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Abstract 

A novel froth image analysis based production condition recognition method is presented to identify the froth 
phases under various production conditions. Gabor wavelet transformation is employed to froth image processing 
firstly due to the ability of Gabor functions in simulating the response of the simple cells in the visual cortex. 
Successively, the statistical distribution profiles based feature parameters of the Gabor filter responses rather than 
the conventional mean and variance are extracted to delineate the essential statistical information of the froth 
images. The amplitude and phase representations of the Gabor filter responses are both taken into account by 
empirical marginal and joint statistical modeling. At last, a simple learning vector quantization (LVQ) neural 
network model is used to learn an effective classifier to recognize the froth production conditions. The effectiveness 
of this method is validated by the real production data on industrial scale from a bauxite dressing plant.  

Keywords: Foth flotation process, froth image, production condition classification and recognition, Gabor wavelet 
transform, marginal distribution, joint distribution. 
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1. Introduction 

Froth flotation is a worldwide used ore dressing method 
by utilizing air bubbles to separate different mineral 
materials based on their relative affinity to water. In 

terms of daily tonnages of ores that are treated by this 
method globally, froth flotation is the most important 
method with a history of one hundred years. However, 
part of its essential technological mechanism is still 
unknown and consequently it is still a difficult problem 
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to control the flotation process robustly and optimally 
through building concise mathematic model due to its 
inherent chaos and upsets 1. 

It’s worth noticing that flotation production 
conditions vary widely with the input disturbance (e.g. 
Fluctuation of the feeding grade) and the change of 
operational conditions, which produce different yields 
of flotation products with distinct product quality. 
Modern process control of complex industrial processes 
should aim at not only ensuring the control variables 
well follow the simple set point, but also requiring 
proper control strategies to set effective set-points for 
the control variables to achieve satisfactory production 
indexes, which is usually treated discriminatingly in 
accordance with the different process production 
statuses2. Hence, automatic classification and 
recognition of the production conditions is an important 
issue for flotation performance evaluation and process 
optimization.  

The flotation production condition is comprised of 
the current flotation operation mode, the metallurgical 
parameters in the flotation process and the instantaneous 
froth surface appearance with the corresponding 
flotation performance, which is difficult to be classified 
and recognized by the naked-eye observation or the 
traditional process parameter monitoring methods. The 
main reasons are that the whole flotation process 
consists of several sub-processes, each of which has a 
large amount of process variables coupled seriously 
with each other, even more, some key production 
indexes and process variables can not be detected in real 
time.  

It has been long proved that the visual features of 
the froth surface involve the pivotal information of the 
flotation operation modes (the aeration, the reagent 
addition, pulp level, mass pull and so on) and also is an 
effective indicator to the performance indexes(the 
concentrate grade and the mineral recovery)3. The state-
of-art process control of flotation circuit dominantly 
depends on the naked-eye observation of the appearance 
of the froth upper surface by the experienced operators. 
This kind of operation style has many drawbacks. 
Firstly, it’s unable to settle for the continuous 
observation of the whole flotation process. The 
interpretation of visual information is further 
complicated by the time lag between the occurrence of 
the froth phenomena and the results of the flotation 
performance4. Furthermore, it would get distinct 

operation results (even opposite to the expectation) from 
the same froth phase for the human perception of the 
froth upper surface varies from one to another, and so 
on.  

In order to improve the automatic control level and 
decrease the casualness of human operation to 
ultimately decrease the fluctuations of the flotation 
production indexes, researchers adopt the machine 
vision to the flotation process monitoring and control. 
Some satisfactory tentative reports can be found in the 
literatures since the 90s’ of last century5-10. A more 
recent elaborate summary of the existed physical and 
dynamic froth feature extraction was reported by Aldrich 
11, which pointed out that the machine vision based 
flotation processing monitoring and control attracts 
increasing inertest since its introduction in the late 
1980s, however, linking the visual froth features and the 
flotation performance remained challenging and 
demands further researches. What’s more, it is also 
reported that a fully automatic control of the flotation 
system remained a long way to improve12. 

Machine vision based flotation process monitoring 
and control system utilizes the computer vision 
technology to extract the visual features of the optical 
signals of the upper froth surface. Consequently, an on-
line flotation monitoring and close-loop control strategy 
to flotation process control can be put into practice after 
building the dynamic models of flotation process based 
on the relation analysis between the visual features and 
the flotation process variables5. In the machine vision 
based flotation process monitoring and control, how to 
delineate the froth surface appearance and extract the 
distinctive visual features to characterize the flotation 
production conditions is significantly important. The 
froth image has its own special characteristics in 
comparison with the other natural images, which is 
difficult to be depicted by the conventional image 
processing technologies.  

The upper froth surface represents special visual 
textures in flotation process, which is fully occupied by 
tightly contacted bubbles of various sizes and irregular 
shapes, accompanying with bubble bursting, collapsing, 
merging, and new bubble generation during the froth 
flows to the cell lips (plate of the scrapper). The 
morphological structures of the bubbles, the surface 
light intensity of the froth and the uneven degrees of the 
froth surface change delicately with the varieties of 
flotation operation modes and the disturbance of the 
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feeding ores. All of these variations lead to a special 
flotation production condition and appear on the froth 
surface in return.  

Hence, the texture features of the froth surface 
appearance can be utilized as the indicators of the 
variation of the flotation production conditions or as a 
latent indicator of flotation production indexes. Several 
different froth surface texture extraction and delineation 
methods can be found in the reports. Bartolacci13 
summarized the conventional froth texture feature 
extraction methods and extracted the froth surface 
texture parameters by MIA (Multivariate Image 
Analysis), GLCM (Gray-level Co-occurrence Matrices) 
and Wavelet texture analysis respectively. Taking a zinc 
flotation circuit as the real application object, the 
relationship between froth surface texture parameters 
and production indexes was studied by utilizing PLS 
(Partial Least Square) regression and PCA (Principal 
Component Analysis) method. The feasibility of the 
flotation process control strategy based on froth visual 
features is also discussed in the literature 13. By 
combining the multi-resolution analysis (MRA) and 
multivariate image analysis (MIA), Liu14 used the MR-
MIA of the RGB froth image to characterize the froth 
phase or production health statuses in a zinc recovery 
section of Agnico-Eagle's Laronde plant in Quebec. The 
relation between the froth texture and the production 
performance has also been studied. Some statistical 
texture analysis techniques such as gray-level co-
occurrence matrix (GLCM)15 and its variants (e.g., 
texture spectrum and neighbouring gray-level difference 
matrix (NGLDM), spatial gray level dependence matrix 
(SGLDM))4 based froth image texture extraction 
methods have been used to classify froth phases into 
pre-defined classes that correspond to different 
production statuses. Hargrave16 adopted the fractal 
analysis to extract the froth characteristics. A PCA 
based froth image representation method was 
implemented by Kaartinen17. There are also some other 
visual features of froth images can be extracted18, 19, 
such as morphological bubble features (bubble size with 
distribution, bubble shape) extracted by froth 
segmentation3, but current froth image segmentation 
algorithms are insufficient to process the various size 
occupied froth image, especially to the images full filled 
both large bubbles and tiny bubbles. In summary, the 
geometric structures of froth bubbles are time 
consuming and difficult to be characterized accurately. 

These aforementioned reports generally focus on the 
heavy metals (e.g. copper ore, Au ore, Pb-Zn ore) 
flotation or non-metal ore dressing (e.g. coal dressing), 
where the mineralized bubbles exhibit some regular 
properties, which can be distinguished from the froth 
surface apparently. However, in the light metal mineral 
flotation (e.g. bauxite flotation), the shapes of froth 
bubbles are relatively more irregular, which cannot be 
distinguished clearly. The explicitly perceptible froth 
features are the surface texture (e.g. roughness, 
coarseness, evenness). Hence, it’s even harder to 
identify the flotation production conditions by the 
naked-eye observation or the traditional froth image 
processing techniques. Consequently, the stable optimal 
control of light metallic ore flotation is even harder to 
be executed, resulting in much more susceptible 
production indexes and greater waste of mineral 
resource and reagents.  

However, it’s well acknowledged that the surface 
texture of the forth image is an important feature for 
vision processing in the real application20-25. Though 
human beings can distinguish complex texture perfectly, 
they cannot focus on inspecting the forth surface for a 
long time, what’s more, the individual perception of the 
froth image is objective, which is unsuitable for the 
flotation production performance estimation and the 
stable process control. In terms of the froth image 
texture extraction, the micro-heterogeneity, complexity 
and the uncertainty of the froth texture appearance lead 
to a great challenge to visual feature extraction of the 
froth images. Consequently, it is hard to describe and 
distinguish the froth phases in different production 
phenomena automatically by the conventional digital 
image processing methods. GLCM and PCA based froth 
texture feature extraction methods are studied 
extensively in the surface texture analysis of the froth 
images. However, it’s hard to describe texture precisely 
by GLCM or PCA for these methods are nothing to do 
with the visual perception of the human beings, which 
cannot delineate the multi-resolution and multi-
orientation features of the froth images. Motivated by 
the perceptual mechanism of the biological vision, the 
distinctive froth visual texture features of multi-
channels and multi-directions should be considered to 
delineate the varieties of the production conditions in 
order to distinguish the flotation production conditions 
accurately by froth image analysis. Daugman26 
discovered that the simple cells in the visual cortex of 
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mammalian brains can be modeled very well by the 
profile of Gabor functions. Hence, image analysis by the 
Gabor filtering is similar to perception in the human 
visual system. Since the Gabor filters27 can simulate the 
visual perception property of mammalian froth images, 
the Gabor wavelet features of froth images in different 
scales and orientations can be extracted in advance in 
order to get the distinctive froth visual feature for 
production condition recognition, which can get the best 
resolution in both spatial domain and frequency domain. 
What’s more, since the froth image is comprised of a 
great number of mineralized bubbles, the characteristic 
parameters based on the statistical distribution profiles 
of the Gabor filter responses are effective to represent 
the visual change occurrence under the different 
flotation production conditions. 

Since the accurate classification and recognition of 
the flotation production conditions in real time is the 
foundation for the flotation process optimization, this 
work mainly focuses on developing an effective method 
for flotation production conditions classification and 
recognition by obtaining distinctive visual features of 
the froth image without time-consuming and inaccurate 
image segmentation and other complex image 
processing method. Firstly in order to extract the 
effective statistical features of froth images to delineate 
the delicate froth surface for production condition 
identification, this work adopts Gabor wavelet 
transform to froth image processing in advance. Then, 
the statistical distributions of the Gabor amplitude 
response representation (GARR) and the Gabor phase 
response representation (GPRR) of the froth images are 
analyzed by the marginal statistical distribution and 
joint statistical distribution modeling respectively. The 
corresponding statistical distribution characteristic 
parameters of GARR and GPRR are modeled 
statistically and extracted to delineate the froth image 
appearance. At last, the mineral flotation production 
conditions can be classified and recognized by using the 
unsupervised clustering analysis (e.g. fuzzy clustering 
analysis) and supervised learning methods (e.g. LVQ 
neural network). A knowledge based flotation process 
control system can be constructed from the combination 
of historical flotation performance data and the 
classification results and image from the vision system 
in future.  

This paper is organized as follows. In the second 
section, a brief overview of the flotation process and the 

machine vision based process monitoring system are 
presented. Statistical modeling and visual features 
extraction of the froth images based on the GARR and 
GPRR are described in section 3. In section 4, the 
relationship between the visual features of the froth and 
the flotation production conditions is analyzed, and then 
the flotation production conditions classification and 
recognition method and the corresponding experiment 
results are discussed; finally. Section 5 concludes the 
whole investigation with possible future extensive 
research of the project. 

2. Machine Vision based Flotation Process 
Monitoring 

Froth flotation is a complex physicochemical process to 
separate valuable minerals from raw ores according to 
their surface properties (hydrophobic and hydrophilic). 
It is a continuous process with complex physical and 
chemical reactions, where mineral particles in slurry 
suspension are collected through their preferential 
attachment to air bubbles6,7. Before the froth flotation 
process, the raw ores are crushed and ground to the 
powder of desired sizes. Then, the powder is mixed with 
water and chemical reagents and the resulting pulp are 
fed to a series of flotation cells, with the impeller 
stirring and aeration.  

The mineral particles, depending on their physical 
characteristic of the mineral contents, tend either to float 
(stick to the bubbles) or sink in the liquid. Usually, 
some special reagents are added to adjust the surface 
hydrophobic property of ores particles in order to 
strengthen the mineral separation. Both the froth and 
pulp still contain ore particles with various mineral 
contents. Hence, the separated particles in the froth and 
in the remaining pulp are usually fed to the next 
flotation cells to continue the separation process. The 
main parts of a typical flotation circuit used in mineral 
dressing industry can be seen from Fig.1 (a). 

Fig.1(a) illustrates a concise schematic of a bauxite 
flotation circuit in northern China, which is comprised 
of rougher bank, scavenger banks and cleaning bank. 
Each bank includes dozens of flotation cells. It takes 
one or two hours from ore feeding to concentrate 
production or tailing. One of the flotation machine 
(flotation cell) used in this plant is displayed in Fig.1 (b), 
whose effective volume is about 16 3m  with cross 
section area of 2.80*2.80 2m and height of 2.4 m . The 
froth phases are difficult to be distinguished by the 
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naked-eye observation, consequently the mineral 
separation is far from ideal. The rapid progress in 
computer technology makes the use of machine vision 
in the automatic process monitoring and control of the 
flotation operations possible. A typical flotation froth 
image monitoring system is sketched out in Fig.2 (a). 

 

Conditioner

Rougher bank

Reagents addition

Ore feed pulp

Tailing

Concentrate

Image acquisition device Froth Collection

Tailing

Scavenger bank

Cleaning II bank Cleaning I bank Scavenger bank

Fluid of Feed pulp/Reagent  

 
(a) Flow chart of the flotation process 

Air

Feeding

Concentrate

Motor

Tailing

 

(b) Schematic of a flotation cell 

Fig.1 Flotation process and flotation equipment 

 The machine vision based flotation process 
monitoring system is comprised of industrial computer 
connected with the froth image acquisition device, 
which consist of industrial RGB camera, high frequent 
light source, cover hook to protect the camera from dust 
and ambient light, optical fiber with length over 200 m 
for signal communication to industrial PC computer in 
the operating room. The vision system is set up to 
monitor the flotation production conditions 
automatically by inspecting the froth visual information 

automatically, so as to adjust the flotation operation in 
time and make the flotation production stable and 
optimized. Take the abovementioned industrial scale 
monitoring system mounted in the bauxite flotation 
plant in northern China as an example. The industrial 
camera with 49 mm lens placed about 110 cm above the 
surface of flotation froth layer. Froth image sequences, 
derived from videos captured at the rate of 15 frames/s, 
are collected from several individual flotation cells. The 
window size of each froth image in a cell is 12*9.6 

2cm . The light is also right above the surface of the 
froth layer and parallel to the RGB colour camera.  

3. Visual Features Extraction of Flotation Froth 
Images 

In the machine vision based flotation process 
monitoring, the industrial control computer acquires the 
froth image signals and then analyzes them 
automatically. Fig.2(b) is a snapshot of a typical froth 
image from the above mentioned bauxite flotation 
process. As can be seen from Fig.2(b), the froth image 
is full filled with convex bubbles of various sizes and 
shapes, without void space and background between 
each bubble. The dark regions represent the collapsed 
bubbles, and the highlight spots are the top lips of the 
bubble film in the froth image. The chromatic 
information (RGB color space) of froth image is highly 
correlated. As can be seen from Fig.2(c), the intensities 
in different color channels of the same pixels (RGB) 
cluster to a straight line, which means that the RGB 
color channels of the image pixels have the same 
intensity trend. It reveals that the froth image just needs 
to be processed in any one of its color space, or in 
achromatic value space. The froth color information 
reflects the hint of the valuable mineral particles 
adhered on the bubbles, for example the chalcopyrite 
flotation froth appears as golden color. As to a special 
flotation plant, the desired ores are generally fixed and 
hence the color information is relatively less important 
to a special flotation plant. Especially in the light 
metallic ore flotation, as can be seen from Fig.2(c), 
different color channels generally have the same value 
of the same pixel, so the froth image mainly displays the 
achromatic behavior. Hence, the froth image can be 
processed in the gray channel without loss of the 
essential chromatic information of the froth surface. 
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3.1. Gabor wavelets 

Gabor filters are biologically motivated convolution 
kernels due to they can model the receptive fields and 
orientation selective characteristics of human visual 
cortical cells 28, whose primitive theory can be found in 
the works of Gabor. Daugman extended it and 
constructed the 2D Gabor filtering, which can get 
minimum uncertainty in spatial domain and frequency 
domain simultaneously29. Manjunath30 compared the 
performance of various methods of wavelet transform 
systematically, whose experimental results show that 
Gabor filter can describe the visual features of images 
excellently for its multi-directional selectivity. A 

complex Gabor filter is defined as the product of a 
Gaussian kernel times a complex sinusoid, i.e. 

),(),(),( yxwyxsyxg r=             (1) 
),( yxs  is also called the carrier, that is  

)))(2(exp(),( 00 pyvxujyxs ++= π      (2) 
where ),( 00 vu  and p  define the spatial frequency and 

the phase of the sine function respectively. ),( yxwr  is 
a 2-D Gaussian-shaped function, known as the Gaussian 
envelope, which is 

)))(

)((exp(),(
2

0
2

2
0

2
max

r

rr

yyb

xxakyxw
−

+−−= π     (3)

 
 

Fig. 2 Machine vision based flotation froth monitoring system 

 
Where maxk represents the scales of the magnitude of 

the Gaussian envelop, ),( 00 yx is the peak of the 

function, a and b  are the scaling parameters of the 
Gaussian, and the subscript r  denotes a rotation 

operation, and rxx )( 0− and ryy )( 0−  are as follows  

θθ sin)(cos)()( 000 yyxxxx r −+−=−        (4) 
θθ sin)(cos)()( 000 yyxxyy r −+−−=−         (5) 

Gabor function is a complete but non-orthogonal 
basis set which can be expanded when any specific 
function ),( yxf  is given. This kind of method to 
describe local frequency has been applied in many fields. 
However, local frequency analysis requires a fixed 
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function window width and the frequency wideband is 
linear and constant. For the sake of optimizing the 
function of detection and location at various scales, 
multi-supported filter banks are necessary, which means 
Gabor filtering can be carried out through the way of 
parallel to wavelet decomposition, while the basis 
function of wavelets is Gabor function24. 

Gabor wavelet is also sealed wavelet, which is 
enveloped by Gaussian function in a complex planar 
wave. Different Gabor wavelets have different scale 
coefficients and directions. Gabor wavelet is generated 
by the next equation 

( )

( )( ) ( )[ ]2/expexp

2
exp),(

2
,

2

222

,

2

2

,

,

σ

σσψ

−−+⋅

⋅
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ +
−=

yxKi

yxKK
yx

vu

vuvu

vu
     (6) 

where   ( )vuvu i
f

KK φexpmax
, =              (7) 

In Eqn. (7), 8/vv πφ = , maxK  is the maximum 

frequency and f  is the frequency ratio, u  represents 
the scale factor ]1,0[ −∈ Uu ,and v  is the orientation 
factor ],1[ Vv∈ . U and V are the numbers of scales 
and direction aspects respectively. σ  is the standard 
deviation, which determines the effective size of the 
surrounding of a pixel in which weighted summation 
takes place. It reported that the effect of DC component 
can be eliminated31 to avoid the unwanted dependence 
of the filter responses on the absolute intensity of the 
froth images for a sufficiently high values of σ . 

3.2. Gabor Wavelets Transform of Froth Image 

The output of the Gabor wavelet transformation of the 
froth image can be described by computing the 
convolution between the froth image and a set of Gabor 
wavelets of different scales and orientations. Suppose 

),( yxI  is the gray level representation of froth image, 
then the Gabor filter response of froth image can be 
computed as follows. 

( ) ( ) ( )yxyxIyxO vuvu ,,, *
,),( ψ∗=          (8) 

where ∗ represents the operation of convolution, 
( )yx,*ψ  denotes the complex conjugate of ),( yxψ , 

( )yxO vu ,),(  means the convolution result of the froth 
image with the Gabor wavelet sub-band at ( u , v ), 
whose scale is u  and the direction is v . The Gabor 
amplitude response representation (GARR) and the 

Gabor phase response representation (GPRR) of the 
froth image filtered by Gabor wavelets at the sub-
band( u ,v) can be found as follows. 

( ) 2 2, ( , )( , )(Re( ( , ))) (Im( ( , )))M x y u vu vO x y x yO= +
  (9) 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= −

)),(Re(

)),(Im(
),(

),(

),(1tan yx

yx
yxP

o
o

vu

vu   (10) 

where ( , )P x yπ π− < < .  
Fig.3 (a) and (b) display the GARR and GPRR of 

of a froth image respectively, which is processed with a 
set of Gabor wavelets with 5 scales and 8 orientations. 
The original froth image is shown in Fig.2 (b).  

However, the uninstructed convolution results of 
GARR and GPRR can not be used as texture 
characteristic directly. Since there existed 80 Gabor 
feature images after convolution in 40 sub-bands of 
each image, they are too large to be used to classify and 
distinguish industry production conditions directly. To 
solve the curse of the dimensionality due to the multi-
channel Gabor filter response features, the Gabor filter 
responses need some post-processing to reduce to a 
representative feature vector before they become 
efficient texture features. The conventional features 
extracted from Gabor filter response are the energy 
based features (statistical mean and variance of the 
GARR), which has been generally used in many works. 
Take the statistic mean and variance as the statistical 
features of GARR, which is thus equivalent to 
characterize the latent marginal distribution of GARR 
by Gaussian distribution ( GD ). However, according to 
thousands of experiments and deeper investigation, the 
distribution of the GARR generally subjects to Gamma 
distribution ( DΓ ) rather than GD . Hence, the simple 
mean and variance based statistical features from 
GARR cannot characterize the special distribution shape 
of the GARR. What’s more, GPRR is not worthless 
though the GPRR rotated with the magnitude in some 
rate27. Due to this rotation with somewhat absurd 
change, the GPRR has very important structural 
information of the froth image. Hence, GPRR is also 
nontrivial in the  image texture analysis. There can be 
found some successful phase features based biological 
feature authentication in the literatures32,33.  

In order to obtain the distinctive features of GARR 
and GPRR in accordance with their special statistical 
distribution profiles, the marginal statistical and joint 
statistical distribution features of GARR and GPRR are 
analyzed subsequently for the purpose of obtaining the 
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essential statistical distribution characteristic parameters 
of the froth surface for the ultimate goal of production 
conditions classification and recognition. 

 
(a) display of GARR   

                                  
(b) display of GPRR 

Fig.3 Gabor wavelet transform of froth image 

3.3. Visual Feature Extracting Based on 
Statistical Modeling of GARR 

3.3.1. Marginal distribution Based Characteristic 
Parameters of GARR 

It’s worth noticing that the statistical distribution of 
the GARR is much closer to a Gamma distribution 
( DΓ ). Fig.4 displays the histogram distribution profiles 
of all the 40 sub-bands of GARR shown in Fig.3(a). The 
feature parameters fitted by DΓ  are much more 
suitable than the mean and variance used to delineate 
the froth surface appearance in terms of the marginal 
distribution profiles of GARR.  

The statistical characteristic parameters of the 
GARR can be fitted by DΓ  probability density 
function (PDF) ),,( βαxf  through maximum 
likelihood estimation (MLE). βα ,  is the DΓ  
parameters, which can determine the DΓ  profile 
uniquely. x is the coefficient variable of  any sub-band 
in GARR. The probability density function (PDF) of 

DΓ  can be computed as  

βα
α αβ

βα
x

exxf 1

)(
1),,( −

Γ
=          (11) 

where )(•Γ  is the gamma function, namely, 

∫
∞ −−=Γ

0

1)( dtte t αα
           (12) 

 
Fig.4 GARR histograms of all the sub-bands. Horizontal axis: 
GARR coefficient value, vertical axis: probability density. 

In order to validate the effectiveness of the DΓ  
fitting of GARR, we firstly empirically assesses the 
fitting goodness by the Kullback-Leibler divergence 
(KLD). Fig.5 (a) displays a fitting example of GARR 
both in GD  and DΓ  at the sub-band (3,2). It can be 
seen that DΓ is a much better fitting distribution to 
model the statistical distribution of GARR. The KLD 
measures are used to validate the goodness of the fitting 
of the marginal distribution of GARR at each sub-band 
by GD  and DΓ respectively. The KLDs between the 
empirical histogram distribution of GARR and the 
fitting results of GD  and DΓ  in all sub-bands are 
plotted in the Fig.5 (b). The KLDs measures of all the 
sub-bands indicate the out-performance of DΓ . 

In order to further test the accuracy of the 
statistical modeling results of GARR in each sub-band, 
we adopt the Kolmogorov-Smirnov (KS) test34 to 
inspect the goodness of the PDF fitting results of GARR. 
Fig. 5(c) plots the PDF fit goodness test results by the 
KS method of a special sub-band (3, 2) of GARR 
displayed in Fig.5(a). It can be seen explicitly that the 
estimated cumulative distribution function (CDF) by 

DΓ  is theoretically coincident with the empirical CDF 
of GARR. In combination with Fig.5(a) and (b), it 
demonstrates DΓ  is a reasonable distribution to 
estimate the statistical distribution profile of GARR in 
each sub-band. 

A great amount of experiments shows the 
statistical distribution of GARR cannot reject the 
hypothesis of the DΓ  with the significance at the 5% 
level by KS tests. Namely, DΓ  can provide much more 
satisfactory fitting results than GD . Hence, a 
conclusion can be drawn that marginal probability 
distribution density model of GARR can be built more 
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precisely by using DΓ estimation rather than GD  
estimation according to the marginal distribution shapes. 
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 (a) example of histogram profile of GARR with the expected 
GD  and DΓ  fitting results.  
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(b) KLDs comparison of of DΓ and GD  modeling results 
of GARR in all subbands 
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 (c) KS test of GARR statistical distribution 

Fig.5 Probability density fitting results of GARR 

Since the GARR subjects to DΓ , the distribution 
parameters of probability density function (PDF) of 

DΓ is extracted, which are competent to express the 
distribution characteristics of GARR. However, the 
global GARR (GGARR) obtained from the whole froth 
image suffers from a great loss of the delicate 
information of the local bubble region structure. In 
order to preserve the local structure information of froth 
image, the local froth image features are all taken into 
account. Firstly, the froth image is divided into some 
non-overlapping sub-images. Then, each of the sub-
image is treated as an independent froth image. At last, 
the Global GARR (GGARR) and the local GARR 
distribution (LGARR) characteristic parameters are both 
obtained the same as the GGARR by the statistical 
modeling of DΓ . 

In summary, a kind of expanded statistical texture 
descriptor of GARR is achieved by the combining of 
GGARR and LGARR together. The marginal 
distribution characteristic parameters of GARR 
(MGARR) can be represented as  

),( MLGARRMGGARRMGARR FFF =      (13) 

where MGGARRF  and MLGARRF  are as follows. 

( ){ },
, :MGGARR u v

F α β= VvUu ,,0,,,0 ==

( ){ }:, ,, vukMLGARRF βα= ,,,0,,,1 UuKk == ,

Vv ,,0= , where K denotes the number of sub-
images, U and V are the number of scales and directions 
of the Gabor filters respectively used to froth image 
decomposition.  

3.3.2 Joint distribution of GARR 

It’s well known that the image intensity has close 
correlation between the adjacent pixels, namely when 
one pixel has the high light intensity, so do its adjacent 
pixels. The Gabor filters responses of the froth image 
also have the same statistical dependence. The marginal 
distribution eliminates the dependence of the adjacent 
pixels and consequently incomplete to describe the 
statistical feature of froth image. In practice, the 
probability densities of the joint distribution of the 
adjacent pixels of GARR have positive values just in a 
narrow region in the whole magnitude value region, 
while the probability in the other value region is 
generally close to zero. The fluctuation of the area 
proportion of the whole magnitude region represents the 
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varieties of the froth structure and indicates the change 
of the flotation production conditions implicitly.  

Hence, in order to get the higher order of statistical 
features of the GARR to delineate the statistical 
dependence of the adjacent pixels, the joint distribution 

),( yxH of direct neighboring coefficients of each sub-
band representation in the GARR is computed and the 
area proportion of the 90% cumulative probability is 
extracted as the joint distribution parameters, which can 
obtain the concentration area of the joint distribution 
feature of GARR. In terms of the froth surface 
appearance, the joint distribution features can be used to 
describe the coarseness of the froth surface, which 
significantly correlate to the loading of the mineral 
particles in the froth bubbles and consequently with 
tightly effect on the concentrate grade and the recovery 
of the valuable ores.  

According to the Bayesian inference, the joint 
distribution of GARR can be described as follows. 

)|()(),( | xyHxHyxH XY=      (17) 

where )(xH means the marginal distribution of the 

GARR and )|(| xyH XY means the condition 

distribution of the adjacent pixels value of GARR. Since 
)(xH  generally subjects to Gamma distribution and is 

positive, we mainly consider the condition distribution 
)|(| xyH XY  in the practical application. Fig.6 displays 

the joint probability density of the GARR with its 90% 
cumulative probability density of its contour. As can be 
seen from Fig.6 that the GARR is highly correlated and 
the area proportion of the magnitude region of 

)|(| xyH XY  of GARR is distinct in the different sub-

bands. 
In order to preserve the local structure information 

of the froth image, the image is also divided into some 
non-overlapping sub-images in advance the same as the 
marginal statistical distribution feature extraction. All of 
the sub-images are processed as an independent froth 
image. The local joint statistical distribution of GARR 
(LJGARR) is also treated by computing the area 
proportion of the 90% cumulative probability to the 
whole probability density area of the joint distribution. 
Hence, the joint distribution description of GARR is 
achieved by the combining of the joint distribution of 
global GARR (GJGARR) and local joint distribution of 
GARR (LJGARR) together.  

In all, the joint distribution parameters of GARR 
(JGARR) can be described as 

 
(a)  Display of the joint probability density of GARR, the light 
color means the large probability and black denotes the low 
probability. Horizontal axis and vertical axis are both the 
coefficient value of GARR 

 
(b) Contour of the joint probability density of GARR. 
Horizontal axis and vertical axis are both the coefficient value 
of GARR 

Fig.6 Joint statistical probability density of GARR 

( , )JGARR GJGARR LJGARRF F F=        (14) 

where JGGARRF  and JLGARRF  are  the global and local 
feature of the joint distribution of GARR respectively, 
which can be formulated as follows,  

( ){ },
90GJGARR u v

F mjarea=           (15) 

( ){ }, ,
90LJGARR k u v

F mjarea=          (16)  

where 90mjarea is the area proportion of 90% 
cumulative probability to the whole probability density 
area of the joint probability density distribution, U and 
V are the number of scales and directions of the Gabor 
filters respectively. ),( vu is Gabor filter sub-band, 
where Vv ,,0=  and Uu ,,0= . k  represents 
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the kth sub-image in the froth image and Kk ,,1= , 
K  is the number of sub-images. 

3.4. Visual Feature Extracting Based on 
Statistical Distribution of GPRR 

3.4.1 Marginal distribution of GPRR 

The statistical distribution feature of GPRR should also 
be studied. Firstly, the marginal distribution of GPRR is 
considered. Fig.7 displays the histogram distribution 
profile of each sub-band of GPRR. 

 
Fig.7 GPRR Histograms. Horizontal axis: GPRR coefficient 
value, vertical axis: probability density 

It can be seen from Fig.7 that the marginal 
distribution of GPRR is irregularity and cannot be 
described by a special distribution function as described 
in GARR. In terms of information theory, the uncertain 
distribution of GPRR has much more information about 
the froth visual structure. That’s why ignoring GPRR is 
not a good choice when depicting the texture 
characteristic of froth image. Entropy is an effective 
measure of the information uncertainty. This 
investigation extracts the entropy of GPRR as the 
characteristic of the phase spectrum distribution. The 
entropy measure based visual feature of GPRR can be 
defined as follows 

( ) ( )loguv uv uv
x

H p x p x= −∑         (17) 

Where uvH is the entropy GPRR at the sub-band 

( , )u v . ( )uvp x  is probability density of coefficient x  

of GPRR of subbands ( , )u v . In order to obtain the 
local statistical feature of GPRR, the froth image is also 
divided into sub-images like the processing of GARR in 
advance. Hence, the GPRR of froth image can also be 

represented as the global feature of GPRR (GGPRR) 
and the local feature of GPRR (LGPRR). The statistical 
characteristic parameters of GPRR can be described as   

( , )MGPRR GMGPRR LMGPRRF F F=      (18) 

where GMGPRRF  and LMGPRRF LGPRR denote the 
global marginal feature and local marginal feature of  
GPRR respectively. They can be expressed as follows. 

,( : 0, , , 0, , )GMGPRR u vF H u U v V= = =  

, ,( : 0, , , 0, , ,
1, , )

LMGPRR u v kF H u U v V
k K

= = =

=
 

where K means the amount of the sub-image separated 
from one froth image, U and V are the number of scales 
and directions of the Gabor filters respectively. 

3.4.2 Joint statistical distribution of GPRR 

The second order statistical distribution of the 
GPRR also contributes to the effective representation of 
the statistical dependence of the froth image. Fig.8 
displays the joint distribution of the GPRR. As can be 
seen from Fig.8, the region of the positive probability 
density is very narrow and generally the same shape 
likes the GARR. It’s convenient to extract the area 
proportion of the cumulating probability of 90% as the 
joint distribution feature of the GPRR, which is an 
important statistical feature to delineate the statistical 
dependence of the GPRR. The same as the GARR, the 
froth image is also separated into some non-overlapping 
sub-images in advance in order to preserve the subtle 
structure information of the froth image. All the sub-
images are processed as an independent froth image. 
Hence, the joint distribution characteristics of GPRR are 
achieved by the combining of Global joint distribution 
of GPRR and the local joint distribution of GPRR 
together. So, the joint distribution parameters of GPRR 
(JGPRR) can be described as 

( , )JGPRR GJGPRR LJGPRRF F F=        (19) 

where GJGPRRF  and LJGPRRF  represent the global and 
local joint features of GPRR and can be formatted as 
follows. 

( ){ },
90 : 0, , , 0, ,GJGPRR u v

F pjarea u U v V= = =

( ){ }, ,
90 : 1, , , 0, , ,

0, ,
LJGPRR k u v

F pjarea k K u U

v V

= = =

=
where 90pjarea  means the area proportion of the 
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90% cumulative probability of the joint probability 
distribution of the GPRR, K represent the amount of the 
sub-images from the single froth images, U and V are 
the number of scales and directions of the Gabor filters 
respectively.  

 
(a) Display of the joint probability density of GPRR, the light 
color means the high probability and black means the low 
probability. Horizontal axis and vertical axis are both the 
coefficient value of GPRR 

 
(b) Contour of the joint probability density, representing the 
90% cumulative probability region. Horizontal axis and 
vertical axis are both the coefficient value of GPRR 

Fig.8 Joint probability density of GPRR 

3.5. Visual characteristics representations of froth 
image 

The corresponding marginal statistical and joint 
statistical distribution parameters are effective statistical 
characteristic parameters to delineate the froth surface 
appearance, which are more reasonable characteristics 
to obtain the statistical distribution profiles of Gabor 
filter responses. Consequently, the visual characteristic 
of froth image can be expressed as follows. 

( , , , )Gabor MGARR JGARR MGPRR JGPRRF F F F F= (20) 

If we use the Gaobr wavelet filters with 5 scales and 8 
directions, a number of )40*40(*5 K+  feature 
variables are obtained by computing the corresponding 
statistical characteristic parameters of GARR and GPRR 
to represent the distribution features of Gabor filter 
responses (K indicates the number of sub-images of 
froth image and if K is equal to zero, all the 
characteristic are global statistical characteristic, 40 
means there are 40 sub-bands of froth image filter 
responses in all 5 scales and 8 orientations, 5 indicates 
five parameters, they are 90,, mjareaβα , 

vuH ,
and 

90pjarea .  

4. Flotation Production Condition Classification 
and Recognition 

4.1. Flotation production condition and its 
corresponding froth surface appearance 

After the representative visual characteristics of froth 
images are extracted, an effective classifier can be 
learned from the training samples under some 
predefined typical flotation production statuses. Then, 
the conditions of flotation production can be identified 
by the trained classifier according the instantaneous 
froth surface appearance by the visual monitoring 
system. The diagram of machine vision based flotation 
production condition classification and identification 
process is displayed in Fig.9. 

In this investigation, we take the real flotation 
production data collected from the above mentioned 
bauxite flotation plant as the research and application 
object. A machine vision based flotation froth 
monitoring and processing system was mounted on this 
plant. Introductive information of the flotation circuit 
and the froth monitoring system are introduced in 
section 2. It takes more than two years to monitor and 
observe the froth images and the corresponding flotation 
conditions of the bauxite flotation plant since 2009. A 
great number of froth image samples and the 
corresponding production process variables are 
collected. It is found that froth visual features are highly 
related to the dosage of reagent of the flotation cell, and 
the visual features are also tightly related to the bubble 
loading, which consequently have effects on the 
flotation performance indexes (concentrate grade and 
recovery of the valuable ores). In terms of real operation 
on industrial scale of the bauxite flotation plant, there 
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are two types of reagents are used, a pH regulator and a 
collector, which are adjusted by the operators in terms 
of the flow rate of the feeding with considering of the 
froth surface appearance. With different operation 
modes (e.g. different reagent addition, different 
aeration), the froth phase change gradually, which can 
be indicated by the froth surface appearance. 

For the sake of utilizing the statistical texture 
characteristics of the froth surface to classify and 
recognize the production conditions of the froth 
flotation, the froth phases are predefined to six statuses 

(Class I~ Class VI) empirically according to flotation 
production conditions with the corresponding froth 
surface appearance. The typical froth image under each 
flotation status is displayed in Fig.10. The samples of 
the froth images under different flotation production 
conditions are chosen manually based on considering 
the operation modes (mainly considering the reagent 
addition) in combination with the bubble loading 
assayed offline by the sampled froth. These predefined 
production conditions can be denoted as follows. 
 

State C
lassification and 

recognition m
odel

Statistical features O
f Froth Im

age Texture

Multi-scale and Multi-
direction Gabor filters

Convolution Results Empirical Statistical Model 

Flotation 
condition 

identification

Fig.9 Schematic of flotation production condition classification and recognition 

Class I Class II Class III

Class IV Class V Class VI

 
Fig.10 six predefined flotation production conditions with 

their corresponding typical froth images 

1. Class I: ideal froth flotation production 
condition. In this production condition, the collector and 
the pH adjustment reagent are both properly added. This 

froth phase represents a balance between a froth is too 
runny and a froth that is too viscous. The bubbles 
occupied in the froth visual field can be identified with 
clear shapes and areas in most cases, where most of the 
froth bubbles are elliptical. In this condition, the stable 
enough bubbles are generated and the bubble loading is 
pretty large. The flotation concentrate grade is generally 
high and the contents of the valuable ores in the tailings 
are pretty low. The corresponding froth image example 
can be found from Fig.10 (a). 

2. Class II: collector shortage condition. As can be 
seen from Fig.10 (b), the froth bubbles mostly appear in 
polygonal shapes. In this production condition, the froth 
runs faster with much more highlight reflection spots. 
The loading of the froth bubbles is quite low and 
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consequently the recovery of the valuable ores is 
generally low. 

3. Class III: collector over-dosage condition. The 
froth images are comprised of overloading bubbles. The 
appearance of the froth of this type is apparently 
distinctive to the appearance of the froth image of Class 
II, with much fewer highlight reflection. In this froth 
condition, the froth usually runs slowly with mudding 
bubbles. The recovery of the valuable ores is also quite 
high, but the concentrate grade may be lower. The 
typical froth image can be seen from Fig.10 (c). 

4. Class IV: the “poisoned” condition. In this 
condition, the PH adjustment reagent is added too much, 
and the froth bubbles are generally too big. The froth 
runs slowly without loading much valuable ores. A 
great number of valuable particles are discarded, and 
consequently the recovery is the lowest. Both the 
valuable mineral resource and the reagent additive are 
wasted a lot, but the output grade is quite low. That is to 
say, the froth is failed to separate the mineral ores with 
the gangue, which is the most reluctant production 
condition to be faced. The typically froth image is 
displayed as Fig.10 (d). 

5. Class V: the low pH production condition. In 
this production condition, the froth image is running and 
with much more tinny bubbles. In this condition, the 
bubble loading is uncertain, the recovery of the ores 
may be low, but the concentrate grade is relatively high. 
The overflow of the flotation cell may occur frequently. 
This condition is also expected to be avoided. The 
typical froth image can be seen from Fig.10 (e). 

6. Class VI: the overloading status. In this 
production status, the froth bubble's load too much 
mineral particles, the bubble burst and collapse heavily. 
There are few highlight spots in the froth surface and 
the froth surface is darker than the froth image of other 
statuses, the bubbles cannot be distinguished apparently. 
In this condition, the flotation recovery is generally high, 
but the concentrate grade is lower, for the gangues and 
other non-desired particles may be scrapped to the 
concentrator in the froth layer. The typical froth image 
can be seen from the Fig.10 (f). 

4.2. Flotation production conditions clustering 
analysis  

Aiming at classifying the different production 
conditions with the froth visual features extracted in this 

work, the conventional unsupervised clustering method, 
fuzzy c-means clustering method is employed for the 
froth phase classification in advance. As 
aforementioned, the dimension of the visual feature is 
quite large, especially with the increasing amount of the 
sub-images. The distribution of the sub-image has 
statistical dependence to its Global statistical 
distribution and also has statistical similarity to the 
statistical distribution of its adjacent sub-images. Hence, 
a dimension reduction processing is necessary and 
economic to feature storage, processing and the 
successive froth condition clustering. In order to 
evaluate the clustering capability of the statistical 
features of gaborF  visually, the unsupervised clustering 
description based on principal component analysis 
(PCA) is implemented by selecting the first two 
principal components on 2D coordinate plane. As to a 
feature matrix X , the decomposition function of PCA 
is  

∑
=

+=
D

i

T
ii EptX

1

             (20) 

where D indicates the number of principal component 
selected, E  denotes residual, p  represents the 
principal component coefficients also known as 
loadings, t  is the principal component scores.  

Two groups of clustering experiments are 
conducted on a series of flotation images randomly 
selected from the six flotation conditions (class I~ class 
VI). In experiment 1, there are 19 samples of Class I, 18 
samples of Class II, 19 samples of Class III, 14 samples 
of Class IV ,16 samples of Class V, 22 samples of Class 
VI; in experiment 2, there are 25 samples of Class I, 20 
samples of Class II, 15 samples of Class III, 19 samples 
of Class IV ,18 samples of Class V, 20 samples of Class 
VI. Fig.11 displays the cluster results of the two 
experiments of scatting plots after flotation froth image 
samples are clustered based on PCA and fuzzy C-means 
clustering. The first two main components are selected 
in this experiment to process fuzzy clustering analysis. 
In Fig.11, 1t  and 2t  are the mean of the in PCA 
decomposition respectively. Fig.11 reveals that the six 
froth conditions can be classified well while only a few 
overlaps in the adjacent of the classes. The classifying 
result also indicates that the froth condition of class I in 
normal status can be separated with the froth image in 
poisoned production condition (class IV) excellently. 
These two experiments indicate that the industrial 
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flotation conditions can be classified with high accuracy 
by extracting the statistical distribution characteristic of 
GARR and GPRR.  

The Gabor filter parameter selection is motivated 
by the literatures 27,31. The select parameters are also 
validated by a great amount of comparative experiments. 
It reveals that the corresponding parameters to the best 

classification performance are as follows, π2max =k , 

πσ 2= , 2=f  and 5=U , 8=V , which are 
saved and used as the further flotation conditions 
recognition application. 

  
(a) experiment I 

 

 (b) experiment II 

Fig.11 Clustering results and the scatting plots of the extracted 
coefficients of visual features of the froth images under the 
predefined six flotation conditions 

4.3. Flotation production condition recognition 

Flotation froth conditions can be identified in further by 
adopting the supervised classification methods (e.g. 
neural network) to learn an effective classifier for froth 

phase recognition. The froth status classifier can be 
trained from the prepared learning samples including 
froth images with their corresponding status labels, 
which are picked out from different froth production 
statuses and labeled manually. Among the supervised 
learning methods for classifier design, artificial neural 
networks (ANNs) for classifier learning has been used 
in recent years for modeling complex systems where no 
explicit equations are known, which attract great interest 
in many application areas 4, 35, 36. In view of the 
excellent classification performance of LVQ neural 
network37, this work adopts LVQ neural network to 
construct the following classifier of the froth production 
statuses. LVQ can be considered to be a special case of 
an artificial neural network. It includes one hidden layer 
usually called competitive layer, in which each neuron 
represents a subclass. Each neuron of the output layer 
represents a predefined froth condition.  

Firstly, the froth images are processed by the 
Gabor wavelet transformation and the corresponding 
distribution parameters are extracted to construct the 
reduced feature vector by the proposed method. Then, A 
LVQ network based classifier is constructed. The 
conditions recognition performance is validated by 
select different number of local texture characteristics 
(setting different K  to get different amount of 
statistical distribution parameters of LGARR and 
LGPRR) to identify the froth production conditions. It 
employs the PCA base feature selection method to 
choose the first two hundred principal components (they 
have the biggest variances and preserves more than 85% 
energy of feature vector) as the input of the classier 
based on a LVQ neural network. The number of the 
hidden layer neurons is decided by several experiments 
and select the optimal value with best recognition 
performance. In this work, according to the experiments 
the neuron number of hidden layer is set to 12, which is 
selected empirically by slightly increasing and 
decreasing its value and evaluating the output of the 
classifier. 400 samples of every class are used for 
training. Some new test samples are selected to test the 
performance of production condition identification. 
Tab.1 shows the recognition results of the test samples 
with different sub-regions. The recognition results can 
be assessed by the accurate recognition rate or the false 
positive rate. The false positive denotes the level of 
error recognizing results that mistake other conditions 
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for the desired condition. The lower the value of the 
false positive is, the better the recognition performance. 
As can be seen from Tab.1, the flotation condition 
recognition results are satisfactory in terms of the 
accurate recognition rates. And it’s apparent that with 
the increasing number of the sub-images the false 
positive rate is declining.  

In order to further evaluate the recognition 
performance of the proposed method, we compared the 
method described in this work with the commonly used 

GLCM, conventional mean and variance of GARR 
based flotation conditions recognition. Tab.2 is the 
recognition results of the same test samples (class I to 
class VI of Tab.1) with the same LVQ neural network 
method of similar network structure, using the GLCM 
features (14 Haralick features14 are sued in the 
comparison experiment) and the simple GARR 
statistical features (mean and variance). 

 

Table 1. results of flotation conditions recognition 

K Operation condition Test samples Correct Recognition False positive Successful Recognition 
Rate(%) 

Class I 43 40 0 93.02 
Class II 50 43 3 86.00 
Class III 53 46 2 86.79 
Class IV 48 42 1 87.50 
Class V 59 52 1 88.16 

0 

Class VI 54 48 0 88.89 
Class I 43 41 0 95.35 
Class II 50 45 3 90.00 
Class III 53 47 1 88.68 
Class IV 48 43 2 89.58 
Class V 59 53 2 89.83 

8 

Class VI 54 50 0 92.59 
Class I 43 41 1 95.35 
Class II 50 45 2 90.00 
Class III 53 47 2 88.68 
Class IV 48 42 1 87.50 
Class V 59 51 0 86.44 

32 

Class VI 54 48 0 88.89 
Class I 43 40 0 93.02 
Class II 50 48 1 96.00 
Class III 53 49 1 92.45 
Class IV 48 44 0 91.67 
Class V 59 56 0 94.91 

64 

Class VI 54 50 0 92.59 

Table 2. performance comparison of the flotation conditions recognition 

Average Recognition Rate(%) Average False positive (number) 
Operation condition GLCM Mean and Variance of GARR GLCM Mean and Variance of 

GARR 
Class I 83.72 85.00 3 2 
Class II 86.00 82.40 5 3 
Class III 83.02 85.02 5 3 
Class IV 80.50 84.50 6 4 
Class V 84.74 83.74 4 5 
Class VI 80.16 82.16 6 4 
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In combination with Tab.1 and Tab.2 it can be 
concluded that the statistical distribution features of 
GARR and GPRR can achieve much better flotation 
production condition classification and recognition 
performance. The condition identification results can will 
in further provide guidelines for automatic flotation 
process control and operation adjustment.. 

5. Conclusions 

A Gabor wavelet transform based statistical distribution 
feature extraction of froth images to production condition 
recognition is presented in this work. It’s essentially 
different to the conventional energy based feature 
extraction methods (extracting statistical mean and 
variance) of the Gaobr filter responses, the marginal 
distribution and the joint distribution of the magnitude 
spectra and phase spectra of the convolution image of 
Gabor wavelet transformation are statistically modeled 
and analyzed. The statistical distribution features of 
GARR and GPRR of all sub-bands are computed and 
extracted as the froth image visual characteristics.  

The real production data collected from a bauxite 
flotation plant is used as the concrete research and 
application object. The froth image characteristics 
variables clustering results turn out that the method 
described in this work is promising and the ideal flotation 
condition with high production indexes and proper 
reagent addition is essentially distinct to the poisoned 
condition with low flotation production performance and 
great resource waste. The ultimate flotation production 
conditions recognition results based on these statistical 
features of GARR and GPRR is satisfactory with relative 
high recognition rates. The extensive comparison results 
turn out this froth image feature extraction method can 
obtain the effective production condition information and 
it apparently outperforms the commonly used froth 
condition identification method.  

In all, the method described is effective and 
economical to the flotation process monitoring and 
production conditions evaluation, which paves the way 
for the optimal control of the flotation process according 
to the production conditions classification and 
recognition results. This method of extraction of the froth 
surface visual features instructs a good direction to the 
multi-resolution and multi-orientation analysis of froth 
texture. The further task is to get the optimal parameters 

setting of Gabor filters theoretically for froth image 
feature extraction and to develop a machine vision based 
flotation optimization control system according to the 
production conditions recognition results for the ultimate 
purpose of improving the flotation performance.  
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