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Abstract

In this paper, we propose a new entropy measure with geometrical interpretation of intuitionistic fuzzy
sets. Compared with the entropy measure provided by Szmidt and Kacprzyk, the new entropy formula in
this paper can measure both fuzziness and intuitionism for intuitionistic fuzzy sets. According to the rela-
tionship between entropy and similarity measure, we construct a new similarity measure for intuitionistic
fuzzy sets. Then we present two methods, based on entropy and similarity measure, to determine weights
of experts for multi-attribute group decision making with intuitionistic fuzzy information.
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1. Introduction

As a generalized form of fuzzy sets (FSs)1, intu-
itionistic fuzzy sets (IFSs)2, characterized by mem-
bership functions and non-membership functions,
can depict the fuzziness and uncertainty of ob-
jective world more exquisitely than fuzzy sets3,4.

Zadeh5, Gau and Buehrer6 introduced the notion
of interval-valued fuzzy sets (IVFSs) and vague
sets. It was proved that IVFSs and vague sets are
equivalent to IFSs7-9. Now, IFSs have been ap-
plied in various fields, such as decision making10-13,
medical diagnosis14, pattern recognition15,16 and
clustering17.
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The notion of entropy was introduced by
Zadeh18, which is used for estimating the fuzziness
of fuzzy sets. After that, De Luca and Termini19

proposed the axioms with which the fuzzy entropy
should comply, and defined a non-probabilistic en-
tropy for IFSs based on Shannon’s function. Burillo
and Bustince20 introduced the definition of entropy
for IFSs and IVFSs which can measure the intu-
itionism degree of an IFS or IVFS. Szmidt and
Kacprzyk21 extended the definition of fuzzy en-
tropy provided by De Luca and Termini and gave
an axiomatic definition of entropy for IFSs. Based
on the geometrical interpretation of IFSs, they also
proposed a new entropy measure. Vlachos and
Sergiadis15 derived an entropy formula from a cross
entropy of IFSs. They pointed out that entropy of
IFSs could measure both fuzziness and intuitionism
of an IFS. Many scholars also proposed different en-
tropy formulas for IFSs, IVFSs and vague sets22-26.

Similarity measure, as another important topic in
the theory of fuzzy sets, has been studied by many
scholars. The similarity measure indicates the sim-
ilar degree between two IFSs. Li and Cheng27 pre-
sented the axiomatic definition of the similarity mea-
sure for IFSs. Liang and Shi28 proposed several sim-
ilarity measures for IFSs and discussed the relation-
ship between these measures. Xia and Xu29, Xu and
Yager30 defined some similarity measures of intu-
itionistic fuzzy sets and used them to group decision
making. Li et al.31 made a comparative analysis of
existing similarity measures for IFSs and illustrated
some counter-intuitive cases of each measure. Xu32

made a comprehensive overview of similarity mea-
sures for IFSs and proposed several similarity mea-
sures by different distance measures.

Many researchers have investigated the relation-
ship between entropy and similarity measure. Zeng
and Li33, Zhang et al.34 proved some theorems that
entropy and similarity measure can be transformed
by each other. Zeng and Guo35 discussed the rela-
tionship of normalized distance, similarity measure,
inclusion measure and entropy measure of IVFSs.
Wei and Wang36 gave an approach to construct sim-
ilarity measures using entropy for interval-valued in-
tuitionistic fuzzy sets (IVIFSs) and proposed new
similarity measures for IFSs and IVIFSs.

Szmidt and Kacprzyk26 proposed an entropy
measure with geometrical interpretation of IFSs to
measure the fuzziness of an IFS. In fact, the uncer-
tainty degree of an IFS includes fuzziness and intu-
itionism. The fuzziness is dominated by deviation
of the membership degree and non-membership de-
gree, while the intuitionism is associated with hesi-
tancy degree22. However, the entropy measure pro-
vided by Szmidt and Kacprzyk26 can not distinguish
the uncertainty degree between two different IFSs
when they have the same deviations of membership
degrees and non-membership degrees. In this paper,
we propose a new entropy measure by the geomet-
rical interpretation of IFSs. The new formula can
measure not only the fuzziness but also the intuition-
ism of an IFS.

We organize this paper as follows. Firstly, Sec-
tion 2 reviews some concepts that will be used in
this work. In Section 3, we make a discussion on
two existing entropy measures which are introduced
by Szmidt26 and Vlachos15. The entropy provided
by Szmidt and Kacprzyk26 only describes the fuzzi-
ness of IFSs. Then we give a new entropy measure
which can adequately describe the fuzziness and in-
tuitionism of an IFS. By investigating the transfor-
mation of an entropy into similarity measure, we es-
tablish a similarity measure for IFSs in Section 4.
Then numerical examples are given to show the ra-
tionality of this new similarity measure. In Section
5, the new entropy and similarity measure are ap-
plied to determining weights of experts for intuition-
istic fuzzy group decision making. Conclusions are
given in Section 6.

2. Preliminaries

Definition 1. 2 Let X be a universe of discourse.
An intuitionistic fuzzy set in X is an object having
the form:

A = {〈x,µA(x),νA(x)
〉|x ∈ X} (1)

where

µA : X → [0,1], νA : X → [0,1]

with the condition

0 6 µA(x)+νA(x) 6 1,∀x ∈ X .
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The numbers µA(x) and νA(x) denote the degree of
membership and non-membership of x to A, respec-
tively.

For each IFS A in X , we call πA(x) = 1−µA(x)−
νA(x) the intuitionistic index of x in A, which de-
notes the hesitancy degree of x to A.

Definition 2. 2 Let A = {〈x,µA(x),νA(x)〉|x ∈ X}
and B = {〈x,µB(x),νB(x)〉|x ∈ X} be two IFSs, their
relations and operations are defined as follows:

(1) AC = {〈x,νA(x),µA(x)〉|x ∈ X},
(2) A ⊆ B if and only if µA(x) 6 µB(x), νA(x) >

νB(x), for each x ∈ X ,
(3) A = B if and only if A⊆ B and B⊆ A.
In the rest, we assume that the universe X is a fi-

nite set, denoted by X = {x1,x2, ...,xn}. Let IFS(X)
be the set of all the IFSs in X .

Definition 3. 37 Let A = {〈xi,µA(xi),νA(xi)〉|xi ∈
X} and B = {〈x,µB(xi),νB(xi)〉
|xi ∈X} be two IFSs. The normalized Hamming dis-
tance between A and B is given as follows:

d(A,B) =
1
2n

n

∑
i=1

(|µA(xi)−µB(xi)|

+ |νA(xi)−νB(xi)|+ |πA(xi)−πB(xi)|).(2)

For convenience, we call α = (µα ,να) an intuition-
istic fuzzy number (IFN) 38, where µα ∈ [0,1],να ∈
[0,1], and µα +να 6 1. Let Θ be the universal set of
IFNs.

For comparison of IFNs, Chen and Tan39 de-
fined a score function while Hong and Choi40 de-
fined an accuracy function. Based on the two func-
tions, Xu38 provided a method to compare two intu-
itionistic fuzzy numbers (IFNs).

Definition 4. 38 Let α = (µα ,να) and β = (µβ ,νβ )
be two IFNs, s(α) = µα−να and s(β ) = µβ −νβ be
the score degrees of α and β , respectively, h(α) =
µα +να and h(β ) = µβ +νβ be the accuracy degrees
of α and β , respectively. Then
(1) If s(α) < s(β ), then α is smaller than β , denoted
by α < β ,
(2) If s(α) = s(β ), then

1)If h(α) = h(β ), then α and β represent the
same information, i.e., µα = µβ and να = νβ , de-
noted by α = β ,

2) If h(α) < h(β ), then α is smaller than β , de-
noted by α < β ,

3) If h(α) > h(β ), then α is bigger than β , de-
noted by α > β .

Definition 5. 41 Let α = (µα ,να) and β =
(µβ ,νβ ) be two IFNs. Then three operational laws
of IFNs are given as follows:
(1) α⊕β = (µα + µβ −µα µβ ,νανβ ),
(2) λα = (1− (1−µα)λ ,νλ

α ),λ > 0,
(3) αc = (να ,µα).

With the thorough research of intuitionistic fuzzy
set theory and the continuous expansion of its appli-
cation scope, it is more and more important to ag-
gregate intuitionistic fuzzy information effectively.
Xu 41 proposed intuitionistic fuzzy weighted averag-
ing (IFWA) operator to aggregate the intuitionistic
fuzzy information.

Definition 6. 41 Let αi = (µαi ,ναi)(i = 1,2, · · · ,n)
be a collection of IFNs. An intuitionistic fuzzy
weighted averaging (IFWA) operator is a mapping:
Θn →Θ, such that

IFWA(α1,α2, · · · ,αn) = w1α1⊕w2α2⊕·· ·⊕wnαn

=

(
1−

n

∏
j=1

(1−µα j)
w j ,

n

∏
j=1

νw j
α j

)

(3)

where w = (w1,w2, · · · ,wn)T is the weighting vector

of αi(i = 1,2, · · · ,n) with w j ∈ [0,1] and
n
∑
j=1

w j = 1.

3. Entropy for intuitionistic fuzzy sets

Szmidt and Kacprzyk21 generalized the notion of
fuzzy entropy proposed by De Luca and Termini19

and introduced the following axiomatic definition of
entropy for IFSs.

Definition 7. 21 A real-valued function E :
IFS(X)→ [0,1] is called an intuitionistic fuzzy en-
tropy on IFS(X) if it satisfies the following ax-
iomatic requirements:
(E1) E(A) = 0 if and only if A is a crisp set,
(E2) E(A) = 1 if and only if µA(xi) = νA(xi), for
each xi ∈ X ,
(E3) E(A) 6 E(B) if A⊆ B when µB(xi) 6 νB(xi) or
B⊆ A when µB(xi) > νB(xi) for each xi ∈ X ,
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(E4) E(A) = E(AC) .

3.1. Discussion on existing entropy measures for
IFSs

In the following, we investigate geometrical repre-
sentation of IFSs. For each element x = (µx,νx,πx)
belonging to an IFS which such that µx +νx +πx =
1, where µx,νx,πx ∈ [0,1]. We can imagine a unit
cube (Figure 1) inside which there is ABD triangle
where the above equations are fulfilled. In other
words, each element belonging to an IFS can be rep-
resented as a point (µ,ν ,π) inside the triangle ABD.

Motivated by the geometrical representation of
IFSs, Szmidt and Kacprzyk26 defined entropy E(F)
for a separate element F (represented by point in
Figure 2).

Definition 8. 26 The entropy of element
F(µF ,νF ,πF) belonging to an IFS is as follows:

E(F) = 1− 1
2

[d(F,Ff ar)−d(F,Fnear)]

= 1− 1
2
|µF −νF |, (4)

where A(µA,νA,πA) = (1,0,0), B(µB,νB,πB) =
(0,1,0), d(F,Fnear) is a distance from F to the nearer
point Fnear among A and B, d(F,Ff ar) is the dis-
tance from F to the farer point Ff ar among A and B,
d(F,Ff ar) and d(F,Fnear) are obtained by Formula
(2).

Formula (4) describes entropy for a single ele-
ment belonging to an IFS. For n elements belonging
to IFS A, Szmidt and Kacprzyk21 defined an entropy
of A:

ESK(A) = 1− 1
2n

n

∑
i=1
|µA(xi)−νA(xi)|. (5)

Vlachos and Sergiadis15 pointed out that fuzzy
entropy describes the fuzziness of FSs. Since the
theory of IFSs is a generalization of that of FSs, in-
tuitionistic fuzzy entropy should measure both the
fuzziness and intuitionism for IFSs.

Vlachos and Sergiadis15 induced an entropy
measure EV S based on a cross entropy measure of
IFSs:

EV S(A) = − 1
n ln2

n

∑
i=1

[µA(xi) ln µA(xi)+νA(xi) lnνA(xi)

− (1−πA(xi)) ln(1−πA(xi))−πA(xi) ln2]. (6)

The Formula (6) can be rewritten as EV S(A) =
E f uzz(A)+Eintuit(A), where

E f uzz(A) = − 1
n ln2

n

∑
i=1

[µA(xi) ln µA(xi)+νA(xi) lnνA(xi)

− (1−πA(xi)) ln(1−πA(xi))],

Eintuit(A) = 1
n

n
∑

i=1
πA(xi). E f uzz(A) expresses the

fuzziness degree of A, while Eintuit(A) expresses the
intuitionism degree of A. Therefore, EV S can mea-
sure both the fuzziness and intuitionism for IFSs.

The following example shows that Formula (5)
and (6) can produce some counter-intuition cases.

Example 1. Let A1 = {< x,0.4,0.6 > |x∈X}, A2 =
{< x,0.3,0.5 > |x ∈ X} and A3 = {< x,0.1,0.3 >
|x ∈ X} be three IFSs. Using the entropy measures
ESK and EV S we get

ESK(A1) = ESK(A2) = ESK(A3) = 0.9000,
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EV S(A1)= 0.9710,EV S(A2)= 0.9635,EV S(A3)= 0.9245.

For IFSs A1, A2 and A3, we can see that the
deviations of their membership degrees and non-
membership degrees are same, but their hesitancy
degrees are increasing. Therefore, the uncertainty
degrees of A1, A2 and A3 are increasing. However,
by Formula (5), we can derive the same entropies of
IFSs A1, A2 and A3. It is obvious that the results are
not so reasonable as we expect. In fact, the formula
ESK can measure only the fuzziness degree instead
of the intuitionism degree for IFSs.

By formula EV S, we know that the entropies of
A1, A2 and A3 are decreasing, which are not con-
sistent with our intuition. Then we can prove the
following property of formula EV S.

Theorem 1. Let X = {x}. For a constant a in (0,1),
let Fa be the set of all IFSs {< x,µA(x),νA(x) >} in
X with |µA(x)−νA(x)| = a. Then EV S(A) is strictly
monotone decreasing with respect to πA(x) on Fa.

Proof. Since πA(x) = 1−µA(x)−νA(x), |µA(x)−
νA(x)|= a (0 < a < 1), µA(x) = 1−πA(x)+a

2 , νA(x) =
1−πA(x)−a

2 ; or νA(x) = 1−πA(x)+a
2 , µA(x) = 1−πA(x)−a

2 .
Thus,

EV S(A) = − 1
ln2

[
1−πA(x)+a

2
ln

1−πA(x)+a
2

+
1−πA(x)−a

2
ln

1−πA(x)−a
2

− (1−πA(x)) ln(1−πA(x))−πA(x) ln2].

Let

f (πA(x)) =
1−πA(x)+a

2
ln

1−πA(x)+a
2

+
1−πA(x)−a

2
ln

1−πA(x)−a
2

− (1−πA(x)) ln(1−πA(x))−πA(x) ln2,

hence f ′(πA(x)) = −1
2 ln 1−πA(x)+a

2 − 1
2

1−πA(x)−a
2 +

ln(1− πA(x))− ln2 = −1
2 ln

[
(1−πA(x))2−a2

(1−πA(x))2

]
. Since

πA(x) ∈ [0,1] and a ∈ (0,1), 0 6 (1−πA(x))2−a2

(1−πA(x))2 < 1.
Therefore, f ′(πA(x)) > 0, f (πA(x)) is strictly mono-
tone increasing with respect to πA(x) on Fa, that is,
EV S(A) is strictly monotone decreasing with respect
to πA(x) on Fa.

In the following, we will propose a new entropy
measure which can measure both the fuzziness and
intuitionism of IFSs.

3.2. A new entropy measures for IFSs

Theorem 2. Let F(µF ,νF ,πF) be a separate el-
ement belonging to an IFS (represented by point
in Figure 2). Then we have d(F,A) + d(F,B) +
d(F,D) = 2.

Proof. Since A(µA,νA,πA) = (1,0,0),
B(µB,νB,πB) = (0,1,0), D(µD,νD,πD) = (0,0,1),
we can get

d(F,A)+d(F,B)+d(F,D)

=
1
2
(|µF −1|+νF +πF + µF + |νF −1|

+ πF + µF +νF + |πF −1|)
= 2. (7)

D(µD,νD,πD) = (0,0,1) is the fuzziest element
belonging to an IFS, the nearer from F to D, the
bigger uncertainty degree of F . That is, the big-
ger 2−d(F,D), the bigger uncertainty degree of F .
From Theorem 2, we know 2−d(F,D) = d(F,A)+
d(F,B). Therefore, the bigger d(F,A)+d(F,B), the
bigger uncertainty degree of F . Now we give a new
entropy measure for single element F belonging to
an IFS.

Definition 9. For any point F(µF ,νF ,πF) belong-
ing to an IFS (represented by point in Figure 2), the
entropy of F is defined as follows:

E(F) = 1− |d(F,A)−d(F,B)|
d(F,A)+d(F,B)

= 1− |µF −νF |
1+πF

=
1−|µF −νF |+πF

1+πF
. (8)

Formula (8) describes entropy for a separate ele-
ment belonging to an IFS. For n elements belonging
to an IFS A, we have

E(A) =
1
n

n

∑
i=1

1−|µA(xi)−νA(xi)|+πA(xi)
1+πA(xi)

. (9)
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Theorem 3. The mapping E, defined by Formula
(9), is an entropy measure for IFSs.

Proof. In order for (9) to be qualified as an entropy
measure for intuitionistic fuzzy sets, it must satisfy
the conditions E(1)−E(4) in Definition 7.

Let Ei(A) = 1−|µA(xi)−νA(xi)|+πA(xi)
1+πA(xi)

. From 0 6
µA(xi) 6 1, 0 6 νA(xi) 6 1, 0 6 πA(xi) 6 1, we have
0 6 Ei(A) 6 1.

(E1) Suppose E(A) = 0. Since 0 6 Ei(A) 6 1

and E(A) = 1
n

n
∑

i=1
Ei(A), it follows that Ei(A) = 0.

So we have 1−|µA(xi)−νA(xi)|+πA(xi) = 0. Thus
µA(xi) = 1, νA(xi) = 0, or µA(xi) = 0, νA(xi) = 1 for
each xi ∈X . Therefore, A be a crisp set. On the other
hand, let A be a crisp set, i.e. µA(xi) = 1, νA(xi) = 0,
or µA(xi) = 0, νA(xi) = 1 for each xi ∈ X . Now
matter in which case, we have Ei(A) = 0. Thus
E(A) = 0.

(E2) Let E(A) = 1, from E(A) = 1
n

n
∑

i=1
Ei(A)

and 0 6 Ei(A) 6 1, we have Ei(A) = 1. Thus
µA(xi) = νA(xi) for each xi ∈ X . Now suppose that
µA(xi) = νA(xi) for each xi ∈ X . Applying this con-
dition to Formula (9), we yield E(A) = 1.

(E3) Suppose that B ⊆ A when µB(xi) >
νB(xi) for each xi ∈ X , that is µA(xi) > µB(xi)
and νB(xi) > νA(xi) when µB(xi) > νB(xi) for each
xi ∈ X . Since 1 − µA(xi) > 0,νA(xi) − 1 6 0,
we have νB(xi)(1 − µA(xi)) > νA(xi)(1 − µA(xi))
and µB(xi)(νA(xi) − 1) > µA(xi)(νA(xi) − 1).
Hence νB(xi)(1 − µA(xi)) + µB(xi)(νA(xi) − 1) >
νA(xi)(1 − µA(xi)) + µA(xi)(νA(xi) − 1). It fol-
lows that νB(xi)(1 − µA(xi)) + µB(xi)(νA(xi) −
1) + µA(xi)− νA(xi) > 0. Thus (1− µA(xi))(2−
µB(xi) − νB(xi)) 6 (1 − µB(xi))(2 − µA(xi) −
νA(xi)), which implies 1−|µA(xi)−νA(xi)|+πA(xi)

1+πA(xi)
6

1−|µB(xi)−νB(xi)|+πB(xi)
1+πB(xi)

. Thus Ei(A) 6 Ei(B) for each
xi ∈X . Similarity, when A⊆B when µB(xi) 6 νB(xi)
for each xi ∈X , we can also prove that Ei(A) 6 Ei(B)
for each xi ∈ X . Therefore, E(A) 6 E(B).

(E4) For Ac = {〈xi,νA(xi),µA(xi)〉|xi ∈X}, we
can easily obtain that

E(AC) =
1
n

n

∑
i=1

1−|νA(xi)−µA(xi)|+πA(xi)
1+πA(xi)

=
1
n

n

∑
i=1

1−|µA(xi)−νA(xi)|+πA(xi)
1+πA(xi)

= E(A).

Now we apply Formula (9) to calculate the en-
tropies of IFSs in Example 1, we have

E(A1) = 0.8000, E(A2) = 0.8333, E(A3) = 0.8750.

From the results, we can see that if the devia-
tions of membership degrees and non-membership
degrees of IFSs are same, the entropies which calcu-
lated by E are increasing with respect to hesitancy
degrees of IFSs. In fact, formula E satisfies the fol-
lowing theorem.

Theorem 4. Let X = {x}. For a constant a in (0,1],
let Fa be the set of all IFSs {< x,µA(x),νA(x) >}
in X with |µA(x)−νA(x)|= a. Then E(A) is strictly
monotone increasing with respect to πA(x) on Fa.

Proof. Since |µA(x) − νA(x)| = a (a ∈ (0,1]),
E(A) = 1−|µA(x)−νA(x)|+πA(x)

1+πA(x) = 1−a+πA(x)
1+πA(x) . Let

f (πA(x)) = 1−a+πA(x)
1+πA(x) , hence f ′(πA(x)) = a

(1+πA(x))2 .
Since πA(x) ∈ [0,1] and a ∈ (0,1]. Therefore,
f ′(πA(x)) > 0, f (πA(x)) is strictly increasing with
respect to πA(x) on Fa, that is, E(A) is strictly
monotone increasing with respect to πA(x) on Fa.

Example 2. Let A1 = {< x,0.1,0.9 > |x∈ X}, A2 =
{< x,0.1,0.7 > |x ∈ X}, A3 = {< x,0.2,0.7 >
|x ∈ X}, A4 = {< x,0.2,0.5 > |x ∈ X}, A5 = {<
x,0.2,0.4 > |x ∈ X}, A6 = {< x,0.4,0.5 > |x ∈
X}, A7 = {< x,0.3,0.4 > |x ∈ X} A8 = {<
x,0.1,0.2 > |x ∈ X} and A9 = {< x,0.3,0.3 > |x ∈
X} be nine IFSs. Using the entropies ESK , EV S and
E, the comparison results are listed in Table 1.

Table 1 Comparison of entropies
with different famulas for IFSs A1−A9.

A1 A2 A3 A4

ESK 0.6000 0.7000 0.7500 0.8500
EV S 0.4690 0.6349 0.7878 0.9042
E 0.2000 0.5000 0.5455 0.7692

A5 A6 A7 A8 A9

0.9000 0.9500 0.9500 0.9500 1.0000
0.9510 0.9920 0.9897 0.9755 1.0000
0.8571 0.9091 0.9231 0.9412 1.0000
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As can be seen from Table 1, the numerical ex-
amples in bold type reflect some counter-intuition
cases with formulas ESK and EV S. Therefore, the
formula E is more reasonable than ESK and EV S for
measuring the uncertainty degrees of IFSs.

4. Similarity measures for intuitionistic fuzzy
sets

In this section, we induce a new similarity measure
based on the new entropy measure proposed in Sec-
tion 3. Then we compare the new similarity measure
with some existing similarity measures.

Li and Cheng27, Mitchell42 proposed the ax-
iomatic definitions of the similarity measure be-
tween two IFSs.

Definition 10. 27,42 A real-valued function S :
IFS(X)×IFS(X)→ [0,1] is called a similarity mea-
sure on IFS(X), if it satisfies the following ax-
iomatic requirements:
(S1) 0 6 S(A,B) 6 1,
(S2) S(A,B) = 1 if and only if A = B,
(S3) S(A,B) = S(B,A),
(S4) If A ⊆ B ⊆ C, then S(A,C) 6 S(A,B) and
S(A,C) 6 S(B,C).

4.1. A new similarity measure for intuitionistic
fuzzy sets

Zeng and Li33 investigated the relationship between
entropy and similarity measure of IVFSs and proved
some theorems that entropy and similarity measure
can be transformed by each other. According to
the equivalence of IVFSs and IFSs8,9, we propose
a transforming method by which one can establish a
similarity measure based on an entropy of IFSs.

Suppose A = {〈xi,µA(xi),νA(xi)
〉|xi ∈ X}

and B = {〈xi,µB(xi),νB(xi)
〉|xi ∈ X} are

two IFSs. Then we define M(A,B) =
{〈xi,µM(A,B)(xi),νM(A,B)(xi)

〉|xi ∈ X}, where

µM(A,B)(xi)=
1+min{|µA (xi)−µB (xi)| , |νA (xi)−νB (xi)|}

2
,

νM(A,B)(xi)=
1−max{|µA (xi)−µB (xi)| , |νA (xi)−νB (xi)|}

2
.

Obviously, M(A,B) is an IFS. By Ref. 33 and the
equivalence of IVFSs and IFSs8,9, we can easily get
the following theorems.

Theorem 5. Let E be an entropy for IFSs. Then for
each pair of IFSs A and B, E(M(A,B)) is a similar-
ity measure between A and B.

Theorem 6. Let E be an entropy measure defined by
formula (9), i.e., for

E(A) =
1
n

n

∑
i=1

1−|µA(xi)−νA(xi)|+πA(xi)
1+πA(xi)

, (10)

then the function S defined by

S(A,B) =
1
n

n

∑
i=1

2−2min{|µA(xi)−µB(xi)|, |νA(xi)−νB(xi)}
2+ ||µA(xi)−µB(xi)|− |νA(xi)−νB(xi)||

(11)
is a similarity measure between IFSs A and B.

Proof. By the definition of M(A,B), we have

|µM(A,B)(xi)−νM(A,B)(xi)|

=
max{|µA(xi)−µB(xi)|, |νA(xi)−νB(xi)|}

2

+
min{|µA(xi)−µB(xi)|, |νA(xi)−νB(xi)|}

2
.

The hesitancy degree of xi in M(A,B) is

πM(A,B)(xi) = 1−µM(A,B)(xi)−νM(A,B)(xi)

=
max{|µA(xi)−µB(xi)|, |νA(xi)−νB(xi)|}

2

− min{|µA(xi)−µB(xi)|, |νA(xi)−νB(xi)|}
2

.

Let |µA(xi)− µB(xi)| = µi, |νA(xi)− νB(xi)| = νi;
max{µi,νi}= a, min{µi,νi}= b, we get

E(M(A,B)) =
1
n

n

∑
i=1

1− 1
2 (a+b)+ 1

2 (a−b)
1+ 1

2 (a−b)

=
1
n

n

∑
i=1

2−2b
2+(a−b)

=
1
n

n

∑
i=1

2−2min{µi,νi}
2+ |µi−νi| .
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From Theorem 5, we obtain the similarity measure
between A and B as following:

S(A,B) = E(M(A,B))

=
1
n

n

∑
i=1

2−2min{|µA(xi)−µB(xi)|, |νA(xi)−νB(xi)|}
2+ ||µA(xi)−µB(xi)|− |νA(xi)−νB(xi)|| .

Considering that the elements in the universe of
discourse X may have different importance, we de-
fine the weighted form of Formula (11).

Let w = (w1,w2, · · · ,wn)T be a weighting vec-
tor of the elements xi(i = 1,2, · · · ,n). Then the
weighted similarity measure is defined as S(A,B) =

n

∑
i=1

wi · 2−2min{|µA(xi)−µB(xi)|, |νA(xi)−νB(xi)|}
2+ ||µA(xi)−µB(xi)|− |νA(xi)−νB(xi)|| ,

(12)

where wi ∈ [0,1] and
n
∑

i=1
wi = 1. If w =

(1
n , 1

n , · · · , 1
n)T , then Formula (12) is reduced to For-

mula (11).

4.2. Comparison of new similarity measure and
some existing similarity measures

In this subsection, the rationality of the new similar-
ity measure will be demonstrated by the comparison
between it and some existing similarity measures.

Let A = {〈xi,µA(xi),νA(xi)
〉|xi ∈ X} and B =

{〈xi,µB(xi),νB(xi)
〉|xi ∈ X} be two IFSs in the uni-

verse of discourse X . Chen43, Li and Cheng27 pro-
posed the following similarity measures SC and SDC
between the IFSs A and B, respectively:

SC(A,B)= 1−∑n
i=1 |µA(xi)−νA(xi)− (µB(xi)−νB(xi))|

2n
,

SDC(A,B) = 1− p

√
∑n

i=1 |ψA(xi)−ψB(xi)|p
n

,

where p is a parameter with 1 6 p < ∞, and for each
i,

ψA(xi) =
µA(xi)+1−νA(xi)

2
,

ψB(xi) =
µB(xi)+1−νB(xi)

2
.

Wei36, Xu and Yager30 presented similarity mea-
sures SWW and SXY , respectively.

SWW (A,B) =
1
n

n

∑
i=1

1−min{µi,νi}
1+max{µi,νi} ,

where |µA(xi)−µB(xi)|= µi, |νA(xi)−νB(xi)|= νi,

SXY (A,B) =
1
n

n

∑
i=1

d(αA(xi),αc
B(xi))

d(αA,αc
B)+d(αA,αB)

,

where αA(xi) and αB(xi) are i-th IFNs of A and B,
respectively, and

d(αA(xi),αB(xi)) =
1
2
(|µA(xi)−µB(xi)|

+ |νA(xi)−νB(xi)|
+ |πA(xi)−πB(xi)|).

Example 3. Let A = {< x,0,0 >}, B = {<
x,0.5,0.5 >} and C = {< x,0.49,0.51 >} be three
IFSs. Using the similarity measures SC, SDC and
SXY , we get

SC(A,B) = SDC(A,B) = 1.0000,

SC(B,C) = SDC(B,C) = 0.9900,

SXY (A,B) = SXY (B,C) = 0.5000.

Intuitively, we can see that the IFS B is
much more similar to C than to A. How-
ever, SC(A,B) > SC(B,C), SDC(A,B) > SDC(B,C),
SXY (A,B) = SXY (B,C), which are not consistent
with our intuition.

Using the similarity measure SWW and the new
similarity measure S, we derive

SWW (A,B) = 0.3333, SWW (B,C) = 0.9802,

S(A,B) = 0.5000, S(B,C) = 0.9900.

The results are so reasonable as we expect. There-
fore, the similarity measure SWW and S are more rea-
sonable than SC, SDC and SXY .
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Li and Xu44 established a new similarity measure
SL as follows:

SL(A,B) = 1−

n
∑

i=1
|sA(xi)− sB(xi)|

4n

−

n
∑

i=1
(|µA(xi)−µB(xi)|+ |νA(xi)−νB(xi)|)

4n
,

where sA(xi) = µA(xi)−νA(xi), sB(xi) = µB(xi)−
νB(xi).

Xia and Xu29 defined a similarity measure Sη ,κ
XX :

Sη ,κ
XX (A,B) = 1− (

1
n

n

∑
i=1
|(1−κ)(µA(xi)−µB(xi))

− κ(νA(xi)−νB(xi))|η)
1
η . (13)

We further compare our similarity measure S
with SC, SDC, SL and Sη ,κ

XX by the following exam-
ple.

Example 4. Let A = {< x,0.4,0.2 > |x ∈ X}, B =
{< x,0.5,0.3 > |x∈X} and C = {< x,0.5,0.2 > |x∈
X} be three IFSs.

One can see intuitively that the IFS A is more
similar to C than to B. Using the similarity measure
SC, SDC and SL, however, we get that

SC(A,B) = SDC(A,B) = 1.0000,

SC(A,C) = SDC(A,C) = 0.9500,

SL(A,B) = SL(A,C) = 0.9500,

Thus, SC(A,B) > SC(A,C), SDC(A,B) > SDC(A,C)
and SL(A,B) = SL(A,C), which are not consistent
with our intuition.

Now, using S2,0.5
XX and our similarity measure S

given by Formula (11), we have

S2,0.5
XX (A,B) = 0.9000, S2,0.5

XX (A,C) = 0.9500,

S(A,B) = 0.9000, S(A,C) = 0.9524.

The results by the two measures Sη ,κ
XX and S are sim-

ilar and more consistent with our intuition.

5. The applications of entropy and similarity
measure

In order to show the rationality and effectiveness of
the new entropy and similarity measure proposed
in Section 3 and 4, in this section, we apply them
to multi-attribute group decision making with in-
tuitionistic fuzzy information. The multi-attribute
group decision making problem which is considered
in this paper can be represented as follows.

Let X = {x1,x2, · · · ,xn} be a set of evaluation
alternatives, D = {d1,d2, · · · ,ds} be a set of ex-
perts, U = {u1,u2, · · · ,um} be an attribute set, w =
(w1,w2, · · · ,wm)T be the weighting vector of at-

tributes such that w j ∈ [0,1] and
m
∑
j=1

w j = 1. Let Ak =
(

a(k)
i j

)
n×m

(k = 1,2, · · · ,s) be intuitionistic fuzzy de-

cision matrices where a(k)
i j = (t(k)i j , f (k)

i j ) is an IFV,
provided by the decision maker dk ∈ D for the al-
ternative xi ∈ X with respect to the attribute u j ∈U .
Decision maker’s goal is to obtain the ranking order
of the alternatives.

According to Ref. 45, if attributes include cost
attributes and benefit attributes in multi-attribute
decision making process, we should transform
the attribute values of cost type into those of
benefit type. Hence decision making matrices
Ak =

(
a(k)

i j

)
n×m

(k = 1,2, · · · ,s) are transformed

into normalized decision making matrices Rk =(
r(k)

i j

)
n×m

(k = 1,2, · · · ,s):

r(k)
i j =

(
µ(k)

i j ,ν(k)
i j

)
=

{
a(k)

i j , for benefit attribute u j,

a(k)
i j , for cost attribute u j,

(14)
where a(k)

i j =
(

f (k)
i j , t(k)i j

)
,π(k)

i j = 1− t(k)i j − f (k)
i j =

1 − µ(k)
i j − ν(k)

i j (k = 1,2, · · · ,s, i = 1,2, · · · ,n, j =
1,2, · · · ,m).

For a given weighting vector of attributes, we can
use the IFWA operator to derive the individual over-
all evaluation values z(k)

i = (µ(k)
i ,ν(k)

i ) of alterna-
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tives xi(i = 1,2, · · · ,n) by experts dk(k = 1,2, · · · ,s):

z(k)
i = IFWAw(r(k)

i1 ,r(k)
i2 , · · · ,r(k)

im )

= w1r(k)
i1 ⊕w2r(k)

i2 ⊕·· ·⊕wmr(k)
im , (15)

where w = (w1,w2, · · · ,wm)T is the weighting vec-
tor of the attributes of u j( j = 1,2, · · · ,m), with w j ∈
[0,1] and

m
∑
j=1

w j = 1.

5.1. Determining the weights of experts

In order to fuse the evaluation values of all experts,
we should determine the weights of experts. Some-
times, the information about weights of experts is
completely unknown. Thus, it is a critical work to
determine the objective weights of experts according
to assessment information. Xu and Cai46 developed
two nonlinear optimization models, one minimizing
the divergence between each individual opinion and
the group one, and the other minimizing the diver-
gence among the individual opinions, to derive the
weights of experts. In the following, we present two
new methods, based on entropy and similarity mea-
sure, to determine the weights of experts.

During the decision making process, we usu-
ally expect that the uncertainty degrees of the de-
cision results are as small as possible. Entropy
can describe the uncertainty degree of intuitionis-
tic fuzzy information. Let z(k)

i be individual over-
all evaluation value of alternative xi ∈ X by experts
dk ∈D. The entropy for single element IFS {z(k)

i }=
{(µ(k)

i (xi),ν
(k)
i (xi))} is denoted by Eik. Consider-

ing that the smaller entropy Eik is, the smaller un-
certainty degree of {z(k)

i } is. Therefore, a reasonable
weighting vector λ = (λ1,λ2, · · · ,λs)T should be de-
termined so as to make all the uncertainty degrees
of overall evaluation values for alternatives as small
as possible. Based on this principle, we can estab-
lish the following multiple objective programming
model:

min

(
s

∑
k=1

E2
1k ·λ 2

k ,
s

∑
k=1

E2
2k ·λ 2

k , · · · ,
s

∑
k=1

E2
nk ·λ 2

k

)

s.t.





s
∑

k=1
λk = 1

λk > 0, k = 1,2, · · ·s.
(16)

where λ = (λ1,λ2, · · · ,λs)T is the weighting vector
of dk(k = 1,2, · · · ,s).

We can transform the multiple objective pro-
gramming model into a single objective optimiza-
tion model:

min
n

∑
i=1

s

∑
k=1

E2
ik ·λ 2

k

s.t.





s
∑

k=1
λk = 1

λk > 0, k = 1,2, · · ·s,
(17)

where λ = (λ1,λ2, · · · ,λs)T is the weighting vector
of dk(k = 1,2, · · · ,s).

To solve this model, we construct the Lagrange
function

L(λ ,ξ ) =
n

∑
i=1

s

∑
k=1

E2
ik ·λ 2

k +2ξ

(
s

∑
k=1

λk −1

)
, (18)

where ξ is the Lagrange multiplier.
Differentiating L(λ ,ξ ) with respect to λk(k =

1,2, · · · ,s) and ξ , and setting these partial deriva-
tives equal to zero, we obtain the following equa-
tions:




∂L
∂λk

= 2λk ·
n

∑
i=1

E2
ik +2ξ = 0, k = 1,2, · · · ,s.

∂L
∂ξ

= 2
s

∑
k=1

λk−2 = 0.

(19)
By solving equations above, we get the weights of
experts as follows:

λ (1)
k

=
1

n
∑

i=1
E2

ik ·
s
∑

k=1

1
n
∑

i=1
E2

ik

, k = 1,2, · · ·s. (20)

In the following, we determine the weights of
experts from another point of view. Let z(k)

i =
(µ(k)

i ,ν(k)
i )(i = 1,2, · · · ,n) be the individual overall

evaluation values of xi(i = 1,2, · · · ,n) by the expert
dk ∈ D. Hence Zk = {z(k)

i |i = 1,2, · · · ,n} is an intu-
itionistic fuzz set . We define ideal alternatives set
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Z+ = {z+
i |i = 1,2, · · · ,n} and anti-ideal alternatives

set Z− = {z−i |i = 1,2, · · · ,n}, where

z+
i =

⋃

16k6s

z(k)
i =

(
max

16k6s

{
µ(k)

i

}
, min

16k6s

{
ν(k)

i

})
,

(21)

z−i =
⋂

16k6s

z(k)
i =

(
min

16k6s

{
µ(k)

i

}
, max

16k6s

{
ν(k)

i

})
.

(22)
The similarity degrees between Zk and Z+, Zk and
Z− are defined as:

S+
k = S

(
Zk,Z+)

, k = 1,2, · · · ,s, (23)

S−k = S
(
Zk,Z−

)
, k = 1,2, · · · ,s. (24)

Then we define the averaging alternatives set
Z∗ = {z∗i |i = 1,2, · · · ,n}, where

z∗i =
1
s

(
z(1)

i ⊕ z(2)
i ⊕·· ·⊕ z(s)

i

)
, i = 1,2, · · · ,n.

The similarity degrees between Zk and Z∗ is defined
as:

S∗k = S (Zk,Z∗) , k = 1,2, · · · ,s. (25)

The ideal alternatives set and anti-ideal alterna-
tives set reflect the extreme views of experts, while
the averaging alternatives set reflects the group
views of experts. In group decision making process,
we usually expect to reach with a high group con-
sensus. Thus, the smaller S+

k and S−k are, the bigger
weight is given to the expert dk; the bigger S∗k is, the
bigger weight is given to the expert dk. Therefore,
we define the weights of experts dk(k = 1,2, · · · ,s)
as follows:

λ (2)
k =

λ ∗k
s
∑

k=1
λ ∗k

, where λ ∗k =
S∗k

S+
k +S−k

, k = 1,2, · · · ,s.

(26)

Based on different perspectives, we derive the
weighting vectors λ (1) and λ (2). Then we can
integrate them into a combined weighting vector
λ = (λ1,λ2, · · · ,λs)T , where λk = αλ (1)

k + (1 −
α)λ (2)

k (k = 1,2, · · · ,s), and α ∈ [0,1] reflects deci-
sion maker’s subjective preference.

5.2. A multi-attribute group decision making
approach with intuitionistic fuzzy
information

Based on the IFWA operator and two methods to
determine weights of experts in Section 5.1, we can
describe the following steps to get the ranking of al-
ternatives.

Step 1 Utilize Formula (14) to transform deci-
sion making matrices Ak =

(
a(k)

i j

)
n×m

into normal-

ized decision making matrices Rk =
(

r(k)
i j

)
n×m

.

Step 2 Utilize Formula (15) to derive
the individual overall evaluation values z(k)

i (i =
1,2, · · · ,n,k = 1,2, · · · ,s) of alternatives xi(i =
1,2, · · · ,n) by experts dk(k = 1,2, · · · ,s).

Step 3 Utilize Formula (20) to derive experts’
weighting vector λ (1) = (λ (1)

1 ,λ (1)
2 , · · · ,λ (1)

s )T ; uti-
lize Formulas (21)-(26) to derive experts’ weighting
vector λ (2) = (λ (2)

1 ,λ (2)
2 , · · · ,λ (2)

s )T .
Step 4 Integrate the weighting vectors λ (1) and

λ (2) into the objective experts’ weighting vector λ =
(λ1,λ2, · · · ,λs)T , where λk = αλ (1)

k + (1−α)λ (2)
k ,

α ∈ [0,1],k = 1,2, · · · ,s.
Step 5 Utilize the IFWA operator to derive the

overall evaluation values zi(i = 1,2, · · · ,n) of the al-
ternatives xi(i = 1,2, · · · ,n):

zi = IFWAλ (z(1)
i ,z(2)

i , · · ·z(s)
i )

= λ1z(1)
i ⊕λ2z(2)

i ⊕·· ·⊕λsz
(s)
i , (27)

where λ = (λ1,λ2, · · · ,λs)T is the weighting vector

of experts with λk ∈ [0,1] and
s
∑

k=1
λk = 1.

Step 6 Utilize Definition 4 to compare the over-
all evaluation values zi(i = 1,2, · · · ,n) and rank the
alternatives xi(i = 1,2, · · · ,n).

In order to verify effectiveness of the proposed
decision making approach, two instances, adapted
from Xu46 and Wan47, are provided as follows.

Example 5. 46 Consider an air-condition system
selection problem. Suppose that there exist three
air-condition systems xi(i = 1,2,3) to be selected,
and the following is the list of five attribute u j( j =
1,2,3,4,5): good quality (u1), easy to operate (u2),
economical (u3), good service after selling (u4)
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and cost (u5). Among these attributes, u j( j =
1,2,3,4) are of benefit type, u5 is of cost type. w =
(0.200,0.299,0.106,0.156,0.239)T is the weighting
vector of attributes. An experts group, which con-
sists 3 experts dk(k = 1,2,3). These experts dk(k =
1,2,3) evaluate the air-condition systems xi(i =
1,2,3) by the IFNs a(k)

i j = (t(k)i j , f (k)
i j )(i = 1,2,3, j =

1,2,3,4,5,k = 1,2,3) with respect to the attributes
u j( j = 1,2,3,4,5). The decision making matrices
Ak = (a(k)

i j )3×5(k = 1,2,3) are as follows:




(0.8,0.1) (0.7,0.1) (0.7,0.2) (0.9,0.0) (0.4,0.5)
(0.7,0.1) (0.8,0.2) (0.6,0.4) (0.7,0.1) (0.6,0.4)
(0.8,0.2) (0.9,0.1) (0.7,0.0) (0.7,0.2) (0.5,0.5)







(0.9,0.1) (0.8,0.1) (0.7,0.0) (0.9,0.1) (0.3,0.7)
(0.7,0.2) (0.8,0.1) (0.9,0.1) (0.7,0.3) (0.7,0.2)
(0.7,0.1) (0.9,0.0) (0.8,0.0) (0.8,0.2) (0.6,0.3)







(0.8,0.0) (0.7,0.1) (0.9,0.0) (0.8,0.1) (0.4,0.6)
(0.8,0.2) (0.7,0.3) (0.8,0.1) (0.9,0.1) (0.6,0.3)
(0.9,0.1) (0.8,0.0) (0.8,0.1) (0.9,0.0) (0.5,0.4)




Step 1 Utilize Formula (14) to transform deci-
sion making matrices Ak =

(
a(k)

i j

)
3×5

(k = 1,2,3)
into normalized decision making matrices Rk =(

r(k)
i j

)
3×5

(k = 1,2,3).




(0.8,0.1) (0.7,0.1) (0.7,0.2) (0.9,0.0) (0.5,0.4)
(0.7,0.1) (0.8,0.2) (0.6,0.4) (0.7,0.1) (0.4,0.6)
(0.8,0.2) (0.9,0.1) (0.7,0.0) (0.7,0.2) (0.5,0.5)







(0.9,0.1) (0.8,0.1) (0.7,0.0) (0.9,0.1) (0.7,0.3)
(0.7,0.2) (0.8,0.1) (0.9,0.1) (0.7,0.3) (0.2,0.7)
(0.7,0.1) (0.9,0.0) (0.8,0.0) (0.8,0.2) (0.3,0.6)







(0.8,0.0) (0.7,0.1) (0.9,0.0) (0.8,0.1) (0.6,0.4)
(0.8,0.2) (0.7,0.3) (0.8,0.1) (0.9,0.1) (0.3,0.6)
(0.9,0.1) (0.8,0.0) (0.8,0.1) (0.9,0.0) (0.4,0.5)




Step 2 Utilize Formula (15) to derive the indi-
vidual overall evaluation values z(k)

i (i = 1,2,3,k =
1,2,3) of alternatives xi(i = 1,2,3) by experts
dk(k = 1,2,3).

z(1)
1 = (0.7367,0.0000), z(1)

2 = (0.6767,0.2187),

z(1)
3 = (0.7750,0.0000), z(2)

1 = (0.8203,0.0000),

z(2)
2 = (0.7010,0.2171), z(2)

3 = (0.7622,0.0000),

z(3)
1 = (0.7524,0.0000), z(3)

2 = (0.7266,0.2448),

z(3)
3 = (0.7968,0.0000).
Step 3 Utilize Formulas (9) and (20)

to derive experts’ weighting vector λ (1) =
(0.297,0.354,0.349)T , utilize Formulas (11), (21)-
(26) to derive experts’ weighting vector λ (2) =
(0.334,0.333,0.333)T .

Step 4 Integrate the weighting vectors λ (1)

and λ (2) into the objective experts’ weighting vec-
tor λ = (0.315,0.344,0.341)T , where λk = αλ (1)

k +
(1−α)λ (2)

k , α = 0.5, k = 1,2,3.
Step 5. Utilize the Formula (27) to derive the

overall evaluation values zi(i = 1,2,3) of the alter-
natives xi(i = 1,2,3):

z1 = IFWAλ (z(1)
1 ,z(2)

1 ,z(3)
1 ) = (0.7739,0.0000);

z2 = IFWAλ (z(1)
2 ,z(2)

2 ,z(3)
2 ) = (0.7028,0.2267);

z3 = IFWAλ (z(1)
3 ,z(2)

3 ,z(3)
3 ) = (0.7785,0.0000).

Step 6 Utilize the score function to calculate the
scores s(zi)(i = 1,2,3) of overall evaluation values
zi(i = 1,2,3) of the alternatives xi(i = 1,2,3):

s(z1) = 0.7739, s(z2) = 0.4761, s(z3) = 0.7785.

Utilize the score degrees s(zi)(i = 1,2,3) to rank the
alternatives xi(i = 1,2,3), we obtain

x3 Â x1 Â x2.

Therefore, x3 is the best alternative.

Example 6. 47 A manufacturing company search
the best global supplier for one of its most crit-
ical parts used in assembling process. The at-
tributes which are considered here in selection of
three suppliers xi(i = 1,2,3) are: capacity of the pro-
duction (u1), capacity of accuracy (u2), supplier’s
credibility (u3), cost of the product (u4). Among
these attributes, u j( j = 1,2,3) are of benefit type,
u4 is of cost type. w = (0.31,0.42,0.16,0.11)T

is the weighting vector of the attributes. An ex-
perts group is formed which consists of three experts
dk(k = 1,2,3) (whose weighting vector is to be de-
termined). The experts dk(k = 1,2,3) represent the
characteristics of the suppliers xi(i = 1,2,3) by the
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IFNs a(k)
i j (i = 1,2,3, j = 1,2,3,4,k = 1,2,3) with re-

spect to the attributes u j( j = 1,2,3,4). The decision
making matrices Ak = (r(k)

i j )3×4 (k = 1,2,3) are as
follows:

A1 =




(0.4,0.2) (0.1,0.4) (0.3,0.6) (0.1,0.6)
(0.2,0.5) (0.3,0.6) (0.3,0.5) (0.3,0.5)
(0.5,0.3) (0.4,0.5) (0.3,0.6) (0.7,0.2)




A2 =




(0.5,0.3) (0.3,0.6) (0.3,0.4) (0.4,0.5)
(0.4,0.3) (0.3,0.5) (0.2,0.6) (0.3,0.5)
(0.3,0.5) (0.4,0.5) (0.5,0.3) (0.3,0.6)




A3 =




(0.2,0.4) (0.5,0.3) (0.4,0.6) (0.3,0.4)
(0.4,0.5) (0.3,0.6) (0.2,0.5) (0.7,0.1)
(0.3,0.6) (0.4,0.4) (0.3,0.5) (0.4,0.5)




Step 1. Utilize Formula (14) to transform de-
cision making matrices Ak =

(
a(k)

i j

)
3×4

(k = 1,2,3)
into normalized decision making matrices Rk =(

r(k)
i j

)
3×4

(k = 1,2,3).

R1 =




(0.4,0.2) (0.1,0.4) (0.3,0.6) (0.6,0.1)
(0.2,0.5) (0.3,0.6) (0.3,0.5) (0.5,0.3)
(0.5,0.3) (0.4,0.5) (0.3,0.6) (0.2,0.7)




R2 =




(0.5,0.3) (0.3,0.6) (0.3,0.4) (0.5,0.4)
(0.4,0.3) (0.3,0.5) (0.2,0.6) (0.5,0.3)
(0.3,0.5) (0.4,0.5) (0.5,0.3) (0.6,0.3)




R3 =




(0.2,0.4) (0.5,0.3) (0.4,0.6) (0.4,0.3)
(0.4,0.5) (0.3,0.6) (0.2,0.5) (0.1,0.7)
(0.3,0.6) (0.4,0.4) (0.3,0.5) (0.5,0.4)




Step 2. Utilize Formula (15) to derive the indi-
vidual overall evaluation values z(k)

i (i = 1,2,3,k =
1,2,3) of alternatives xi(i = 1,2,3) by experts
dk(k = 1,2,3).

z(1)
1 = (0.3026,0.2956), z(1)

2 = (0.2969,0.5103),

z(1)
3 = (0.4001,0.4560), z(2)

1 = (0.3923,0.4338),

z(2)
2 = (0.3430,0.4154), z(2)

3 = (0.4154,0.4356),

z(3)
1 = (0.3924,0.3665), z(3)

2 = (0.2991,0.5601),

z(3)
3 = (0.3677,0.4701).
Step 3. Utilize Formulas (9) and (20)

to derive experts’ weighting vector λ (1) =

(0.333,0.308,0.359)T ; utilize Formulas (11), (21)-
(26) to derive experts’ weighting vector λ (2) =
(0.335,0.330,0.335)T .

Step 4. Integrate the weighting vector λ (1)

and λ (2) into an objective experts’ weighting vec-
tor λ = (0.334,0.319,0.347)T , where λk = αλ (1)

k +
(1−α)λ (2)

k , α = 0.5, k = 1,2,3.
Step 5. Utilize the Formula (27) to derive the

overall evaluation values zi(i = 1,2,3) of the alter-
natives xi(i = 1,2,3):

z1 = IFWAλ (z(1)
1 ,z(2)

1 ,z(3)
1 ) = (0.3637,0.3600);

z2 = IFWAλ (z(1)
2 ,z(2)

2 ,z(3)
2 ) = (0.3127,0.4936);

z3 = IFWAλ (z(1)
3 ,z(2)

3 ,z(3)
3 ) = (0.3941,0.4542).

Step 6. Utilize the score function to calculate the
scores s(zi)(i = 1,2,3) of overall evaluation values
zi(i = 1,2,3) of the alternatives xi(i = 1,2,3):

s(z1) = 0.0038, s(z2) =−0.1809, s(z3) =−0.0601.

Utilize the score degrees s(zi)(i = 1,2,3) to rank the
alternatives xi(i = 1,2,3), we obtain

x1 Â x3 Â x2.

Therefore, we obtain that x1 is the best alterna-
tive.

6. Conclusions

Entropy and similarity measure are two impor-
tant notions for intuitionistic fuzzy sets. To im-
prove the entropy measure provided by Szmidt and
Kacprzyk26, we have established a new entropy
measure with geometrical interpretation of intuition-
istic fuzzy sets. The new entropy formula can mea-
sure both fuzziness and intuitionism of intuitionistic
fuzzy sets. According to the relationship between
entropy and similarity measure, we have presented
a new similarity measure between two intuitionistic
fuzzy sets. Based on entropy and similarity mea-
sures, we have proposed two methods to determine
weights of experts for multi-attribute group decision
making under intuitionistic fuzzy environment. Fi-
nally, we have established a multi-attribute group
decision making method and adopt illustrative ex-
amples to demonstrate its rationality.
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