(X(G), j) = . S
,Zl xmaxj xmin,j)2

(7)

when j is fixed.

This new measure computed at the component
level of the population individual is different from
the “distance-to-midpoint” measure that is applied
in*>72! besides in DE algorithm it has some sim-
ilar function to the population variance appeared

in%!%. Zaharie defined the population variance as
follows: for a population of scalars x = {x1, -+, X },
x, €R, 1 =1,2,---,m, let Var(x) = x> — x> with

X = Y x;/m. It is easy to prove that the ratio of the
=1
new defined population diversity of different gener-

ations is equal to that of the population variance.

Theorem 1. Let X (G) = {x1(G),x2(G), - - ,xnp(G)},
for each individual i = 1,---,NP, x;(G) =
{xi,l(G)7xi,2(G)7' e 7xi,D<G } hen

aX(G)L)) _ VaX(G) o

div(X(G+1),j)  Var(X(G+1);)’

where X(G)j = {X]J(G),XZJ(G),"' ,XNPJ(G)}.
Proof. By the definition in®,

Var(X(G);) =X(G)}-X(G);,  ©)

NP
with X (G); = ¥ x; j(G)/NP. Hence
i=1

Var(X(G);) .
NP xij(G) (RS %y (G)
N i§1 NP (; NP )
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N
NP

P NP 2
25,67~ ((E5,(6))

2

1

_ ¥ xi(G)
i—1 NP
NP 2 NP
(X (G +2 ¥ xj(G)x;(G)]
i=1 i k= TLitk
NP2
NP

Y [xi(G) —x (G
i,k=1

NP?
In a similar manner we get

¥ (G 1)~ (G 1P
Var(X(G+1);) = *=

NP2
Thus

T [55(G) —(G)

Var(X(G);) _ ,-,kzzl S

VarX(GHD) ¥ G+ 1) =y (G 1P
i k=1

div(X(G), j)
div(X(G+1),))

1 AZ/I: (x1,/(G) —x,(G))?
B M(M_l) ik=1 (Xmax,j _Xminvj)z
B LM (x5 (GH+1) —x j(G+1))?
M(M-T) 3

ik=1 (xmax,j - xmin,j)z

k%_ (x5:4(G) —x1./(G))?

3 (G -G P2

= Varx(G 1))

3.2. DE with adaptive factors

Theorem 1 works as a bridge that connects the pop-
ulation variance with the “distance-to-midpoint” di-
versity measure. Moreover, it makes us adapting the
crossover rate CR and the mutation factor ¥ in DE
at each generation.

An Adaptive Differential Evolution Algorithm Based on New Diversity

Table 1. The proposed DE algorithm with diversity guided
adaptive parameters

Step 1: Generation G =0,
Initialize the population
X(O) = {xl (0),22(0), -~ 7xNP(O>}7
Initialize the parameters F;, = 0.3, Fax = 2,
Fj=+/1/NP,CR;=09,j=1,2,---D.
Step 2: Compute the population div(X(G)).
Step 3: Apply the mutation operation:
fori=1,2,--- ,NP, j=1,2,---,D,
Vij = Axhest,j + (1 - A’)'xrhj +
Fjl(xry,j =Xy j) 48 (g j = X5, j)]-
Step 4: Apply the crossover operation:
fori=1,2,--- ,NP, j=1,2,---,D,
ui (G) = { vij(G), if (rj <CRj)or(j=r);
" xi,;j(G), otherwise.
Step 5: Apply the selection operation:
fori=1,2,--- ,NP,
ui(G), fu,-G < f(xi(G));
W(G+D = VS et
Step 6: Compute the div(X(G), j),
. . div(X(G).J)
div(X(G+1),j) and c/_div(X(GJr D)
Step 7: Compute the parameters {CR;},
For j=1,2,---,D,
_div(X(0), /)
! div(X (1), ))
CR; = min(0.9,max(0.2,CR;)).
Step 8: Compute the parameters {F;},
Step 8.1: For j =1,2,--- D,
div(X(0), )
div(X(1),j)’
Lett; = (1 —CR;)?>/NP+ (NP —1)/NP
Step 8.2: If ¢; <¢;
then F; = Fp,
else Fj =/ (Cj —lj)/2CRj

Step 8.3: If Fj < Fyin

Calculate the c; =

then F; = Fpp
If Fj > Fax
then Fj = Fjpgy.

Step 9: G=G+1, Until a termination condition is met.

Since the diversity is computed at component
level, based on which the parameters F and CR are
adapted at each generation, the basic DE algorithm
mentioned above will be modified as follows. The
parameters F and CR are replaced with the sets of
parameters {F;} and {CR;}, for j =1,2,---,D at
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each generation are computed the diversity for all
individuals and the parameters are adapted by apply-
ing the methods above after the selection step. The
proposed DE algorithm with diversity guided behav-
ior and adaptive parameters is present in Table 1.

4. Experiments

4.1. Benchmark functions

To evaluate the performance of the proposed DE-
F&CR algorithm, experiments are conducted on a
set of standard benchmark functions from the IEEE
CEC 2005 competition and special session on real
parameter optimization?>. These functions differ in
terms of various features such as multi-modality,
ruggedness, noise in fitness, non-separability, and
rotation. The complete definition of those functions
which are based on classical Rosenbrock’s, Rastri-
gin’s, Schwefel’s, Griewank’s and Ackley’s bench-
mark functions is available in?2, and it will not be
described repeatedly here for sake of space. Func-
tions 1-5 are unimodal and 6-25 are multi-modal.
Functions 13 and 14 are expanded functions, and
functions 15-25 are hybrid composition functions,
the local optimum is shifted to a non zero value and
the global optimum are non zero.

4.2. Algorithms compared and experimental
setup

The performance of the DE-F&CR algorithm is
compared with the standard differential evolution al-
gorithm (DE) and four state-of-the-art DE variants,
which are listed in Table 2.

Table 2. Parameter specification for the algorithms used

DE/rand/1/bin'  F =0.5,CR =0.9;
jDED T1=1=01,F=0.1,F,=009;
CDEMD!8 CRyax = 0.9,CRypin = 0.2, F =0.5;
DE-F'"? Fax =2, Fpin =0.3,CR=0.5;
DE-F&CR Fyax =2, Fpin = 0.3,

CRyax = 0.9,CRpin = 0.2;
SaDE!® F is randomly generated by a

normal distribution N(0.5,0.3).

In the standard DE algorithm, the trial vector

generation strategy and the associated control pa-
rameters are kept fixed throughout the entire op-
timization process. Choosing suitable parameter
value is a problem-dependent task and requires pre-
vious experience of the user. According to the
empirical guideline existed in literature, the stan-
dard DE algorithm used in the experiment selects
DE/rand/1/bin as mutation strategy and control pa-
rameters F = 0.5, CR = 0.9 as the best choice'.
However, the most suitable evolution strategy and
control parameter values can be different for differ-
ent problems or even at different stages of the search
process in the same problem .

Brest et al.'> proposed an adaptive DE algorithm,
called jDE, which used DE/rand/1/bin as mutation
strategy and fixed the population size NP during the
run. In their algorithm, control parameters F' and CR
were encoded into the individual and adapted by in-
troducing two new parameters 7; and 7. 7| and T,
represent probabilities to adjusted factors F and CR,
respectively. A set of F; values were assigned to in-
dividual i in the population. Then, a random number
rand was generated according to uniform distribu-
tion on the interval [0,1]. If rand < 7{, F; was regen-
erated by taking a value from [0.1,1] in a random
manner, otherwise it was kept unchanged. The con-
trol parameter CR was adapted in the same way but
take a value from [0,1]. It was believed that the bet-
ter values of these encoded control parameters lead
to better individuals which are more likely to survive
and propagate these better parameters. Experimen-
tal results suggested that jDE performed remarkably
better than standard DE algorithm DE/rand/1/bin,
FEP and CEP?3, the adaptive LEP and Best Lévy>*
and the FADE algorithm'!.

Based on their preliminary work??, Qin et al.1o

developed a self-adaptive DE (SaDE) algorithm for
Global Numerical Optimization. In the SaDE al-
gorithm, the trial vector generation strategies and
their associated control parameter values were grad-
ually self-adapted by learning from their previ-
ous experiences in generating promising solutions.
They chose DE/ rand/1/bin, DE/rand-to-best/2/bin,
DE/rand/2/bin and DE/current-to-rand/1 to con-
struct a strategy candidate pool, for each target vec-
tor in the current population, one trial vector genera-
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tion strategy was selected from the candidate pool
according to the probability learned from its suc-
cess rate in generating improved solutions within a
certain number of previous generations. The con-
trol parameter F was approximated by a normal
distribution with mean value 0.5 and standard de-
viation 0.3, denoted by N(0.5,0.3), and parameter
CR obeys a normal distribution with mean value
CR,, and standard deviation Std = 0.1, denoted by
N(CR,,,Std), where CR,, was initialized as 0.5.
They have compared the performance of SaDE with
the conventional DE and jDE', SDE?%, ADE?® algo-
rithms over bound constrained numerical optimiza-
tion problems, and concluded that SaDE was more
effective in obtaining better quality solutions, which
are more stable with the relatively smaller standard
deviation, and had higher success rates.

The application of diversity measure can be an
alternative strategy to improve the convergence and
local search in DE algorithm. Coelho et al.!® pro-
posed a new cultural DE approach (CDEMD), which
used information of population’s diversity for tun-
ing of the control parameter CR. It is believed that
the utilization of improvement in CDE based on di-
versity measure can be useful to escape from lo-
cal minima. CDEMD was used to solving the eco-
nomic load dispatch problems of thermal generators,
the results with the CDEMD were superior to that
the result presented in recent literature. Zaharie'®
proposed an adaptive parameter control in DE al-
gorithms (DE-F), the adaptation strategy is based
on theoretical and empirical results concerning the
population diversity evolution. Since the parame-
ters influence in an interacting manner the conver-
gence properties of DE, it is difficult to automati-
cally adapt all the parameters. Their first approach
is to adapt only one parameter F* while the other one
CR is fixed.

The adaptation of control parameters in jDE is
based the evolution of the individual, and the adapta-
tion of trial vector generation strategies is according
to their previous experiences in generating promis-
ing solutions. That is, the self-adaption mechanism
in two representative self-adaptive DE algorithms,
namely SaDE and jDE, do not use any population
diversity information. So their evolution strategy

An Adaptive Differential Evolution Algorithm Based on New Diversity

and control parameter setting could not be most
suitable for different problems or different stages
of the search process in same problem. CDEMD
only adapted control parameter CR by using the
“distance-to-midpoint” measure diversity informa-
tion, while DE-F adapt only one parameter F' and the
other one CR are fixed by using the population vari-
ance as the population diversity. Based on the rela-
tionship between the control parameters, the popula-
tion diversity evolution and the convergence behav-
ior of DE, two control parameters F and CR ought
be adapted according to the population diversity in-
formation to match each other at each generation,
such that they are in the good convergence region,
near the border which separated this region from the
premature convergence region. Therefore, by using
the relationship between the population diversity de-
fined in this paper and the population variance, two
control parameters F' and CR in the DE-F&CR al-
gorithm are automatically adapted at each genera-
tion of the evolution process, to make the algorithm
avoid premature convergence. The adaptation mech-
anism of control parameters F' and CR in the DE-
F&CR algorithm is presented in Table 1.

As a rule of thumb, if nothing is about the prob-
lem in hand then the population size, NP should be
selected from the range 2 - D to 40 - D, where D is
dimensionality of the problem to be solved. For
an easy problem small population size is sufficient
while parameter-dependent, multi-modal functions
requires the large population in order to avoid stag-
nation to a local optimum. The population size for
all the algorithms is set as NP=100 which used in
literature!>1:27.28

4.3. Simulation strategies

Functions 1-25 are tested with dimensions D=10 and
30. The maximum number of function evaluations
is set to 10000D. In the experiments, each func-
tion was run for 25 independent trial runs. All the
simulations were coded in Matlab language and con-
ducted on a machine with a 2.2GHz Intel Core(TM)
2 Duo CPU and 2GB RAM. The best error values
reached by an algorithm at the end of optimization
was recorded. Note that the best error values cor-
responds to the difference between the best of the
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Table 3. Mean and ranks of the best error values for D=10

Function DE/rand/1/bin jDE SaDE CDEMD DE-F DE-F& CR
(F=0.5,CR=0.9) (F=0.5) (CR=0.5)
N 0@3.5) 0@3.5) 0(3.5) 0@3.5) 0(3.5) 0@3.5)
§i) 2.5575E-21(2) 4.1051E-15(6)  2.8687E-19(4)  7.8287E-19(5)  5.2418E-21(3) 5.7396E-22(1)
f3 5.7921E-10(3) 5.1327E-08(6)  2.5618E-10(2)  8.1715E-09(5)  4.4299E-09(4) 1.6976E-10(1)
fa 4.1667E-09(6) 1.7895E-16(5)  1.9216E-18(3)  1.0868E-17(4)  1.3426E-18(2) 1.0627E-18(1)
fs 1.1983E-03(5) 1.1208E-04(1)  7.8028E-04(3)  2.6291E-03(6)  1.0866E-03(4) 1.1302E-04(2)
f6 4.0337E-08(5) 7.8526E-09(4)  5.4922E-10(3)  2.6325E-07(6)  1.2986E-11(2) 3.4757E-13(1)
f 3.4727E-01(4) 5.7123E-02(2)  2.2532E-02(1)  3.5753E-01(5)  3.7803E-01(6) 2.8974E-01(3)
f3 2.0329E+01(3) 2.7284E+01(6)  2.5203E+01(5) 2.0303E+01(2) 2.0356E+01(4) 2.0298E+01(1)
fo 1.8098E+01(6) 1.9161E-11(2)  5.9084E-18(1) 1.6732E+01(3) 1.7046E+01(4) 1.7956E+01(5)
fio 2.6125E+01(2) 2.7931E+01(4)  2.6504E+01(3)  5.7821E+01(6) 3.3803E+01(5) 2.3623E+01(1)
J/u 8.6646E+00(5) 8.4196E+00(2)  8.5243E+00(4)  8.4997E+00(3)  8.9906E+00(6) 8.0611E+00(1)
fi2 8.3654E+01(5) 3.1307E+01(4)  2.6526E+01(3)  2.1068E+04(6) 1.6640E+01(2) 6.9592E+00(1)
J13 2.1211E+00(6) 1.9568E+00(4)  1.2060E+00(2)  1.9146E+00(3)  2.1932E+00(5) 1.2056E+00(1)
Na 3.6473E+00(4) 3.5893E+00(2)  3.5882E+00(1) 3.6542E+00(5) 3.6772E+00(6) 3.6259E+00(3)
fis 4.6788E+02(5) 4.6305E+02(4) 4.5278E+02(3) 4.7904E+02(6) 4.0E+02(1.5) 4.0E+02(1.5)
fi6 1.5267E+02(5) 1.4987E+02(3)  1.4873E+02(2) 1.5723E+02(6) 1.5164E+02(4) 1.2010E+02(1)
Sz 1.8171E+02(4) 1.7503E+02(2)  1.8017E+02(3)  1.8307E+02(6) 1.8192E+02(5) 1.7172E+02(1)
fis 8.2119E+02(6) 8.2101E+02(3)  8.2105E+02(4) 8.2113E+02(5) 8.2091E+02(2) 8.2011E+02(1)
J19 8.2141E+02(6) 8.2107E+02(2) 8.2114E+02(4) 8.2110E+02(3) 8.2118E+02(5) 8.2101E+02(1)
J20 8.2124E+02(6) 8.2121E+02(5) 8.2112E+02(3) 8.2111E+02(2) 8.2117E+02(4) 8.2106E+02(1)
fai 1.0728E+03(6) 1.0623E+03(1)  1.0685E+03(5) 1.0657E+03(3) 1.0657E+03(3) 1.0657E+03(3)
22 5.2998E+02(6) 5.2681E+02(1) 5.2686E+02(3)  5.2903E+02(5) 5.2713E+02(4) 5.2684E+02(2)
J23 1.0922E+03(5.5) 1.0802E+03(2)  1.0805E+03(3)  1.0920E+03(4) 1.0922E+03(5.5) 1.0709E+03(1)
J2a 4.0504E+02(6) 3.8153E+02(2) 3.8756E+02(3) 3.9153E+02(5) 3.8791E+02(4) 3.8074E+02(1)
Sos 4.0360E+02(6) 3.9224E+02(2) 3.9541E+02(3) 3.9814E+02(4) 3.9932E+02(5) 3.9177E+02(1)
Average rank  4.84 3.14 2.98 4.46 3.98 1.6

run value f(Xpes) and the actual optimum f* of a
particular function, that is f(Xpes) — f*.

A nonparametric statistical test called Friedman
test?3? and Iman-Davenport extension’! for inde-
pendent samples were conducted at the 0.05 signif-
icance level in order to judge whether all the six al-
gorithms obtain similar results with nonsignificant
difference’>33. The post hoc Holm procedure with
adjusted p-values®* was used to obtain what algo-
rithms are better or worse than our proposal after the
null hypothesis was rejected through Friedman and
Iman-Davenport extension tests.

A p-value provides information about whether
a statistical hypothesis test is significant or not,
and also indicates “how significant” the result is:
the smaller the p-value, the stronger the evidence
against the null hypothesis, indicating the better fi-
nal objective function achieved by the best algorithm

in each case statistically significant and have not oc-

curred by chance??.

4.4. Results on numerical benchmarks

Tables 3 and 4 show the mean and ranks of the best
error values for 25 independent runs of the six algo-
rithms on 25 numerical benchmarks for D=10 and
D=30, respectively. We rank the six algorithms for
each function separately, giving the algorithm with
the lowest function value a rank of 1, the next low-
est a rank of 2, etc, as shown in Tables 3 and 4.
In case of ties, average ranks are assigned. The re-
sult of applying Friedman and Iman-Davenport ex-
tension tests is shown in Table 5, the null hypoth-
esis for dimension D=10 and 30 are rejected for
15.8393>2.29, 20.4767>2.29. Then we use the pro-
posed algorithm DE-F&CR as the control method,
and the comparative results obtained by the Holm
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Table 4. Mean and ranks of the best error values for D=30

Function DE/rand/1/bin jDE SaDE CDEMD DE-F DE-F& CR
(F=0.5,CR=0.9) (F=0.5) (CR=0.5)

N 1.1106E-07(4) 4.5236E-25(2)  6.5286E-26(1)  1.3212E-07(5)  2.1316E-07(6)  3.2132E-24(3)
¥ 9.0341E-04(5) 2.5364E-04(2)  6.4652E-05(1)  1.8247E-03(6)  8.3531E-04(4)  3.2328E-04(3)
f3 2.0843E+06(5) 3.2663E+04(3)  2.0521E+04(2) 2.2735E+06(6) 1.0140E+06(4) 1.0682E+03(1)
Ja 5.9369E-03(5) 2.5073E-03(2)  4.8601E-05(1) 1.0639E+01(6) 5.5105E-03(4)  5.1443E-03(3)
fs 1.6062E+03(5) 2.1208E+03(6)  7.7268E+02(2)  1.5757E+03(4) 1.4689E+03(3) 1.7500E+02(1)
f6 4.2355E+01(4) 1.5432E+01(2) 3.3211E+01(3) 5.4534E+01(5) 7.3721E+01(6) 3.7766E+00(1)
f 1.7380E-02(6) 3.4562E-03(2)  5.7254E-03(4)  6.6601E-03(5) 4.9737E-03(3)  1.1102E-16(1)
f3 2.1458E+01(6) 2.0932E+01(3) 2.0988E+01(4) 2.0921E+01(2) 2.1023E+01(5) 2.0906E+01(1)
fo 1.8496E+02(5) 1.1869E-15(1)  2.3727E-14(2)  1.8222E+02(4) 1.9088E+02(6) 1.7724E-08(3)
fio 5.5758E+02(6) 2.7736E+02(5) 2.0061E+02(3) 2.0878E+02(4) 1.9644E+02(2) 1.9246E+02(1)
/i 5.2736E+01(6) 3.2670E+01(2) 4.0815E+01(4) 4.0413E+01(3) 4.1099E+01(5) 2.0672E+01(1)
iz 9.5148E+05(4) 3.3465E+04(2) 7.1132E+03(1) 1.1357E+06(6) 1.0243E+06(5)  8.8059E+05(3)
J13 1.7042E+01(6) 1.6586E+01(3) 1.5128E+01(2) 1.6719E+01(4) 1.6849E+01(5) 1.6898E+00(1)
Sia 1.3970E+01(6) 1.3968E+01(5)  1.3955E401(3)  1.3949E+01(2) 1.3960E+01(4) 1.3816E+01(1)
fis 8.7016E+02(6) 8.6503E+02(5)  8.6331E+02(4) 8.6069E+02(3) 8.4226E+02(2) 8.2675E+02(1)
f16 2.2434E+02(4) 1.5428E+02(3)  1.1385E+02(2) 2.2706E+02(5) 3.1008E+02(6) 2.4329E+01(1)
J17 2.8044E+02(5) 2.6189E+02(4) 1.5809E+02(2) 2.5775E+02(3) 5.3420E+02(6) 8.7529E+01(1)
fis 8.6741E+02(5) 8.6611E+02(4) 9.5342E+02(6) 8.23806E+02(3) 8.2094E+02(2) 7.2435E+02(1)
S19 8.5362E+02(6) 8.4801E+02(5) 8.4580E+02(4) 8.2300E+02(2) 8.2659E+02(3) 8.2140E+02(1)
J20 8.2395E+02(4) 8.5366E+02(5) 2.1413E+03(6) 8.2347E+02(3) 8.2194E+02(2) 8.1950E+02(1)
fa1 8.5993E+02(5) 8.5017E+02(2) 1.5864E+03(6) 8.5986E+02(4) 8.5825E+02(3) 6.6023E+02(1)
S22 5.0275E+02(5) 5.0242E+02(4)  1.1653E+03(6)  5.0209E+02(3)  5.0135E+02(2) 5.0073E+02(1)
J23 8.6834E+02(6) 8.6625E+02(3) 5.7560E+02(2)  8.6730E+02(5) 8.6701E+02(4) 5.6358E+02(1)
J2a 2.1142E+02(6) 2.1081E+02(4) 2.0985E+02(2) 2.1069E+02(3) 2.1114E+02(5) 2.0588E+02(1)
Jas 9.1002E+02(6) 8.6712E+02(5) 5.0212E+02(4)  2.1143E+02(3) 2.1061E+02(2) 2.1057E+02(1)
Average rank  5.24 3.36 3.08 3.96 3.96 1.4

procedure are shown in Table 6 for D=10 and Table
7 for D=30.

In Table 3, considering the mean of the best
error values for 10- dimensional problems, on aver-
age, DE-F&CR ranked the first with rank 1.6; SaDE
ranked the second with rank 2.98; jDE ranked the
third with rank 3.14; DE-F ranked the fourth with
rank 3.98; CDEMD ranked the fifth with rank 4.46,
and the last is DE/rand/1/bin with rank 4.84. Table
6 indicate that DE-F&CR outperformed all the other
algorithms in a statistically fashion, as we rejected
all the five null hypothesis according that their cor-
responding p-value is less than adjusted a-value, i.e,
0.0034<0.0250, 0.0089<0.0500. For the unimodal
function fs, it was outperformed by jDE and man-
aged to remain second best. In the multimodal func-
tions f7, fo, fi4 and hybrid composition functions
f1s, f21, f22, it was beaten by jDE, SaDE and DE-F,
and remained comparable to those of the above al-

gorithms, only in function fo DE-F&CR ranked the
fifth with the worst performance.

For the 30-dimensional problems, it become
more difficult than their 10-dimensional counter-
parts. Hence, the results are not as well as those
for function with D=10 even through the maximum
function evaluation is increased. Tables 4 and 7
show the mean of the best error values and com-
parative results for D=30. On average, DE-F&CR
ranked the first with rank 1.4; SaDE ranked the sec-
ond with rank 3.08; jDE ranked the third with rank
3.36; DE-F and CDEMD ranked the fourth and fifth
with equal ranks 3.96; and the last is DE/rand/1/bin
with rank 5.24. From Table 7 it can be easily
seen that overall the DE-F&CR algorithm outper-
forms all the other compared algorithms in a statisti-
cally meaningful way, for the reason that their corre-
sponding p-value is less than adjusted a-value, i.e,
2.0370E-04<0.0250, 0.0018<0.0500. In particular,
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Table 5.
tests(a=0.05)

Results of the Friedman and Iman-Davenport

Dimension Friedman value Iman-Davenport )(% Critical value valueFr of Fys5(5,120)
D=10 49.6974 15.8393 2.2900
D=30 57.5489 20.4767 2.2900
Table 6. Results of the Holm procedure(D=10, o=0.05)
Index(i) Algorithm z=(R;—1.6)/0.5292  p-value o/(6—1i)
1 DE/rand/1/bin  (4.84 —1.6)/0.5292 1.8643E-09 0.0100
2 CDEMD (4.46 —1.6)/0.5292 3.3320E-08 0.0125
3 DE-F (3.98 —1.6)/0.5292 1.0229E-05 0.0167
4 jDE (3.14—1.6)/0.5292 0.0034 0.0250
5 SaDE (2.98 —1.6)/0.5292 0.0089 0.0500
Table 7. Results of the Holm procedure(D=30, a=0.05)
Index(i) Algorithm z=(R;—1.4)/0.5292  p-value o/(6—1i)
1 DE/rand/1/bin  (5.24 —1.4)/0.5292 0 0.0100
2 CDEMD (3.96 — 1.4)/0.5292 1.4991E-06 0.0125
3 DE-F (3.96 — 1.4)/0.5292 1.4991E-06 0.0167
4 jDE (3.36—1.4)/0.5292 2.0370E-04 0.0250
5 SaDE (3.08—1.4)/0.5292 0.0018 0.0500

DE-F&CR was outperformed by SaDE in unimodal
function fi, f> and f;. For the multimodal functions,
DE-F&CR was only beaten by SaDE in f,. In 21
of 25 cases, DE-F&CR could outperformed all the
other variants in the mean of the best error values.
Note that DE-F&CR has shown its superiority in ro-
tated and shifted functions as well as function with
noise.

For further illustration, we plot the convergence
graph of DE-F&CR algorithm on functions 1-5,
functions 6-10, functions 11-15, functions 16-20 and
functions 21-25 for D=30 in Figures 1-5, respec-
tively, in order to show the evolutionary processes
and convergence of the proposed algorithm. From
Figures 1-2, we could observe that the DE-F&CR
algorithm almost approach the global optimum for
functions fi, f7 and f9. However, from fi¢ to fas,
it can hardly find the global optimal solution due
to the high mulitmodal of those hybrid composition
functions and the local search process make the al-
gorithm prematurely converge.

Tables 3, 4, 6 and 7 indicate that, consider-
ing the mean of the best error values for both 10-

dimensional and 30-dimensional problems, SaDE
and jDE performed better than DE-F and CDEMD,
because DE-F and CDEMD adjusts only one control
parameter in the evolution process. Our proposed
DE-F&CR algorithm with a new measure of popu-
lation diversity to adjust parameter performed better
than DE-F and CDEMD which use the “distance-to-
midpoint” measure diversity information to adjust
control parameter, as well as SaDE and jDE which
do not use any the population diversity information.
The proposed method performed steadily with the
dimension increased, which is very good at solving
benchmark functions.

4.5. Application to data classification

Data classification is an important tool for a variety
of applications in data mining, statistical data analy-
sis and data compression. The goal of classification
is to group data into clusters such that the similar-
ities among data members within the same cluster
are maximal while similarities among data members
from different clusters are minimal®>-*. Classifica-
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tion can be encoded as a multi-variable optimization.
When in a multi-dimension space a class of proto-
type is represented by a centroid, the classification
can be seen as the problem of finding the optimal po-
sitions of all the class centroids. PSO, DE and ABC
algorithms have already been applied to classifica-
tion in literature3>-37:38. Therefore, we compare the
performance of the DE-F&CR algorithm with some
DE variants over classification of real-life data sets.

For a database with C classes and N parame-
ters, the classification problem can be seen as that
of finding the optimal positions of C centroids in a
N-dimensional space. Each database that we tracked
will be partitioned into two sets: a training set and a
testing set. The i-individual of the population in our
work is encoded as follows:
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Pi: {Pil7Piz7'” 7P'C}7

1

(10)
where the position of the j-th centroid is constituted
by N real numbers representing its N coordinates:

B ={pl.pf..pi}j=12-.C. (D

So, each individual P; is composed by C x N
real value components. To evaluate the quality of
individual P;, the fitness function is designed to
minimize the sum on all training set instances of
Euclidean distance in N-dimension space between
generic instance x; and the centroid of its class ac-
cording to database. The fitness of individual F; is

computed as in?:

1 Drrain CL (X)
P. — d P konwn \Xk 12
F(B) = g 3 dls B ), (12

where Dr,,;, is the number of instance in the training
set, which is used to normalize the sum. CLyyn (x%)
defines the class that instance x; belongs to accord-
ing to database.

Table 8. Properties of the date sets

Data D C N  Drwin Dres
Iris 150 3 4 112 38
Wine 178 3 13 133 45
Glass 214 6 9 161 53
Thyroid 215 3 5 162 53
Heart 303 2 35 227 76

In this experiment, five well-known real-world
classification problem taken from the machine learn-
ing repository>® have been considered for investiga-
tion. The data sets and their features are presented
in Table 8. For each data set, we list the total in-
stance number D, the number of class C which it
is divided, the number N of parameters composing
each instance, the number of instance D74, in the
training set and the number of instance Dy, in the
test set. The training set is assigned the former 75%
of the database instances D, and the testing set the
remaining 25%.

For the DE-F&CR algorithm and the compared
algorithm, the parameter setting are the same as in

Table 2, the population size is set as NP=50 and
maximum generation number is G,,,,=2000. Table
9 shows the results on each of the 5 classification
problem with respect to the incorrect classification
percentages, which is the percentage of incorrectly
classified patterns of the test data sets. We classified
each pattern by assigning it to the class whose center
is closest by means of the Euclidean distance. This
assigned class is compared with the desired class, if
they are not the same class the pattern is considered
as incorrectly classified. It is calculated for all test
data and the number of incorrectly classified pattern
is percentaged to the Dr.y. Results are averaged
over 20 independent trial runs. The DE-F&CR al-
gorithm achieves the best results for the Iris, Glass
and Heart problem, however is beaten by SaDE for
the Wine and Thyroid problem. More over, the aver-
age classification error percentages for the five prob-
lem are 14.87% for DE, 10.31% for jDE, 9.82% for
SaDE, 13.34% for CDEMD, 13.10% for DE-F and
8.58% for DE-F&CR. That is, DE-F&CR ranked the
first; SaDE ranked the second; jDE ranked the third;
DE-F ranked the fourth; CDEMD ranked the fifth;
and the last is DE. Therefore, the DE-F&CR algo-
rithm can be successfully applied to clustering for
the purpose of classification.

5. Conclusions

In the DE algorithm, control parameters play a key
role in the algorithm’s performance. It is difficult
to choose suitable parameter values, since the best
setting is depending on the nature of problem and
available computation resources. Therefore, this pa-
per proposed a new parameter control mechanism
based on a novel measure of population diversity.
The notion of the presented control mechanism dif-
fers from the existed one in that the factors CR and
F are guided by the population’s current diversity
at each generation in order to maintain the pop-
ulation diversity at a proper level. We compared
the proposed algorithm with two adaptive DE al-
gorithms which also use diversity measure to ad-
just control parameter, as well as two representative
self-adaptive differential evolution algorithms jDE
and SaDE, the results evaluated on a set of bench-
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Table 9. Average classification error percentage and ranks

Data DE jDE SaDE CDEMD DE-F DE-F&CR
Iris 533 263 263 5.26 4.87 1.32

Wine 6.67 278 1.64 8.87 379 222

Glass 30.19 22.64 2453 2271 26.42  20.75
Thyroid 5.65  3.77 1.86  7.50 942 283
Heart 26.52 1974 1845 2237 21.05 15.79
Average 14.87 1031 9.82 13.34 13.10 8.58

Rank 6 3 2 5 4 1

mark problems and the statistical analysis through
the Friedman test demonstrated that the proposed al-
gorithm was overall more effective in obtaining bet-
ter quality solutions. Further study of the character-
istic of the adaption scheme and improvement of the
adjustment mechanism for control parameters will
be done in future.
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