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Abstract 

A novel dual level differential pulse code modulation (DL-DPCM) is proposed for lossless compression of medical 
images. The DL-DPCM consists of a linear DPCM followed by a nonlinear DPCM namely, context adaptive 
switching neural network predictor (CAS-NNP). The CAS-NNP adaptively switches between three NN predictors 
based on the context texture of the predicted pixel in the image. Experiments on magnetic resonance (MR) images 
showed lower prediction error for the DL-DPCM compared to the GAP and the MED, which are used in 
benchmark algorithms CALIC and LOCO-I respectively. The overall improvement in data reduction after entropy 
coding the prediction error were 0.21 bpp (6.5%) compared to the CALIC and 0.40 bpp (11.7%) compared to the 
LOCO-I. 
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1. Introduction 

Medical images provide anatomical and pathological 
details of the human body parts by noninvasive means. 
With the advancement of various imaging technology in 
the medical field, physicians tend to use medical images 
more extensively for disease diagnosis. Modalities such 

as magnetic resonance (MR) and computed tomography 
(CT) occupy a considerable amount of data space, as 
they generate multiple slices for a single examination. 
Medical images may require to be stored for many years 
due to legal reasons. Modern medical practices such as 
telemedicine rely greatly on image transmission 
between healthcare organizations. Compressing the 
image before storage or transmission conserves storage 
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space and bandwidth. Therefore, although numerous 
researches were carried out, medical image compression 
remains as an active field of study1.  

Image compression techniques reduce the data size 
of an image by removing the irrelevant and redundant 
information. They are broadly classified into two  
lossy and lossless. Lossy techniques2-5 achieves higher 
compression ratios than lossless techniques, but causes 
permanent loss of information and may degrade image 
quality. Lossless compression techniques6,7 preserve 
every detail in the original image. 

Non-degraded images are essential for radiologists 
to interpret disease and to extract related diagnostic 
information. However, lossy compression alters the 
texture parameters of an image. Therefore, it may affect 
the diagnostic accuracy when interpreted by a 
radiologist. The accuracy of a computer aided diagnosis 
(CAD) system is also affected when lossy compressed 
image is used. In addition, legal reasons may require the 
medical images to be preserved without any loss of 
information. Therefore, lossless compression techniques 
are used most often to store medical images. 

Most of the successful lossless coding schemes 
employ simple and efficient predictive coding 
techniques6. It involves pixel value prediction from 
causal neighboring pixels, modeling and entropy coding 
of the prediction error. Predictive coding technique is 
used by the two state-of-the-art lossless compression 
algorithms viz., the context-based adaptive lossless 
image coding (CALIC)8 and the low complexity 
context-based lossless image compression (LOCO-I)9. 
The LOCO-I is used at the core of the ISO standard for 
lossless image compression, JPEG-LS. The CALIC 
generally achieves a higher data reduction than the 
LOCO-I, with a higher computational complexity than 
LOCO-I. The JPEG-20005 includes a lossless mode 
based on integer wavelet transform. However, the 
lossless mode is slower and often achieves lower 
compression ratios than JPEG-LS.  

There has been a continuous effort for improving the 
lossless image compression techniques by developing a 
variety of algorithms. Pan et al.10 proposed a lossless 
embedded coding algorithm based on binary wavelet 
transform (BWT) called progressive partitioning binary 
wavelet-tree coder (PPBWC). Although the algorithm is 
fast, the compression performance is less than the 
benchmark lossless compression techniques. Zhang and 
Adjeroh11 introduced prediction by partial approximate 

matching (PPAM) technique for compression and 
context modeling. The algorithm needs to be trained 
offline before encoding and an average improvement of 
0.03 bits per pixel (bpp) and 0.151 bpp over the CALIC 
and the JPEG-LS is achieved for a set of ten natural 
images. Zhao and He12 proposed super-spatial structure 
prediction, in which the image area is partitioned into 
two regions: structure regions (SRs) and non-structure 
regions (NSRs). SRs are encoded with the super-spatial 
prediction, whereas NSRs are encoded with the CALIC. 
However, in this method only image with larger SRs 
achieves a higher compression ratio compared to 
CALIC.  

Recently Taquet and Labit13 proposed two variants 
of hierarchical oriented prediction (HOP) approaches 
using least square estimation (LSE) namely HOP-LSE 
and HOP-LSE+. The HOPE-LSE and the HOP-LSE+ 

had an average improvement of 0.14 bpp and 0.21 
respectively over CALIC, when tested on MR images. 
However, the computationally intensive least square 
optimization needs to be performed at both the encoder 
side as well as the decoder side. 

Many researchers used computational intelligence 
for pixel value prediction and context modeling. 
Marusic and Deng14 presented two adaptive prediction 
schemes based on adaptive neural network (AdNN) and 
local area training recursive-least mean square (LAT-
RLMS) algorithm. The adaptation of the respective 
predictor coefficients is based on training of the 
predictors in a local causal area adjacent to the pixel to 
be predicted. The AdNN had an average improvement 
of 0.06 bpp over the CALIC and 0.24 bpp over the 
LOCO-I. The LAT-RLMS had an average improvement 
of 0.04 bpp over the CALIC and 0.22 bpp over the 
LOCO-I. However, on-the-fly training of predictors is 
required during encoding as well as decoding, which is 
computationally complex. Aiazzi et al.15 proposed a 
fuzzy matching pursuits (FMPs) encoder, which 
consists of a space-varying linear-regression predictor 
obtained through fuzzy-logic techniques. It achieved an 
average improvement of 0.108 bpp and 0.29 bpp over 
the CALIC and the JPEG-LS respectively, when tested 
on a set of 24 natural as well as medical images.  

Kau et al.16 proposed the switching adaptive 
predictor (SWAP) with automatic fuzzy context 
modeling. The context of the coding pixel and the 
SWAP encoder switches between two predictors: the 
adaptive neural predictor (ANP) and the texture context 
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matching (TCM) predictor. The bit rate is improved by 
an average of 0.2 bpp compared with the CALIC for 
natural images. However, the online adaptive training 
used in ANP is computationally complex and both the 
encoder and the decoder need to perform the training. 

Among the above techniques, the HOP-LSE+ and 
the SWAP had some significant improvement in bpp 
compared to the CALIC. However, for both the HOP-
LSE+ and the SWAP, the predictor need to be optimized 
on-the-fly during encoding as well as decoding. This is 
a computationally intensive operation. In most of the 
medical imaging applications such as picture archiving 
and communication system (PACS) and telemedicine, 
an image is compressed only once but decompressed 
many times. Therefore, it is highly desirable to have a 
decoder with lesser computational complexity.  

The focus of the present work is to develop a 
lossless compression technique with lower decoder 
complexity and higher coding efficiency for medical 
images such as MR. In this method a dual level 
differential pulse code modulator (DL-DPCM) has been 
proposed to obtain higher prediction accuracy. The DL-
DPCM consists of a linear DPCM cascaded by a 
nonlinear DPCM. The nonlinear DPCM is realized by a 
context adaptive switching neural network predictor 
(CAS-NNP). After training, the neural network 
parameters are passed to the decoder as side 
information. This avoids the need of training the 
network while decompressing the image.  

The rest of this paper is organized as follows: 
Section 2 provides the background theory and 
mathematical formulation. In section 3, details of the 
proposed method, dual level DPCM is provided. Section 
4 introduces the data sets used for experiments. The 
software implementation details are given in section 5. 
In section 6 experimentation details are described. 
Section 7 includes the results and discussions and 
finally, the concluding remarks and future study are 
given in section 8. 

2. Background Theory 

2.1. Differential pulse code modulation 

The differential pulse code modulation (DPCM) is a 
predictive decorrelation method. In DPCM, the current 
value of a signal is predicted from previously encoded 
values. The predicted value is subtracted from the 
original value to get the error signal. The error will be 

small when the predicted signal nears to the original 
signal. An error signal containing mostly small values 
will have a peaked histogram, which can be efficiently 
coded by a variable length coder. 

A two-dimensional DPCM (2D-DPCM) is most 
suitable for decorrelation of images, which are 
essentially two-dimensional signals. The 2D-DPCM 
predicts the current pixel value in a raster scan order 
from a causal template of neighboring pixels. Fig. 1 
shows a causal template of 12 neighboring 
pixels, 1 2 12{ , ,..., }x x x  and the pixel to be predicted, ,i jx . 

The significance of the causal template is that, it 
contains only the pixels that are already predicted in the 
raster scan order. During decompression, the same will 
be available at the decoder side as well. 

 

 
Fig. 1.  ,i jx  is the current pixel being predicted and 

12
1 2 12{ , ,..., }C x x x is a casual template (shaded region) with 12 

neighboring pixels  
 
Consider an image x having M N rows and columns, 
with pixel values , , 1,2,..., , 1,2,...,i jx i M j N . The 

causal template nC , with n  number of neighboring 
pixels is defined as: 

{ : 1,2,..., }.n
kC x k n                  (1) 

The predicted pixel value ,i jx , in a 2D linear DPCM 

(2D-LDPCM) scheme is given by: 

,
1

.
n

i j k k
k

x x                            (2) 

where, , 1,2,...,k k n  are predictor coefficients. 
The prediction error is the difference between the 
original pixel value ,i jx  and the predicted value ,i jx : 

, , , .i j i j i jx x                            (3) 
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2.2. Artificial Neural Network 

The structure of an artificial neural network with one 
input layer, one hidden layer and one output layer is 
shown in Fig. 2. The neurons of the input layer are 
connected to the hidden layer by the weight matrix 

1W and that of hidden layer are connected to output 
layer by the weight matrix 2W . The number of layers 
and the number of neurons in each layer are chosen 
depending on the complexity of the problem by hit and 
trial method17. The output of the individual neuron is the 
weighted sum of inputs and bias value, mapped by an 
activation function (Eq. (4)), where iw is the 

weight, ix is the input to the neuron and ib is the bias. 

( . ).i i iy f w x b                             (4) 

Activation function can be either linear or nonlinear. 
The two commonly used nonlinear activation functions 
are sigmoid (Eq. (5)) and hyperbolic tangent sigmoid 
function (Eq. (6)). 

1( ) .
1 nf n

e
                              (5) 

2

2( ) .
1 nf n

e
                             (6) 

 

 
Fig. 2.  The structure of an artificial neural network 

The network weights and bias can be optimized by 
back-propagation algorithm. The standard back-
propagation is a gradient descent method, in which the 
network weights are moved along the negative gradient 
of the performance function, calculated as: 

1 .k k k kx x g                            (7) 

where kx is a vector of current weights and 
biases, kg is the current gradient, and k is the learning 
rate.  

Improved learning performance are achieved by a 
variety of quasi-Newton algorithms and by using 
computational intelligence18. 

2.3. Levenberg-Marquardt algorithm 

The Levenberg-Marquardt (LM) algorithm19 is a 
nonlinear least square algorithm used to approach a 
second-order training speed. When the performance 
function is computed as the mean square error, the 
Hessian matrix H can be approximated from the 
Jacobian matrix as: 

.TH = J .J                                  (8) 

where J is the Jacobian matrix.  
The Jacobian matrix contains first derivatives of the 

network errors with respect to the weights and biases. It 
can be computed through a standard backpropagation 
technique, which is less complex than computing the 
Hessian matrix. 

The gradient g is computed as: 

.Tg = J .e                                  (9) 

where e is a vector of neural network errors. 
The Levenberg-Marquardt algorithm updates the 
network parameters as: 

.k+1 k
T 1 Tx x [J J I] J e                 (10) 

where kx is a vector of current weights and 
biases,  is a scalar parameter. 

Eq. (10) if is zero. 
If is large, it becomes a gradient descent method. 

error minimum. Therefore,  is decreased after a 
successful iteration and increased when an iteration 
would increase the performance function. This 
procedure ensures the reduction of performance 
function after each iteration. 

3. The Proposed Method 

The block diagram of the proposed method is shown in 
Fig. 3. In this scheme, the image is encoded 
sequentially, pixel by pixel, in a raster scan order. The 
inter-pixel redundancies present in the input image data 
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are removed in two stages by two DPCM which are  
cascaded viz., 2D-LDPCM followed CAS-NNP. The 
2D-LDPCM produces a prediction error image, which is 
the difference between the original image and the 
predicted image based on a subset of previously 
encoded pixels called the causal template. The CAS-
NNP, which is adaptive and nonlinear, further removes 
the redundancies present in the error image. 
 

Fig. 3.  Flow diagram of the proposed lossless image 
compression using the DL-DPCM 

There are three NN predictors namely NNP#1, 
NNP#2 and NNP#3; each optimized to predict a specific 
area in the image viz., plain-region, gradient-region and 
edge-region. The context texture switch (CTS) identifies 
the different regions of the image by texture analysis of 
the causal template. Finally, the prediction error image 
of CAS-NNP is entropy coded using context adaptive 
arithmetic coding after pre-processing to produce a 
binary output code-stream. The data size of the resulting 
binary code-stream will be less than the original image 
and the original image can be reconstructed from it 
without error. 

3.1. Dual level DPCM 

A linear predictor cannot accurately estimate a pixel 
from its causal template, since a nonlinear relationship 
exists between them. Different areas in an image have 
different mean pixel values. Since superposition 
theorem does not hold good for a nonlinear predictor, 
same variations in the causal template with different 
mean values will be presented to nonlinear predictor as 
different classes of inputs.  

Improvements such as reduced complexity, higher 
accuracy and reduced learning time can be achieved if 
the mean value is subtracted from the causal template 
and only the variation is presented to the inputs of the 
nonlinear predictor. One method to realize this is to 

divide the image into many blocks of sub-images and 
subtract the block mean value from each block. 
However, in this case the block mean value needs to be 
transmitted to the decoder, which will decrease the 
overall coding efficiency. Moreover, this will introduce 
sharp changes at the block edges, since the block mean 
values will be different for different blocks. 

The error signal obtained by subtracting the linear 
predictor estimate of an image from the original image 
will be automatically normalized. In this case there is no 
need to transmit any value to the receiver end and the 
sharp changes due to mean value subtraction will not be 
introduced as in the former case. Therefore, in the 
proposed method a linear DPCM (2D-LDPCM) is 
cascaded with a nonlinear DPCM (CAS-NNP) to 
achieve a higher overall coding efficiency. 

3.1.1. 2D-LDPCM 

A causal template with four neighboring pixels is used 
in the 2D-LDPCM for pixel value prediction as shown 
in Fig. 4. 
 

 
Fig. 4.  4

1 2 3 4{ , , , }C x x x x  is the casual template (shaded 
region) used by 2D-LDPCM to predict the pixels ,i jx  
 

Firstly, an initial approximation of xi,j is obtained by 
taking the average of two nearest neighboring pixel 
values x1 and x3. Therefore, the value of coefficients 
corresponding to x1 and x3 1 3)  is taken as ½.  

 
xi,j(initi 1.x1 + 3. x3  =  (½).x1+(½).x3.   .(11) 

 
However, further improvement in prediction of xi,j  

can be obtained by adding the difference between x2 and 
x4 to the  initial prediction value. As the distance 
between x2 and x4 is double the distance between x1 and 
xi,j, magnitude of the coefficients of x2 and x4 2  

4) 1 and 3.  
 
xi,j(final) = xi,j(initial) + 2.x1 + 4.x4  

= (½).x1 + (½).x3 + (-¼).x2 + (¼).x4.    (12) 
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Therefore, the set of coefficients used in the present 
work to predict ,i jx  from the causal template is: 

1 1 1 1
2 4 2 4{ , , , }.                            (13) 

3.1.2. Neural network predictor 

Neural networks have the capability to model nonlinear 
functional relationships. They also have the ability of 
adapting to different classes of input data, by means of 
training. Since neural networks are parallel in 
architecture, they can also work efficiently with parallel 
computing hardware, where the computation time is 
reduced considerably. 

A neural network (NN) architecture with I number 
of input neurons, H number of hidden layer neurons and 
O number of output layer neurons (I:H:O) is considered 
in the present work. The NN architecture 

(16:16:1) was decided empirically after 
repeated experimentation for different number of input 
layer neurons I {4,6,8,...,16} and  different number of 
hidden layer neurons H {2,4,8, t was 
observed that the NN architecture (16:16:1) 
yields the best performance in terms of prediction 
accuracy. The linear activation function gives a better 
accuracy, while nonlinear activation functions are used 
when the input  output relationship is nonlinear. 
Hence, hyperbolic tangent sigmoid activation function 
is used for the hidden layer and linear activation 
function is used for the output layer. 

 

 

Fig. 5.  16
1 2 16{ , ,..., }C x x x  is the casual template (shaded 

region) used by NNP to predict the pixels ,i jx  

Levenberg-Marquardt algorithm is used for training as it 
is much faster than the gradient descent methods. 
Training data is prepared with 16 causal neighbouring 
values (Fig. 5) as input data set and the pixel to be 
predicted as the target. This is taken from the whole 
prediction error image produced by the 2D-LDPCM. 

During the learning process, the NN predictor forms 
a relationship model between the neighbouring pixel 
values and the pixel value to be predicted. The learning 
process can be viewed as encoding the global image 
characteristics into the neural network. Thus, it is 
required to transmit the weight and bias values of the 
NN predictor to the decoder as side information. For the 
present case, there are 256 elements in the weight 
matrix 1W , each element representing a connection from 
input layer neuron to hidden layer neuron, and 16 
elements in the weight matrix 2W , connecting hidden 
layer to the output layer. Similarly, there are 16 bias 
values for each neuron in the hidden layer and one bias 
value at the output layer. Thus, a total of 289 elements 
are transmitted as header information to the decoder. 
Using 16-bit floating point representation for each 
element, total of 4624 bits are sent as side information. 
This produces an overhead of 0.0176 bpp for a 512×512 
gray scale image. 

While predicting the pixels at the edges, some of the 
causal neighbouring pixel (or all of the neighbouring 
pixels in the case of the first pixel) are absent. This 
difficulty is overcome by padding the image with grey 
level value of 128. The use of other padding schemes, 
such as mirror padding will require transmitting the 
border pixel values to the decoder in advance, which 
will increase the overall bits per pixel (bpp) value. 

3.1.3. Context adaptive switching 

Since the image contains different textures at different 
areas, a single NN is inefficient to learn the whole 
pattern. By using three different NN predictors, each 
NN can be optimized to predict a particular class of 
texture. This also reduces learning time, since now the 
input pattern used by the individual NN has less 
variation compared to the original overall input data. 
The image is divided into three different regions: plain-
region, gradient-region and edge-region. The different 
regions in the image are determined from the causal 
neighbouring pixels, so that the same steps can be 
carried out by the decoder. This avoids the overhead of 
sending the side information to detect different regions 
in the image.  

A modified algorithm proposed by Kau et al.16 is 
used for detecting the different regions. The variance of 
data in the plain-region is small, and that of an area with 
gradient-region and edge-region is large. The histogram 
will be evenly distributed in the case of gradient-region 
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but in the edge-region, histogram will have two peaks, 
representing the two sides of an edge. Ten causal 
neighbouring pixels 1 2 10, ,...,x x x  (similar to Fig. 5) are 
defined as the causal context ( TC ) for texture 
prediction. 

In order to estimate the texture, mean  and 
variance 2 of the context TC are calculated. If the 
variance is less than a constant 1k , the texture is 
estimated as plain region. If the variance is greater 
than 1k , the texture is determined as gradient or edge 
region. The pixels in the context TC are then divided 
into two sets: the pixels with grey level values less than 

 are formed into one group TLC and the other are 
formed into group THC . 

:TL T
i iC x C x .                 (14) 

:TH T
i iC x C x .                 (15) 

The variances of TLC and THC are computed 
as 2

L and 2
H respectively. The relative variance is 

calculated as: 
2

2 20.01 L H

.                     (16) 

A small value, 0.01 is added to the denominator of Eq. 
(16) so that it does not become zero when 2

L  and 
2

H  are both zeros.  
A region with an edge will have large variance ( 2 ), 

and small 2
L  and 2

H  values. Hence, if the variance 
2  is greater than or equal to 1k and relative variance 
 is greater than or equal to a constant 2k  then the 

context is estimated as an edge-region. If the variance 
2  is greater than or equal to 1k  and the relative 

variance  is less than 2k , then the context is estimated 
as gradient-region. The values of 1k  and 2k  in the 
algorithm were determined empirically as 25 and 2 
respectively after experimentation for 1 10,25,100k  
and 2 0.5,1,2,3k . The algorithm for the texture 

context estimation is listed below:  
 
Calculate mean  and variance 2 of TC  
if( 2 < 1k ) 

assume: plain-region. 

else,  
Group all pixels in TC less than into TLC and 

group the rest to THC . 
Calculate the variances 2

L and 2
H  of 

TLC and THC  respectively. 

Calculate the relative variance,
2

2 20.01 L H

 

if ( < 2k ) 
assume: gradient-region. 

 
else 

assume: edge-region. 
end 

end 

3.2. Lossless image coding 

The prediction error from CAS-NNP is entropy coded 
after pre-processing, as explained below. 

3.2.1.  Context Modelling and Entropy Coding 

An adaptive arithmetic encoder20 is used for entropy 
coding the prediction error. The advantages of adaptive 
arithmetic coding are that there is no need to transmit 
the symbol frequency table as side information to the 
decoder and it can encode efficiently when there is a 
variation in the symbol statistics during the encoding 
process. The adaptive arithmetic algorithm is inefficient 
while the frequency of the symbol table is being adapted 
to the source symbol statistics. Therefore, grouping the 
symbols into different sets is done which are having 
different frequency distribution. This improves the 
coding efficiency. However, for each symbol set, the 
symbol table is initialized to the same frequency at the 
beginning of the encoding process. Hence, increasing 
the number of symbol sets decreases the overall coding 
efficiency. 

In order to improve the coding efficiency, error 
symbols are divided into different sets based on the 
contexts of the predicted pixel. The prediction errors are 
more at the top and left edge of the image and they form 
a separate set of symbols. A total of 13 different 
contexts were defined empirically based on the variance 

2 and the relative variance  as defined in Eq. (16). 
Contexts with variance up to the value of 121 are 
classified into 11 classes on a logarithmic scale. 
Another class is formed with contexts having 
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2 400and 64 . The rest of the error symbols are 
grouped into another class. The following pre-
processing is also done to improve the coding efficiency 
of the arithmetic encoder. 

3.2.2. Error Remapping 

When the image data has a dynamic range [0, L ], the 
prediction error takes values in the range [ L , L ]. 
This increases the total number of symbols in the error 
histogram, and reduces the coding efficiency of the 
entropy coder. However, for a predicted value ,i jx  of 

the pixel ,i jx , this can be mapped into the range [ 2L , 

2 1L ] since the error , ,i j i jx x  can takes values 
only in the range [ ,i jx , ,i jL x ]. 

3.2.3. Histogram Tail Truncation 

In the error histogram, large error occurs with very less 
frequency. Coding the values with very small frequency 
decreases the coding efficiency. The error symbols 
whose absolute values are larger than four times the 
standard deviation is replaced with an escape sequence. 
The corresponding error values are grouped into a 
separate symbol set and are entropy coded separately.  

4. Dataset Details 

For validation, testing and comparative analysis of the 
proposed algorithm, medical image datasets are 
collected from three sources. The dataset details are 
given below: 

(i) Massachusetts General Hospital (MGH) Dataset21: 
This dataset is collected from MGH Dataset Center for 
Morphometric Analysis internet brain segmentation 
Repository (IBSR). All scans were acquired at the NMR 
Center of Massachusetts General Hospital with 1.5 T 
General Electric Signa. This dataset consists of BMP 
images of size 256×256. This dataset consists of 
following images: 

(ii) MicroDicom Dataset22: This dataset consists of 
DICOM images of MR sequences-T1-weighted, T2-
weighted, post contrast T1-weighted and Flair images of 

normal subjects in coronal, axial and sagittal plane. All 
scans were acquired at Toronto Tri-Hospital MR Centre 
with 1.5 T General Electric Genesis Signa. The size of 
the images is 512×512. This dataset consists of 
following image sequences: 
 

Table 2. MicroDicom dataset details 
MR sequence Plane Slices 
T1-weighted images Sagittal 13 
T1-weighted images Coronal 13 
T2-weighted images Axial 18 
T2-weighted images Coronal 20 
Post contrast T1-weighted images Coronal 15 
Post contrast T1-weighted images Sagittal 15 
Flair images Coronal 12 

(iii) OsiriX Dataset23.: This dataset consists of DICOM 
images of MR sequence-T2-weighted images of brain 
tumor patients in axial and coronal plane. All scans 
were acquired with 1.5 T Philips Medical Systems, 
Achieva. The size of the images is 270×320. This 
dataset consists of following image sequences: 
 

Table 3. OsiriX dataset details 
MR sequence Plane  Slices 
T2-weigted images Axial 22 
T2-weigted images Coronal 28 

5. Software Implementation 

The binary executable of CALIC is provided by the 
authors24, and that of LOCO-I is provided by HP Labs25. 
The algorithm is implemented in MATLAB 9.0 on a PC 
having Intel® CORE 2 Duo, 2.0 GHz using Neural 
Network Toolbox. The publically available MATLAB 
implementation of the arithmetic coder developed by 
Karl Skretting26 is used in this work for entropy coding. 

6. Experimentation Details 

The experiments are performed for lossless compression 
of medical image data consisting of MR images.The 
evaluation criteria and results and discussions are 
included in the following sub-sections. 

6.1. Evaluation criteria 

For quantitative analysis, three parameters are evaluated 
for the proposed method. These parameters are 
described below: 

Table 1 MGH dataset details 
MR sequence Plane Slices 
T1-weigted images Coronal 18 
T2-weigted images Coronal 18 
Proton density Coronal 18 
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6.1.1. Bits per pixel 

Bits per pixel (bpp) represents the average number of 
bits required to represent each pixel of the image. The 
total number of bits in the image data is divided by the 
total number of pixels in the image to find the bpp 
value, which is given by: 

bn
bpp

M N
.                          (17) 

where, bn is the number bits of the output code-stream, 
M N  are the number of rows and columns in an 
image. 

6.1.2. Mean square error 

Mean square error (MSE) measures the average of the 
squares of the prediction errors. 

2

, ,
1 1

1 M N

i j i j
i j

MSE x x
M N

.             (18) 

where, ,i jx  is the pixel value of the thi row and thj  

column of the original image and ,i jx  is the thi row and 
thj  column of the predicted image. 

6.1.3. First order entropy 

Entropy is the measure of average information content 
present in a data. The first order entropy can be 
calculated from a frequency distribution of symbol sets 
as: 

1

( ) ( ) log ( )
L

i i
i

H z P a P a .                   (19) 

where, ( )iP a  is the probability of the symbol ia  in the 
data set containing L symbols. 

7. Results and Discussions 

In this section, compression results obtained with the 
DL-DPCM on MGH, MicroDicom and OsiriX datasets 
are discussed. These results are compared with that 
obtained with the CALIC and the LOCO-I. 

Table 4 gives the average first order entropy values 
of prediction errors obtained for the original image, the 
MED, the GAP and the DL-DPCM. Similarly, Table 5 
compares the average MSE values obtained. The GAP 
and the MED are the predictors used in the CALIC and 
the LOCO-I respectively8,9. It is observed from the 
results that an average improvement of 38.2% and 
17.8% in entropy values are achieved against the MED 
and the GAP respectively. Similarly, improvement of 
90% and 50.3% in case of MSE values. It is evident 
from the results that the proposed DL-DPCM is able to 
remove the statistical redundancies efficiently as 
compared to aforesaid predictors. The DL-DPCM gives 
lower entropies and RMS values for each dataset. The 
entropy values of the original image are also given in 
column 2 of Table 4 for comparison. It can be seen that 
there is significant improvement in average value from 
5.87 to 3.25 bpp. Similarly, a low average MSE value 
(2.95) is obtained by the proposed method whereas the 
average RMS value is quite high for the MED and the 
GAP i.e. 28.81 and 5.70, respectively. Better results are 
achieved by the DL-DPCM as the CAS-NNP is used, in 
which each NN predictor is tuned for a particular area in 
the image (plain, gradient and edge). The 2D-LDPCM 
contributes to the performance of the CAS-NNP by 
presenting only the variation in the context template to 
the CAS-NNP rather than the original pixel values. 

Table 6 presents the comparative bpp values of the 
compressed images obtained by the proposed method 
DL-DPCM and the existing methods. It can be noted 
that the proposed method achieved lower bpp values for 
all the datasets. The average bpp value of the CALIC is 
3.27 and 3.46 for the LOCO-I whereas lower bpp value 
of 3.06 is obtained for the proposed algorithm. An 
improvement of 0.21 bpp compared to the CALIC and 
0.40 bpp compared to the LOCO-I are achieved. The 
percentage improvement over the CALIC and the 
LOCO-I are 6.5% and 11.7% respectively. The 
improvement in bpp values is due to higher image data 
decorrelation capability of the proposed DL-DPCM . 
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Table 4.   First order entropy values for original image and prediction error images (i.e. difference of  original and 
predicted image) obtained by the predictors MED, GAP and DL-DPCM 

MR Image Dataset Original 
Ent. 

Ent._ 
MED 

Ent._ 
GAP 

Ent._ DL-
DPCM 

% improvement over 
MED GAP 

MGH-T1-weighted 5.98 5.33 4.03 3.50 34.2 13.1 
MGH-T2-weighted 6.39 5.96 4.79 4.55 23.7 4.9 
MGH- Proton density 6.37 5.72 4.41 4.12 28.1 6.7 
MicroDicom T1-weighted (Sagittal) 5.58 4.83 3.32 2.51 48.1 24.5 
MicroDicom T1-weighted (Coronal) 5.65 4.81 3.50 2.70 43.9 22.8 
MicroDicom T2-weighted (Coronal) 6.17 5.48 4.19 3.35 38.9 20.0 
MicroDicom Flair (Coronal) 6.61 5.73 4.11 3.02 47.2 26.4 
MicroDicom T2-weighted (Axial) 6.28 5.51 4.06 3.16 42.6 22.2 
MicroDicom post contrast T1-weighted (Coronal) 5.74 4.88 3.52 2.63 46.0 25.2 
MicroDicom post contrast T1-weighted (Sagittal) 5.87 4.96 3.38 2.43 50.9 28.0 
OsiriX T2-weighted (Axial) 3.59 3.32 2.64 2.39 28.2 9.6 
OsiriX T2-weighted (Coronal) 6.22 6.30 5.19 4.64 26.3 10.6 

AVERAGE 5.87 5.24 3.93 3.25 38.2 17.8 
Note: Original Ent.: Original Entropy (i.e. First order entropy of the original image), Ent._MED:  First order entropy of 
the prediction error image obtained by using MED predictor,   Ent._GAP:  First order entropy of the prediction error 
image obtained by using GAP predictor,  Ent._DL-DPCM:  First order entropy of  the prediction error image obtained 
by using DL-DPCM predictor. 
 

Table 5.  MSE  values for  predicted image obtained by the predictors MED, GAP and DL-DPCM (i.e. MSE 
values between original and predicted images) 

MR Image Dataset MSE_
MED 

MSE_
GAP 

MSE_ 
DL-DPCM 

% improvement over 
MED GAP 

MGH-T1-weighted 30.96 6.56 3.15 89.8 52.0 
MGH-T2-weighted 29.74 8.40 6.07 79.6 27.8 
MGH- Proton density 39.37 7.02 4.57 88.4 34.9 
MicroDicom T1-weighted (Sagittal) 14.28 2.83 1.41 90.1 50.2 
MicroDicom T1-weighted (Coronal) 25.35 3.78 1.79 92.9 52.6 
MicroDicom T2-weighted (Coronal) 34.31 6.07 2.92 91.5 51.9 
MicroDicom Flair (Coronal) 28.76 4.47 1.94 93.2 56.5 
MicroDicom T2-weighted (Axial) 34.46 4.84 2.17 93.7 55.1 
MicroDicom post contrast T1-weighted (Coronal) 26.90 3.86 1.68 93.8 56.6 
MicroDicom post contrast T1-weighted (Sagittal) 17.90 3.09 1.28 92.9 58.7 
OsiriX T2-weighted (Axial) 28.29 5.40 2.35 91.7 56.5 
OsiriX T2-weighted (Coronal) 35.46 12.11 6.03 83.0 50.2 
AVERAGE 28.81 5.70 2.95 90.1 50.3 
Note: MSE_MED:  MSE between original image and image predicted using MED predictor, MSE_GAP:   MSE 
between original image and image predicted using GAP predictor, MSE_DL-DPCM:   MSE between original 
image and image predicted using  DL-DPCM predictor. 
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8. Conclusions 

A lossless compression scheme, with a dual level 
DPCM has been implemented. The dual level DPCM is 
realized by cascading the 2D-DPCM (linear DPCM) 
and the CAS-NNP (nonlinear DPCM). It is observed 
that the cascaded architecture of linear and nonlinear 
DPCM achieved higher decorrelation for MR images 
with varying intensity and texture patterns. The CAS-
NNP switches between three different NN predictors 
based on the causal context information. The 
comparative analysis with the MED and the GAP shows 
that lower first order entropy and MSE values are 
obtained with DL-DPCM. It is also observed that the 
lossless coding using the DL-DPCM achieved lower 
bpp values compared to the state-of-the-art methods the 
CALIC and the LOCO-I. The improvement achieved 
using CAS-NNP, which a nonlinear predictor shows 
that the functional relationship between the pixels is 
considerably nonlinear in nature. The proposed lossless 
compression scheme with lower decoder complexity is 
useful for efficient storage and telecommunication of 
voluminous medical image data such as MR. Future 
studies involve optimization of the NNP architecture 
with techniques such as optimal brain damage. 
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