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Abstract

In this paper, we have studied the constrained version of the fuzzy minimum spanning tree problem. Costs
of all the edges are considered as fuzzy numbers. Using the mλ measure, a generalization of credibility
measure, the problem is formulated as chance-constrained programming problem and dependent-chance
programming problem according to different decision criteria. Then the crisp equivalents are derived
when the fuzzy costs are characterized by trapezoidal fuzzy numbers. Furthermore, a fuzzy simulation
based hybrid genetic algorithm is designed to solve the proposed models using Prüfer like code represen-
tation of labeled trees.
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1. Introduction

The minimum spanning tree (MST) problem is one
of the fundamental problems in graph theory. Let
G = (V,E) be a finite undirected simple connected
graph with a set V of vertices and a set E of edges.
A tree T with the same vertex set V is called a span-
ning tree of G. Suppose a positive weight wi is asso-
ciated with every edge ei in G. Then, w(T ) = ∑

ei∈T
wi

is called the weight of the spanning tree T . The
MST problem is to find a spanning tree T ∗ from the
set Γ of all spanning trees of G such that w(T ∗) =

min
T∈Γ

w(T ). The MST problem has been studied ex-

tensively by many researchers and many efficient al-
gorithms have been found by Kruskal, Prim, Dijk-
stra and many others.1,2,3,4,5,6

For every pair of distinct vertices vi,v j ∈V , there
exists a unique path PT

i j in T , joining vi and v j. De-
note the number of edges in the path PT

i j by dT
i j .

Also denote by diam(T ) = max{dT
i j : vi,v j ∈V}, the

diameter of T . Given a positive integer 2 6 D 6
|V |−1, the diameter constrained minimum spanning
tree (DCMST) is to find a spanning tree T ∗ from
Γ such that w(T ∗) = min

T∈Γ
w(T ) and diam(T ∗) 6 D.
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DCMST has been shown to be NP-hard for D > 4.7

Gouvieta and Magnanti8 have modeled the problem
as a network design to set up communication be-
tween every pair of vertices, meeting or surpassing
a given quality requirement. This problem has also
been applied to data compression by Bookstien and
Klien,9 and distributed mutual exclusion in parallel
computing by Raymond,10 and Deo and Abdalla.11

Different formulation of the DCMST has been
found in the literature.8,11,12 These formulations im-
plicitly use a property of feasible diameter con-
strained spanning tree, pointed out by Handler.13 He
pointed out that, when D is even, a central vertex
i ∈ V must exist in a feasible tree T , such that no
other vertex of T is more than D/2 edges away from
i and when D is odd, a central edge e = (i, j) ∈ E
must exist in T , such that no vertex of T is more
than (D−1)/2 edges away from the closest extrem-
ity of (i, j). More recently, dos Santos et. al 14 pro-
posed an alternative formulation of the odd D case
of DCMST, by introducing an artificial vertex. They
have also applied a lifting procedure to strengthen
the formulation. But none of them have studied the
problem in fuzzy environment.

In many real applications, the problem parame-
ters are found to be vague or imprecise in nature.
Then the problem parameters may be considered
as fuzzy variables by an expert system. Ito and
Ishii15 formulated an MST problem with fuzzy cost
as chance-constrained programming based on ne-
cessity measure. Chang and Lee16,17 defined three
means based on overall existence ranking index
(OERI) for ranking fuzzy costs of spanning trees.
Recently, Liu18,19 developed the credibility theory
including credibility measure, pessimistic value and
expected value as fuzzy ranking methods. Gao
and Lu20 proposed the concepts of expected min-
imum spanning tree (EMST), α-pessimistic mini-
mum spanning tree (α-PMST) and most minimum
spanning tree (MMST) in a fuzzy quadratic min-
imum spanning tree (FQMST) problem, based on
the credibility theory. They also discussed the
crisp equivalent problems when the fuzzy costs are
characterized by trapezoidal fuzzy numbers and de-
vised genetic algorithm to solve those. Yang and
Iwamura21 introduced the mλ measure as the lin-

ear combination of possibility measure and neces-
sity measure and employed that measure to construct
the fuzzy chance-constrained programming models.

In this paper, we propose the α-PMST and
MMST models of the diameter constrained fuzzy
minimum spanning tree (DCFMST) problem, based
on the mλ measure. Also we discuss the crisp equiv-
alents of the models when the fuzzy costs are taken
as trapezoidal fuzzy numbers. A simulation based
genetic algorithm is designed to solve the proposed
models. This algorithm uses the Prüfer like code
given by Deo and Micikevicius22 to represent la-
beled trees.

2. A brief introduction to mλ measure

In fuzzy optimization theory, the most important
fuzzy ranking methods are based on the possibil-
ity and necessity measures. The possibility theory
was proposed by Zadeh23 and developed by many
researchers such as Dubois and Prade.24 These pos-
sibility and necessity measures are used to describe
the chance of fuzzy event. Let ξ be a fuzzy vari-
able with membership function µξ (x) and B be an
arbitrary subset of R. Then the possibility measure
of fuzzy event {ξ ∈ B} is defined as Pos{ξ ∈ B} =
sup
x∈B

µξ (x). The necessity of this fuzzy event is de-

fined as the impossibility of the opposite event. That
is, Nec{ξ ∈ B}= 1−Pos{ξ ∈ Bc}= 1− sup

x∈Bc
µξ (x).

In general Pos{ξ ∈ B}> Nec{ξ ∈ B}. It is obvious
that a fuzzy event may fail to occur even though its
possibility is 1 and may happen to occur even if its
necessity is 0. But if the necessity achieves 1, the
fuzzy event must hold. Thus, if the decision-maker
is optimistic and does not care about the poten-
tial risk, the necessity measure may be considered
as a decision making tool. Suppose the decision-
maker seeks to find the best solution x∗ in order to
maximize the chance of occurring the fuzzy event
{ f (x,ξ ) ∈ B}, where x be the decision variable and
ξ be the fuzzy parameter vector. Then if the possi-
bility measure is employed as a chance measure, a
decision x∗ will be recognized as the best decision
if it satisfies Pos{ f (x∗,ξ ) ∈ B}= 1. Similarly if the
decision-maker is pessimistic, the necessity measure

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                     1041



Diameter Constrained Fuzzy Minimum Spanning Tree Problem

may be chosen as the chance measure. In fact, the
solution x∗ is not necessarily be the best solution for
the necessity measure as the corresponding objective
value is less than or equal to 1.

But, in reality, most decision-makers are neither
absolutely optimistic, nor absolutely pessimistic. To
balance between the optimism and pessimism, a
convex combination of the possibility measure and
the necessity measure is introduced by Yang and
Iwamura.21 Formally, the mλ measure for the chance
of a fuzzy event is defined as,

mλ{ξ ∈ B}= λPos{ξ ∈ B}+(1−λ )Nec{ξ ∈ B},

where, the parameter λ ∈ [0,1] is pre-determined by
the decision-maker according to the degree of opti-
mism or pessimism.

It is easy to verify that mλ has the following
properties:

1. 0 6 mλ{ξ ∈ A}6 1 for any set A⊂ R.

2. Nec{ξ ∈ A}6 mλ{ξ ∈ A}6 Pos{ξ ∈ A} for
all A⊂ R.

3. mλ{ξ ∈ A}6 mλ{ξ ∈ B} whenever A⊂ B.

4. For any A ⊂ R and λ ∈ [0,1],mλ{ξ ∈ A}+
m1−λ{ξ ∈ Ac}= 1.

5. If λ1 6 λ2, then mλ1{ξ ∈ A} 6 mλ2{ξ ∈ A}
for any A⊂ R.

The credibility measure Cr, introduced by
Liu18,19 is an average of possibility measure and ne-
cessity measure. Clearly, when λ = 1

2 , the mλ mea-
sure reduces to the credibility measure.

Based on the mλ measure, the critical values of a
fuzzy variable are defined as follows:

Definition 1. Let ξ be a fuzzy variable and
α ∈ [0,1]. Then ξinf(λ ;α) = inf{r : mλ{ξ 6 r} >
α} is called the (λ ;α)-pessimistic value of ξ and
ξsup(λ ;α) = sup{r : mλ{ξ > r} > α} is called the
(λ ;α)-optimistic value of ξ .

3. Diameter constrained fuzzy minimum
spanning tree

Let the cost associated with the edge ei be ξi, which
may represent the construction or running cost, i =
1,2, . . . ,m. Let x be a binary decision variable vector
whose components are defined by

xi =

{
1 if edge ei is in the spanning tree x
0 otherwise,

then the cost of the spanning tree x = (x1,x2, . . . ,xn)

is given by C(x,ξ ) =
m

∑
i=1

ξixi.

Let Γ be the set of all spanning trees correspond-
ing to the graph G. then the spanning tree x∗ is called
a minimum spanning tree if

C(x∗,ξ )6C(x,ξ ) for all x ∈ Γ.

In reality, exact information about the construc-
tion or running cost may not be available to the
decision-maker and then the costs ξi, i = 1,2, . . . ,m
may be specified as fuzzy variables according to the
expert system. Then the cost function C(x,ξ ) also
becomes fuzzy. Now the decision maker may set a
confidence level α as an appropriate safety margin
and the degree of optimism (or pessimism) λ , and
may wish to minimize the (λ ;α)-pessimistic value
of C(x,ξ ). For this case, the (λ ;α)-pessimistic min-
imum spanning tree [(λ ;α)-PMST] can be defined
as follows:

Definition 2. A spanning tree x∗ is called the
(λ ;α)-pessimistic minimum spanning tree if

min{r : mλ{C(x∗,ξ )6 r}> α}
6 min{r : mλ{C(x,ξ )6 r}> α},

for all spanning tree x∈Γ, where α is predetermined
confidence level; λ is predetermined degree of op-
timism (or pessimism) and min{r : mλ{C(x∗,ξ ) 6
r} > α} is called the (λ ;α)-pessimistic minimum
cost.

Sometimes, the decision-maker may provide a
cost supremum C and hope that the mλ -measure of
the costs not exceeding C will be maximized, subject
to the predetermined value of λ . For this case, the
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concept of most minimum spanning tree (MMST) is
adopted as follows:

Definition 3. A spanning tree x∗ is called the most
minimum spanning tree if

mλ{C(x∗,ξ )6C}> mλ{C(x,ξ )6C}

for all spanning tree x ∈ Γ, where C is the predeter-
mined cost supremum, λ is the predetermined de-
gree of optimism or pessimism and mλ{C(x∗,ξ ) 6
C} is called the most mλ -measure for the given cost
supremum.

Given a positive integer 2 6 D 6 |V | − 1, the
diameter constrained fuzzy minimum spanning tree
(DCFMST) x∗ is either (λ ;α)-PMST, or MMST sat-
isfying the diameter constraint diam(x∗)6 D.

4. Chance-constrained programming models
of DCFMST

Chance-constrained programming is a powerful
method to model stochastic decision systems and
fuzzy decision systems.25 The main idea of chance
constrained programming is to optimize the critical
value of the fuzzy objective with certain confidence
level subject to some chance constraints. Let D be
the given integral upper bound of the spanning trees.
If the (λ ;α)-PMST is sought for given λ and α val-
ues, then the following model works:

Model - I

min r

subject to mλ

{
m

∑
i=1

ξixi 6 r

}
> α

diam(x)6 D (1)
xi ∈ {0,1}, i = 1,2, . . . ,m
x ∈ Γ.

Now if the decision-maker does not stick to
the total fulfilment of the crisp inequality (1),
then D may be considered as a fuzzy number D̃
and the inequality (1) may be replaced by an-
other chance constraint with the predetermined con-
fidence level α1 and degree of optimism λ1, as

mλ1

{
diam(x)6 D̃

}
> α1. It may be noted that λ1

and α1 may eventually coincide with λ and α .
Thus we have the revised (λ ;α)-PMST model as

below:

Model - II

min r

subject to mλ

{
m

∑
i=1

ξixi 6 r

}
> α

mλ1

{
diam(x)6 D̃

}
> α1

xi ∈ {0,1}, i = 1,2, . . . ,m
x ∈ Γ.

Now if the decision maker wishes to maxi-
mize the chance function of some events, then
the dependent-chance programming concept, intro-
duced by Liu18 can be applied. Here the main idea is
to select the decision with maximal chance to meet
the fuzzy event. For the DCFMST problem, sup-
pose the decision maker sets a cost supremum C
and wishes to find the MMST. Then we have the
dependent-chance programming model as follows:

Model - III

max mλ

{
m

∑
i=1

ξixi 6C

}
subject to diam(x)6 D

xi ∈ {0,1}, i = 1,2, . . . ,m
x ∈ Γ.

Again considering D as a fuzzy number, as in
Model - II, we can have the following revised model
for MMST.

Model - IV

max mλ

{
m

∑
i=1

ξixi 6C

}
subject to mλ1

{
diam(x)6 D̃

}
> α1

xi ∈ {0,1}, i = 1,2, . . . ,m
x ∈ Γ

where λ1 and α1 are pre-specified degree of op-
timism and confidence level respectively.
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5. Crisp equivalents of the DCFMST models

In this section, we give the crisp equivalents of the
DCFMST models I – IV given in earlier section.

Lemma 1. Let ξ = (r1,r2,r3,r4) be a trapezoidal
fuzzy variable, λ be a given degree of optimism and
α be a given confidence level. Then the constraint
mλ{ξ 6 r}> α is equivalent to fα 6 r, where

fα =


α

λ
(r2− r1)+ r1 if α 6 λ

1−α

1−λ
(r3− r4)+ r4 if α > λ

and hence ξinf(λ ;α) = fα .

Proof. Since ξ = (r1,r2,r3,r4) is a trapezoidal
fuzzy number, its membership function, defined as

µξ (x) =



x− r1

r2− r1
if r1 6 x 6 r2

1 if r2 6 x 6 r3
x− r4

r3− r4
if r3 6 x 6 r4

0 otherwise

(2)

is a continuous function in x and it takes every value
in [0,1] at least once. Then we have the following
two cases.

Case - 1 (α 6 λ ): Here
α

λ
being in [0,1], there exists

a real number f such that µξ ( f ) =
α

λ
.

Let fα = inf
{

f : µξ ( f ) =
α

λ

}
=

α

λ
(r2 − r1) +

r1.
Then by using the continuity of µξ (x) and the

properties of fuzzy numbers, we have

Pos{ξ 6 fα}= sup
y6 fα

{µξ (y)}= µξ ( fα) =
α

λ

and Pos{ξ > fα} = 1, which implies that mλ{ξ 6
fα}= α .

We also see that the value of mλ{ξ 6 fα} in-
creases if we replace the number fα with any larger
value. Thus the crisp equivalent of mλ{ξ 6 r} > α

is fα 6 r, where fα =
α

λ
(r2− r1)+ r1.

Case - 2 (α > λ ): If r > r3, we have Pos{ξ 6 r}= 1
and then mλ{ξ 6 r} > α is equivalent to Nec{ξ 6

r} > α−λ

1−λ
. Since possibility measure and neces-

sity measures are dual, Nec{ξ 6 r} > α−λ

1−λ
is

equivalent to Pos{ξ > r}6 α−λ

1−λ
.

Now 0 6 α 6 1,0 6 λ 6 1 and α > λ gives
1−α

1−λ
∈ (0,1). So, there exists a real number f such

that µξ ( f ) =
1−α

1−λ
.

Let fα = sup
{

f : µξ ( f ) =
1−α

1−λ

}
=

1−α

1−λ
(r3− r4)+ r4 > r3(as r3− r4 6 0).

Again by using the continuity of µξ (x) and the
properties of fuzzy numbers, we have

Pos{ξ > fα}= sup
y> fα

{µξ (y)}= α.

Noting that the possibility Pos{ξ > fα} decreases
if the number fα is replaced with any larger value,
we have that the crisp equivalent of Pos{ξ > r} 6
α−λ

1−λ
is r > fα , where fα =

1−α

1−λ
(r3− r4)+ r4.

Hence the proof.

Theorem 2. Let ξi = (ri1,ri2,ri3,ri4), i = 1,2, . . . ,m
are independent trapezoidal fuzzy numbers. Then
the crisp equivalent of Model – I is given by

min f
s.t. diam(x)6 D
xi ∈ {0,1}, i = 1,2, . . . ,m
x ∈ Γ

where,

f =


(

1− α

λ

) m

∑
i=1

ri1xi +
α

λ

m

∑
i=1

ri2xi if α 6 λ

1−α

1−λ

m

∑
i=1

ri3xi +
α−λ

1−λ

m

∑
i=1

ri4xi if α > λ

(3)

Proof. Since xi > 0, for all i = 1,2, . . . ,m,
and ξi = (ri1,ri2,ri3,ri4), i = 1,2, . . . ,m are trape-

zoidal fuzzy numbers,
m

∑
i=1

ξixi is also a trape-
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zoidal fuzzy number given by the quadruple(
m

∑
i=1

ri1xi,
m

∑
i=1

ri2xi,
m

∑
i=1

ri3xi,
m

∑
i=1

ri4xi

)
.

Hence, by Lemma 1, the constraint

mλ

{
m

∑
i=1

ξixi 6 r

}
> α is equivalent to f 6 r, where

f =


α

λ

(
m

∑
i=1

ri2xi−
m

∑
i=1

ri1xi

)
+

m

∑
i=1

ri1xi if α 6 λ

1−α

1−λ

(
m

∑
i=1

ri3xi−
m

∑
i=1

ri4xi

)
+

m

∑
i=1

ri4xi if α > λ .

Hence the theorem.

Lemma 3. Let ξ = (r1,r2,r3,r4) be a trapezoidal
fuzzy variable, λ be a given degree of optimism and
α be a given confidence level. Then the constraint
mλ{r 6 ξ}> α is equivalent to r 6 gα , where

gα =


α

λ
(r3− r4)+ r4 if α 6 λ

1−α

1−λ
(r2− r1)+ r1 if α > λ

and hence ξsup(λ ;α) = gα .

Proof. Similar to Lemma 1.

Theorem 4. Let ξi = (ri1,ri2,ri3,ri4), i = 1,2, . . . ,m
and D̃ = (d1,d2,d3,d4) are independent trapezoidal
fuzzy numbers. Then the crisp equivalent of Model –
II is given by

min f
s.t. diam(x)6 dD̂e
xi ∈ {0,1}, i = 1,2, . . . ,m
x ∈ Γ

where,

D̂ =


α1

λ1
(d3−d4)+d4 if α1 6 λ1

1−α1

1−λ1
(d2−d1)+d1 if α1 > λ1

(4)

and f is given by Eq. 3.

Proof. By Lemma 3, the constraint
mλ1

{
diam(x)6 D̃

}
> α1 is equivalent to

diam(x)6 D̂, where

D̂ =


α1

λ1
(d3−d4)+d4 if α1 6 λ1

1−α1

1−λ1
(d2−d1)+d1 if α1 > λ1.

Now since diam(x) cannot be fraction, the result
follows with the help of Theorem 2.

Lemma 5. Let ξ = (r1,r2,r3,r4) be a trapezoidal
fuzzy variable. Then

mλ{ξ 6C}=



1 if r4 6C
λ r4− r3 +(1−λ )C

r4− r3
if r3 6C 6 r4

λ if r2 6C 6 r3

λ
C− r1

r2− r1
if r1 6C 6 r2

0 otherwise.
(5)

Proof. We have, mλ{ξ 6 C} = λPos{ξ 6 C}+
(1−λ )Nec{ξ 6C}

Now, Pos{ξ 6C}= sup
x6C

µξ (x)

=



1 if r4 6C
1 if r3 6C 6 r4
1 if r2 6C 6 r3
C− r1

r2− r1
if r1 6C 6 r2

0 otherwise,
and Nec{ξ 6C}= 1−Pos{ξ >C}= sup

x>C
µξ (x).

=



1 if r4 6C

1− C− r4

r3− r4
if r3 6C 6 r4

0 if r2 6C 6 r3
0 if r1 6C 6 r2
0 otherwise.

Hence the result follows.

Theorem 6. Let ξi = (ri1,ri2,ri3,ri4), i = 1,2, . . . ,m
are independent trapezoidal fuzzy numbers. Then
the crisp equivalent of Model – III is given by

max f
s.t. diam(x)6 D
xi ∈ {0,1}, i = 1,2, . . . ,m
x ∈ Γ
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where, f is given by left hand side expression of Eq.

5 with rk =
m

∑
i=1

rikxi,k = 1,2,3,4.

Proof. Since xi > 0, for all i = 1,2, . . . ,m, and
ξi = (ri1,ri2,ri3,ri4), i = 1,2, . . . ,m are trapezoidal

fuzzy numbers,
m

∑
i=1

ξixi is also a trapezoidal fuzzy

number determined by the quadruple (r1,r2,r3,r4),

where rk =
m

∑
i=1

rikxi,k = 1,2,3,4.

So, by Lemma 5, the value of the measure
mλ

{
∑

m
i=1 ξixi 6C

}
is given by left hand side ex-

pression of Eq. 5.
Hence the theorem.

Theorem 7. Let ξi = (ri1,ri2,ri3,ri4), i = 1,2, . . . ,m
and D̃ = (d1,d2,d3,d4) are independent trapezoidal
fuzzy numbers. Then the crisp equivalent of Model –
IV is given by

max f
s.t. diam(x)6 dD̂e
xi ∈ {0,1}, i = 1,2, . . . ,m
x ∈ Γ

where, f is given by left hand side expression of Eq.

5 with rk =
m

∑
i=1

rik,k = 1,2,3,4 and D̂ is given by Eq.

4.

Proof. Equivalent expression of the objective func-
tion is obtained in Theorem 6 and that of the con-
straint is obtained in Theorem 4. Combining them
yields the result.

Note: A trapezoidal fuzzy number ξ = (r1,r2,r3,r4)
coincides with a triangular fuzzy number when r2 =
r3. Thus, all the above models also work when the
fuzzy costs or the fuzzy bound on the diameter are
characterized by triangular fuzzy numbers.

6. Fuzzy simulation based genetic algorithm
approach

Zhou and Gen26 devised genetic algorithm to solve
quadratic MST problem, where as Gao and Lu ex-
tended it to solve the FQMST problem. In the fol-

lowing, we further extended it solve the DCFMST
problem.

6.1. Fuzzy simulation techniques

If the weights of the edges of a graph are character-
ized by trapezoidal fuzzy numbers, then the different
models of the DCFMST problem can be converted
to their deterministic equivalents, as shown in the
earlier section. But those may not be done so easily,
if the weights are other types of fuzzy numbers, e.g.,
normal fuzzy numbers. Those are also not applica-
ble when the weights are fuzzy numbers of different
kinds. In that case, we may apply the fuzzy sim-
ulation technique to compute the mλ measure and
pessimistic value defined by

mλ

{
m

∑
i=1

ξixi 6C

}
(6)

and

inf

{
mλ

{
m

∑
i=1

ξixi 6 r

}
> α

}
. (7)

The techniques have been adopted from Yang and
Iwamura.21

Fuzzy simulation for mλ measure
1. Randomly generate vik from the ε-level set

of ξi, i = 1,2, ...,m, respectively, where k =
1,2, ...,N and ε is a sufficiently small positive
number.

2. Let vk = µξi(vik), where µξi(.) is the member-
ship function of ξi (as like Eq. 2).

3. Return the value of L(C) using the following
formula:

L(b) = λ

(
max

16i6N

{
vk :

m

∑
i=1

vik 6 b

})

+(1−λ )

(
min

16i6N

{
vk :

m

∑
i=1

vik > b

})
. (8)

Fuzzy simulation for (λ ;α)-pessimistic value
1. Randomly generate vik from the ε-level set

of ξi, i = 1,2, ...,m, respectively, where k =
1,2, ...,N and ε is a sufficiently small positive
number.
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2. Let vk = µξi(vik), where µξi(.) is the member-
ship function of ξi (as like Eq. 2).

3. Find the value of b such that L(b)> α , where
L(b) is defined by Eq. 8.

4. Return b.

6.2. Overview of GA

Starting from an initial pool of possible solutions,
generally called as chromosomes, a GA evolves the
fittest candidate solution through crossover and mu-
tation. Each chromosome is evaluated and is as-
signed a fitness measure by means of the objective
function value. In every generation better chromo-
somes (solutions with higher fitness values) have
more possibilities to survive and to produce off-
spring in the next generations. In order to solve
the models I – IV, we may design genetic algorithm
based on the fuzzy simulation to obtain the approx-
imate optimal solution, in which simulation algo-
rithms may be employed to check the feasibility of
solutions and to compute the objective values if it
can not be converted to its crisp equivalent. The
procedure of the hybrid genetic algorithm is listed
below.

Procedure Fuzzy simulation based hybrid GA

1. Initialize pop size chromosomes in which the
simulation algorithms may be employed to
check the feasibility of solution;

2. Calculate the objective values for all chro-
mosomes by simulation algorithm or analytic
method if possible;

3. Compute the fitness of each chromosome ac-
cording to the objective value;

4. Select the chromosomes by spinning the
roulette wheel;

5. Update the chromosomes by crossover and
mutation operations in which the feasibility of
offspring may be checked by simulation algo-
rithm or analytic method;

6. Repeat Step 2 to Step 5 for a given number of
cycles;

7. Output the best chromosome as the approxi-
mate optimal solution.

6.2.1. Chromosome representation

One of the main tasks to devise a genetic algorithm
is to represent each of the possible solution as chro-
mosomes, which are usually strings of numbers. For
the DCFMST problem, each of the possible solu-
tion is a spanning tree. Prüfer27 showed that every
spanning tree of a complete graph with n vertices,
which are labeled as {1,2, . . . ,n} can be represented
by a unique sequence of n− 2 integers from the set
{1,2, . . . ,n}. But, one drawback of the Prüfer code
is its lack of structure for directly determining the
diameter or the center(s) from the code without con-
structing the tree. Neville proposed three methods
for encoding trees.28 Neville’s second method of en-
coding a tree leads to a simple algorithm for com-
puting the diameter of a tree directly from the code.
However, there are no known linear time algorithm
for encoding or decoding a tree using Neville’s sec-
ond method. Deo and Micikevicious22 proposed a
method to obtain a Prüfer like code of a tree from
which the diameter of the tree can be computed di-
rectly, as well as, the encoding and decoding can be
done in liner time. In the proposed genetic algo-
rithm, we use this encoding procedure to represent
a spanning tree. The said procedures for encoding,
for decoding and for computation of diameter of a
spanning tree are given below.

Procedure Encoding
Input: A tree of size n.
Output: P, a code of length n−2.

1. Sort the leaf nodes in ascending order of their
labels.

2. In a list P, record the parent nodes of the
sorted list of leaf nodes.

3. Discard the leaves.

4. In P, append the parent nodes of the new
leaves in the order in which they become
leaves.
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5. Repeat steps 3 and 4 until the number of el-
ements in P is n− 2. At this stage, a single
edge will be left out.

Procedure Decoding
Input: P, a code of n − 2 integers from
{1,2, . . . ,n},n > 2.
Output:A tree of size n.

1. Scan the given list from right to left. Push
the elements one by one in a stack S, skipping
those which have already appeared once.

2. Find P, the list of integers from {1,2, . . . ,n}
which are not in P, sorted in descending or-
der. Actually, P is the list of leaf nodes at first
stage.

3. Push the elements of P one by one in the stack
S.

4. Pop the element, say i, from the top of the
stack S. Let j be the left most integer in the
list P. Add the edge from i to j and remove j
from P.

5. Repeat step 4 until P is exhausted. Still there
will be two elements, say r and s, in the stack
S. Add an edge between r and s to obtain a
tree with n−1 edges.

Procedure Diameter
Input: P, a code of n − 2 integers from
{1,2, . . . ,n},n > 2.
Output: Diameter of the tree represented by P.

1. Find P, the list of integers from {1,2, . . . ,n}
which are not in P. Then |P| is the number of
leaves in the first stage.

2. Construct an array of n− 2 elements, called
last, whose ith element is 1, if P[i] does not
appear in P furthermore, and 0, otherwise.
This can be done in linear time, by scanning
the list P from right to left.

3. Let `k be the number of leaf nodes in the
kth stage, and Lk be the total number of leaf

nodes up to kth stage, i.e., Lk =
k

∑
i=0

`i, provided

L0 = `0 = 0 and L1 = `1 = |P|. Since the num-
ber of leaves of any non-trivial tree is not less
than two, `k > 2 for k > 1 if the tree remain-
ing after the deletion of leaves in the previous
stage is not a star, i.e., Lk−1 6= n−1. It is also
obvious that, once the number of leaves at any
stage becomes 2, the remaining tree is only a
path. Now, we find the `k’s and Lk’s recur-

sively by the relations `k =
Lk−1

∑
i=Lk−2+1

last[i] and

Lk =
k

∑
i=0

`i until either `k = 2, or Lk = n− 1.

Find m = k− 1, where k is the first index for
which either `k = 2, or Lm = n− 1. So, after
the mth stage, a path of length d = n−Lm−1
is left out.

4. The diameter of the tree is given by 2m+d.

6.2.2. Crossover and mutation operation

Crossover and mutation operation are two distin-
guishing features of a GA. The diversity of the pop-
ulation is preserved through these operations. Hence
the population have a great chance to be evolved
to the optimal solution. In crossover, new chro-
mosomes are created by exchanging information
among a pair of strings called parents, chosen at
random with a given probability pc from the mat-
ing pool. The resulting strings are known as off-
spring. Since any string of n−2 integers always rep-
resent a labeled tree, we apply the simple one point
crossover, i.e., we just exchange their digits at ran-
domly selected positions.

Mutation operator randomly changes a digit in
the string with the mutation probability pm. Actu-
ally, mutation insures the population against a per-
manent fixation at any particular digit. For a chro-
mosome to mutate, we randomly select a position
and randomly generate an integer between 1 and n,
both inclusive, to replace the original one.
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6.2.3. Evaluation and selection process

Evaluation and selection process play important
roles in genetic algorithm. The GA most often re-
quires a fitness function to evaluate and to assign a
score called the fitness to each chromosome in the
current population. The fitness of a chromosome
depends on how well that chromosome solves the
problem under consideration. Selection or repro-
duction operator is used to select good strings in
a population and to form the mating pool. There
are several selection operators available in the lit-
erature, but the central concept in all of them is to
pick strings with above average fitness from the cur-
rent population and they get copied in the mating
pool in a stochastic manner. In our genetic algo-
rithm approach for DCFMST problem, the evalua-
tion perform the following functions: (i) decoding
all the chromosomes and calculating their (λ ,α)-
pessimistic cost and chance function in terms of mλ

measure; (ii) assigning each chromosome a fitness
by a rank-based method according to its objective
value. Then in the selection process, by spinning the
roulette wheel pop size times, we get a new popula-
tion to go further.

6.2.4. Illustration

Now we illustrate the coding scheme with an
example. Let G be the graph with 10 vertices
1,2, . . . ,10, shown in Figure 1(a). The edges are
enumerated as in the order of adjacency list, i.e.,
e1 = (1,2),e2 = (1,3),e3 = (2,3),e4 = (2,4),e5 =
(2,5),e6 = (3,6),e7 = (3,7),e8 = (4,5),e9 =
(4,8),e10 = (5,6),e11 = (5,8),e12 = (6,7),e13 =
(6,9),e14 = (7,9),e15 = (8,9),e16 = (8,10),e17 =
(9,10) and the corresponding weights are assigned
as ξ1 = (4.5,5,5.2,5.5), ξ2 = (1.8,2.1,2.2,2.5),
ξ3 = (0.8,1,1.2,1.5), ξ4 = (3,3,3.5,3.8), ξ5 =
(0.8,0.9,1,1.2), ξ6 = (4.3,4.4,4.5,4.8), ξ7 =
(1.9,2,2,2.2), ξ8 = (8.2,8.3,8.3,8.5), ξ9 =
(4,4.5,4.8,5), ξ10 = (2.2,2.3,2.5,2.5), ξ11 =
(2.7,2.8,3,3.2), ξ12 = (2.8,3,3.2,3.5), ξ13 =
(1.9,2,2.2,2.4), ξ14 = (4.8,5,5, 5.3), ξ15 =
(1,1.1,1.2,1.5), ξ16 = (2,2.2,2.3,2.5), ξ17 =
(1.1,1.2,1.2,1.4).

1

2 3

4 5 6 7

8 9

10

(a)

1

2 3

4 5 6 7

8 9

10

(b)

1

2 3

4 5 6 7

8 9

10

(c)

Fig. 1. (a) Graph G; (b) Spanning tree x; (c) Spanning tree
x′.

Let us consider the spanning trees x, shown in
Fig. 1(b), i.e., consisting of the edges e1,e2,e4,e5,
e6,e7,e11,e13 and e17. So, the binary decision vari-
able corresponding to the spanning tree x, as defined
in Section 3, is given by x = (1,1,0,1,1,1,1,0,0,
0,1,0,1,0,0,0,1) and its cost is given by C(x,ξ ) =
(22,23.4,24.8,26). Now we find the code P of the
spanning tree x using the Procedure Encoding as
below.

1. The leaf nodes are sorted in ascending order
of their labels as 4,7,8,10.

2. In P, record the parent nodes 2,3,5,9 of the
sorted list of leaf nodes {4,7,8,10}, i.e., P =
{2,3,5,9}.

3. Discard the leaves 4,7,8,10. Now, deletion of
4 and 7 create no new leaves, and 5, 9 become
leaves when 8, 10 are deleted, respectively.
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4. In P, append the nodes 2, 6, the parents of 5,
9, i.e., P = {2,3,5,9,2,6}.

5. Discard the leaves 5,9. The nodes 2, 6 be-
come leaves when 5, 9 are deleted, respec-
tively.

6. In P, append the nodes 1, 3, the parents of 2,
6, i.e., P = {2,3,5,9,2,6,1,3}.

7. Discard the leaves 2,6. Only the edge e2 is left
out now. So,the required code of the spanning
tree x is P = {2,3,5,9,2,6,1,3}.

Now we illustrate how the diameter of the tree x
can be found from its code P = {2,3,5,9,2,6,1,3}
directly, using the Procedure Diameter.

1. Here, P = {4,7,8,10} is the list of integers
from {1,2, . . . ,10} which are not in P. Then
L1 = `1 = |P|= 4.

2. The array last can be found as last =
{0,0,1,1,1,1,1,1}.

3. Now L0 = `0 = 0 and L1 = `1 = 4. So, `2 =
L1

∑
i=L0+1

last[i] =
4

∑
i=1

last[i] = 2, i.e., only after

the removal of leaf nodes at the first stage, we
are left with a path of length 10−L1−1 = 5.

4. Therefore, the diameter of the tree x is 2+5 =
7.

Again let P = {2,2,6,8,8,4,5,4} be a given
code of a spanning tree of the graph G, and we wish
to decode it, using Procedure Decoding.

1. The stack S is formed by the distinct elements
of P, scanning from right to left, as below.

2
6
8
5
4
S

2. So, P = {1,3,7,9,10} is the list of integers
from {1,2, . . . ,10} which are not in P.

3. Push the elements of P one by one in the stack
S.

Then S becomes

1
3
7
9
10
2
6
8
5
4
S

4. Pop the element 1 from the top of the stack S
and 2 is the left most element of P. Add the
edge from 1 to 2, i.e., e1 and remove 2 from
P.

5. Now 3 is on the top of the stack S and 2 is the
left most element of P. Add the edge from 3
to 2, i.e., e3 and remove 2 from P. In this way,
we add the edges from 7 to 6, i.e., e12, 9 to 8,
i.e., e15, 10 to 8, i.e., e16, 2 to 4, i.e., e4, 6 to
5, i.e., e10, 8 to 4, i.e., e9.

6. Still there are two elements, namely, 4 and 5
are in the stack S. Add an edge between 4 and
5, i.e., e8. The resulted tree is the spanning
tree x′ of the graph G, as shown in Figure 1(c).

Clearly, the binary decision variable correspond-
ing to x′ is {1,0,1,1,0,0,0,1,1, 1,0,1,0,0,1,1,0}
and its cost is C(x′,ξ ) = (28.5,30.4,32.2,34.3).
Also, applying the procedure Diameter, the diam-
eter of x′ can be found as 5.
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7. Conclusion

Introduction of the diameter constraint makes the
fuzzy minimum spanning tree problem harder from
its unconstrained counterpart. Chance-constrained
programming and dependent-chance programming
techniques are used to formulate the problem. Also
we have used the mλ measure, a generalization of
credibility measure. Finally, a fuzzy simulation
based hybrid genetic algorithm is designed to solve
the proposed models using Prüfer like code repre-
senting labeled trees. Fuzzy quadratic minimum
spanning tree problem can also be extended to its
constrained version, in the same manner.
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