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Abstract 

 

This paper presents a novel approach of designing linear phase FIR low pass and high pass filter using 
Random PSO in hybrid with DE known as Random PSODE (RPSODE). In this paper, the Random PSO 
is used which utilises the weighted particle to guide the search direction for both explorative and 
exploitative searches. Differential evolution (DE) is one of the very fast and robust evolutionary 
algorithms which has shown superior performance for continuous global optimization; uses differential 
information to guide its search direction but sometime causes instability problem; whereas, PSO is a 
robust, population based stochastic search technique but has the problem of sub-optimality . This paper 
efficiently combines the Random PSO and DE so as to overcome the disadvantages faced by both the 
algorithms individually and is used for the design of linear phase low pass and high pass FIR filters. The 
simulation results show the superiority of RPSODE in global convergence properties and local search 
ability, and prove it to be a promising candidate for designing the FIR filters. RPSODE outperforms PSO, 
DE, and PSODE not only in magnitude response but in the convergence speed as well. 

Keywords: FIR Filter; PSO; DE; PSODE; Random PSODE; Evolutionary Optimization Technique; Magnitude Response; 
Convergence.

1. Introduction 

Digital Signal Processing (DSP) affords greater 
flexibility, higher performance (in terms of 

attenuation and selectivity), better time and 
environment stability and lower equipment 
production costs than traditional analog techniques. 
Additionally, more and more microprocessor 
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circuitry is being replaced with the cost effective 
Digital Signal Processing (DSP) techniques and 
products. A digital filter is simply a discrete-time, 
discrete-amplitude convolver. In a nutshell, filtering 
is the multiplication of the signal spectrum by the 
frequency domain impulse response of the filter. A 
digital filter computes a quantized time-domain 
representation of the convolution of the sampled 
input time function and a representation of the 
weighting function of the digital filter. They are 
realized by an extended sequence of multiplications 
and additions carried out at a uniform spaced 
sample interval. One can design frequency selective 
filters, that pass signals with frequency components 
in some bands while attenuate signals containing 
frequency components in other frequency bands1,2.  
In a wide sense, digital filter can be classified in 
two categories: analog and digital filter. Analog 
filters consist of electronic components operating 
on continuous time analog signals. Analog filters 
are greatly affected by the non-linearity of their 
electronic components, which also drift their values 
with temperature. No such linearity offset is 
encountered in digital filter. Digital filter 
outperforms the analog filter in both roll-off and 
stop band attenuation. While comparing the 
magnitude responses of both analog and digital 
filters, it can be observed that the analog filter has 
more ripples than the digital filter in the pass band. 
Digital filters provide better signal to noise ratio as 
they do not rely upon the analog components. 
Digital filters are generally available as finite 
impulse response (FIR) and infinite impulse 
response (IIR) filters depending on the type of their 
impulse responses. Finite Impulse Response (FIR) 
filter has finite impulse responses, which usually 
decay to zero in a finite amount of time, whereas, 
impulse responses of Infinite Impulse Response 
(IIR) filter never die out theoretically.  It is easier to 
design FIR filters with linear phase characteristic. 
FIR filter is an attractive choice because of the ease 
in design and stability. By designing the filter taps 
to be symmetrical about the centre tap position, the 
FIR filter can be guaranteed to have linear phase. 
FIR filters are known to have many desirable 
features such as guaranteed stability, the possibility 
of exact linear phase characteristic at all frequencies 
and digital implementation as non-recursive 
structures. 
In order to design a FIR filter, many methods are 
available such as window method, frequency 
sampling method etc. Each method has its own 
merits and demerits. Different types of windows, 

such as Kaiser, Blackmann, Hanning and Hamming 
are available depending on the requirement of the 
filter specifications to be met. The basic idea of 
windowing consists of approximating the infinite 
length impulse response of the ideal filter to a finite 
window to design an actual response3-5. The major 
drawback of window method is that it does not 
allow sufficient and precise control of various 
frequencies like pass band, stop band cut-off 
frequencies and the transition width. For last few 
years the works have been done continuously to 
evolve new methods for the filter design. One of the 
most frequently used methods is Chebyshev 
approximation method developed by Parks 
McClellan (PM)3. Later on, a well defined 
computer program was also developed for the 
design of FIR Filter6. All these approaches are the 
classical ones and have greater tendency to get 
struck at local minima as they are highly dependent 
on their starting solutions. For classical 
optimization to work, the problem should be having 
continuous and differentiable objective cost 
function. Complexity of the algorithm and slow 
convergence speed also limits the usefulness of the 
classical optimization techniques. The objective 
function for the design of optimal digital filters 
involves accurate control of various parameters of 
frequency spectrum and is thus highly non-uniform, 
non-linear, non-differentiable and multimodal in 
nature. Classical optimization methods cannot 
optimize such objective functions and cannot 
converge to the global minimum solution because 
they have the several disadvantages such as: i) 
highly sensitive to starting points when the number 
of solution variables and hence the size of the 
solution space increase, ii) frequent convergence to 
local optimum solution or divergence or revisiting 
the same suboptimal solution, iii) requirement of 
continuous and differentiable objective cost 
function (gradient search methods), iv) requirement 
of the piecewise linear cost approximation (linear 
programming), and v) problem of convergence and 
algorithm complexity (non-linear programming). 
In order to overcome these drawbacks encountered 
with the traditional and classical methods of 
optimization, many heuristics optimization 
techniques have been developed. Particle swarm 
optimization (PSO) was introduced by Kennedy and 
Eberhart7 in 1995. PSO is based on the simulation 
of simplified animal’s social behaviours such as 
fish schooling, bird flocking, etc.8 PSO has been 
widely used for the design of digital filters.9-11 The 
limitations of PSO are that they may be influenced 
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by parameter convergence12-13and stagnation 
problem. In order to overcome the problem 
encountered with the traditional PSO, the 
conventional PSO has been modified with some 
additional features and used for the design of digital 
filters efficiently like Quantum PSO (QPSO),14 
PSO with Quantum Infusion (PSO-QI),15-16 
Adaptive inertia weight PSO,17 Craziness PSO 
(CRPSO),18-19 Chaotic mutation PSO (CMPSO),20 
Improved Particle swarm Optimization,21-22 PSO 
with constriction factor approach.23 

Differential Evolution (DE) is also a heuristic 
approach for minimizing non-linear and non-
differentiable continuous space function has been 
presented by Storn and Price in the year 1995.24 It 
can be implemented very easily and requires less 
number of control parameters. DE is also used for 
the design of FIR filters.25-26 Some modifications 
have also been done in the classical DE to increase 
the performance as DE with reserved genes,27 
Modified Differential Evolution algorithm,28 and 
self adaptive differential evolution algorithm.29 DE 
algorithm is very much sensitive to the choice of 
these control parameters. Differential evolution in 
combination with particle swarm optimization is 
also used so as to overcome their individual 
disadvantages.30-31Particle Swarm Optimization 
with Differential Evolution (PSODE) is also used 
for the design of digital filters and digital 
circuits.16,32-33 Another form of genetic algorithm 
known as digit coded genetic algorithm is used in 
Ref. 34.The MATLAB-Simulink model is proposed 
for the implementation of FIR low pass and high 
pass filters in Ref. 35. PSO has been also used with 
the DE, so as to merge the merits incurred from 
both the algorithms and to compensate for the 
individual’s shortcomings known as PSODE.36 

In order to enhance the performance of PSO, to 
increase the quality of the solution, convergence 
speed and to avoid trapping of the solution into 
local minima, several variants of PSO have been 
developed.13-21 Though lot of work has been done in 
this direction for the improvement of PSO, but still 
space is left for its further improvement. In order to 
overcome all these problems, the classical PSO has 
been slightly modified to introduce a new concept 
of randomly adapting weights in PSO.37 This paper 
proposes a novel optimization algorithm which 
hybridizes the Random PSO with DE in order to 
overcome the sub-optimality and stagnation 
problem as faced by the individual algorithm. The 
proposed algorithm is called Random Particle 
Swarm Optimization with Differential Evolution 

(RPSODE) and is employed for the FIR filters 
design problems. RPSODE utilises the differential 
information obtained from DE as well as the 
memory information obtained from PSO. RPSODE 
helps the particles to increase the population 
diversity through the combination of PSO operator 
with the DE operator. 

The rest of the paper is arranged as follows. In 
section 2, the digital filter design problem is 
formulated. Section 3 briefly discusses about the 
different evolutionary algorithms PSO, DE, 
PSODE, and the RPSODE employed for the FIR 
filter design problems. Section 4 describes the 
simulation results obtained by employing PM and 
the above evolutionary algorithms. Section 5 shows 
the MATLAB-Simulink model implementation of 
the LP and HP filters designed by RPSODE. 
Finally, section VI concludes the paper. 

 
2. Design Formulation 

Digital filters basically come in two broad 
categories, namely Finite Impulse Response (FIR) 
and Infinite Impulse Response (IIR) filters, 
depending on their impulse responses. This paper is 
focussed to the design of FIR filter. The impulse 
response of the FIR filter is given as: 

 
( ) ( ) ( ) ( ) NzNhzhhzH −− +++= ...10 1       (1)                              

( ) ( )∑
=

−=
N

n

NznhzH
0

                                  (2)                              
 
where h(n) is the impulse response. The difference 
equation representation is 
 
( ) ( ) ( ) ( ) ( ) ( ) ( )NxxNhnxhnxhny −++−+= ...110 (3)                              

where N is the order of the filter; (N+1) is the 
number of impulse response coefficients h(n). The 
values of h(n) will determine the type of the filter, 
i.e., low pass (LP), high pass (HP) etc., which are to 
be determined using the above mentioned 
optimization algorithms individually. This paper 
presents the optimal designs of linear phase even 
symmetric Nth order FIR LP and HP filters. While 
designing the filters, all the generalised 
specifications for the filter design like flat pass 
band, highest stop band attenuation, low distortion 
and narrow transition width have been considered. 
In each evolutionary algorithm, the individual / 
particle or vector represents h(n) elements. In each 
iteration cycle, these particles are updated. Fitness 
values (i.e., error fitness values which are explained 
later) of particles are calculated using the new 
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coefficients. The iteration is continued till the 
criteria for maximum iteration is reached or the 
final error fitness value comes out to be below a 
specified value. One of the major advantages of 
designing linear phase FIR filter is that it is 
symmetrical, due to which the coefficients are 
symmetrical. Only half of the coefficients are 
updated by any algorithm and then they are 
concatenated to form the other half due to the 
symmetrical nature of FIR filter. Therefore, the 
dimension of the problem is halved. 
The frequency response of the FIR digital filter can 
be calculated as: 

( ) ( ) nj
N

n
k

kenhH ωω −

=
∑=

0                                  (4)        

N
k

k
πω 2

=
                       

Where H(wk) is the fourier transform complex 
vector. This is the FIR filter frequency response. 
The frequency in [0, π] is sampled with N points. 

  
( ) ( ) ( ) ( ) ( )[ ]TNddddd HHHHH ωωωωω ,...,, 321=     (5)                                                                     

( ) ( ) ( ) ( ) ( )[ ]TNiiiii HHHHH ωωωωω ...,,, 321=  (6)     

Where Hd(w) represents approximate magnitude 
response of the designed filter and iH  represents 
the magnitude response of the ideal filter and for LP 
and HP it is given, respectively, as Eq.(7.a)- (7.b). 
 ( )

otherwise.       0              
,0for         1

=
≤≤= ci wH ωω                          (7.a)                                                                                                         

       ( )
otherwise.         1            

,0for         0
=

≤≤= ci wH ωω

 
 

                                                                           (7.b)                                                                                                                           
where cω  is the cut-off frequency of the LP and 
HP filters. 
The error function used in this paper is mean square 
approach,32 given as below: 
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K
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=
∑
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The error fitness function given in Eq. 8 represents 
the generalized fitness function to be minimized 
using the evolutionary algorithms like conventional 
PSO, DE, PSODE, and the RPSODE individually. 

Each algorithm tries to minimize this error fitness 
and thus optimizes the filter performance. 
 
 
3. Optimization Techniques Employed 

3.1. Particle Swarm optimization 

3.1.1. Classical PSO: 

PSO is a flexible, robust population-based 
stochastic search or optimization technique with 
implicit parallelism, which can easily handle with 
non-differential objective functions, unlike 
traditional gradient based optimization methods. 
PSO is less susceptible to getting trapped on local 
optima unlike GA, Simulated Annealing etc. 
Eberhart et al.7 developed PSO concept similar to 
the behaviour of a swarm of birds. PSO is 
developed through simulation of bird flocking and 
fish schooling in multidimensional space. Bird 
flocking optimizes a certain objective function. 
Each agent / particle vector knows its best value so 
far (pbest). This information corresponds to 
personal experiences of each vector. Moreover, 
each vector knows the best value so far in the group 
(gbest) among all pbests. Namely, each vector tries 
to modify its position using the following 
information: the distance between the current 
position and the pbest, and the distance between the 
current position and the gbest. 
Mathematically, velocities of the vectors are 
modified according to the following equation7: 
 
 

( ) ( ) )k
i

k
gbest

k
iipbest

k

k
i

kk
i

SXrandCSX

randCVwCFaV

−+−

+×= ++

**

***(

22_

11
11

                                                                 (9)                      

where k
iV  is the velocity of vector i at iteration k; 

w is the weighting function; Cj is the weighting 
factor; C1 and C2 are called social and cognitive 
constants, respectively; randi is the random number 
between 0 and 1; k

iS  is the current position of 
vector i at iteration k; k

ipbest  is the pbest of 
vector i; kgbest  is the gbest of the group. The first 
term of Eq.(9) is the previous velocity of the vector. 
The second and third terms are used to change the 
velocity of the vector. Without the second and third 
terms, the vector will keep on ‘‘flying’’ in the same 
direction until it hits the boundary. The parameter w 
corresponds to a kind of inertia and tries to explore 
new areas.   Here, the vector is termed for the string 
of real filter coefficients, h(n), where n denotes the 
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dimension of the vector or the number of filter 
coefficients (N/2+1) for  even, symmetric, linear 
phase Nth order FIR HP filter to be designed. 
Normally, C1=C2=1.5-2.05 and Constriction Factor 
( )CFa  is given in Eq.10. 
 

ϕϕϕ 42

2
2 −−−

=CFa       (10)                                       

where 4       , 21 >+= φφ CC                  (11)   
 
 
For 1C = 2C =2.05, the computed value of CFa = 
0.73. The best values of C1, C2, and CFa  are 
found to vary with the design sets.  Inertia weight 
( )1+kw  at (k+1)th cycle is as given in Eq. (12). 
                                                                                           

( )1
max

minmax
max

1 +×
−

−=+ k
k

ww
wwk            (12)         

where maxw =1.0; minw =0.4; maxk = Maximum 
number of iteration cycles. The searching point / 
updated vector in the solution space can be 
modified by Eq.(13). 
 

11 ++ += k
i

k
i

k
i VSS                                   (13)

                                                                                        
According to Eq.(13), the position of the particle is 
updated through iterations. These updated positions 
of the particles form the probable solutions for the 
next iteration. 
 
3.1.2. Random PSO: 

The traditional PSO faces the problem of selection 
of control parameters, convergence speed and 
trapping into local minima. A lot of modifications 
have been done to develop various improved PSO 
variants but scope is still there for further 
improvement in the performance of PSO in terms of 
its convergence speed and the quality of solution. A 
new variant of PSO known as Random PSO is 
given in Ref.37, where the PSO posses the ability of 
randomly adapting using the weighted particle 
concept. 
Random PSO works with the concept of weighted 
particle. The position of the weighted particle can 
be calculated as: 

ipbest

P

i
iww XCX _

1
_∑
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=                           (14)                                                                                                              
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( )
bsetworst

ipbestworst
iw ff

Xff
C

−
−

= _
_

ˆ           (16)                             

where  Xw  presents the weighted particle, like a 
centre of gravity position 

iwC _ =normalized weighting constant 

iwC _
ˆ =Weighting Constants 

( ).f  presents a  fitness value 

worstf and bestf are the global worst and 
global best  fitness values, respectively. 
 
The weighted particle acts as a guiding factor in the 
search mechanism of the swarm in the population 
space. It attracts other particles and the swarm 
converges to the weighted particle gradually 
through the iterations. The velocities of the particles 
are calculated as given in Eq. (9) but the position 
calculation of the particles gets modified slightly 
according to a controlling parameter known as 
adapting ratio Eq.(18).If the random value 
generated is less than the adapting ratio then the 
position of the particles will be calculated by using 
the weighted particle concept, whereas if the value 
of the random number generated is greater than the 
adapting ratio, then the position of the particle will 
be calculated using Eq. (9). 
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iipbesti
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k
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SXrandC
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where

ratioadaptingrand
ratioadaptingrand

i _,0
_,1

≥
<

=α           (18)           

In this case iα acts like a binary switch which 
controls Eq.(18). C3and 4C are acceleration 
constants. 
The value of the adapting ratio should be chosen 
carefully as it has direct impact on deciding whether 
the positions of the particles will be calculated 
directly or using weighted particle. 
 
3.2. Differential Evolution (DE): 

The concept of DE was first proposed by Storn and 
Price in 1995.22 The crucial idea behind DE 
algorithm is a scheme for generating trial parameter 
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vectors and adds the weighted difference between 
two population vectors to a third one. Like any 
other evolutionary algorithm, DE algorithm aims at 
evolving a population of NP, D-dimensional 
parameter vectors, so-called individuals, which 
encode the candidate solutions, i.e,    
 
 { }giDgigigi xxxx ,,,,2,,1, ,...,,=                   (19)                
      
where i = 1, 2, 3,…, NP. The initial population (at 
g=0) should cover the entire search space as much 
as possible by uniformly randomizing individuals 
within the search constrained by the prescribed 
minimum and maximum parameter bounds: 
 

{ }min,min,1min ,..., Dxxx = and                 (20)  
{ }max,max,1max ,..., Dxxx =  

 
 For example, the initial value of the jth parameter 
of the ith vector is 
 

( ) ( )min,max,min,0,, *1 ,0 jjjij xxrandxx −+=    (21) 

where j = 1, 2, 3,…,D. Here, D = (N/2 +1), the 
number of the symmetrical real filter coefficients 
for the Nth order even, symmetric, linear phase FIR 
LP and HP filters to be designed. (N+1) is the total 
number of filter coefficients. 
The random number generator, rand (0,1), returns a 
uniformly distributed random number in the range 
[0,1]. After initialization, DE enters a loop of 
evolutionary operations: mutation, crossover, and 
selection. 
 
3.2.1 Mutation: 
 
Once initialized, DE mutates and recombines the 
population to produce new population. For each 
trial vector xi,g  at generation g, its associated 

mutant vector { }giDgigigi vvvv ,,,,2,,1, ,...,,=  can be 
generated via certain mutation strategy. Five most 
frequently used mutation strategies in the DE codes 
are listed as follows : 

( )grgrgrgi xxFxvrandDE ,,,, '
3

'
2

'
1:"1//" −+=      (22)    

( )grgrgbestgi xxFxvbestDE ,,,, '
2

'
1:"1//" −+=      (23)   

( ) ( )grgrgigbest

gigi

xxFxxF

xvbesttorandDE

,,,,

,,

'
2

'
1

:"1//"

−+−

+=−−      (24)   

( )
( )grgr

grgrgbestgi

xxF

xxFxvbestDE

,,

,,,,

'
4

'
3

'
2

'
1:"2//"

−+

−+=
     (25)   

( )
( )grgr

grgrgrgi

xxF

xxFxvrandDE

,,

,,,,

'
5

'
4

'
3

'
2

'
1:"2//"

−+

−+=
     (26) 

The indices '
1r , '

2r , '
3r , '

4r , '
5r are mutually 

exclusive integers randomly chosen from the range 
[1, NP], and all are different from the base index i. 
These indices are randomly generated once for each 
mutant vector. The scaling factor F is a positive 
control parameter for scaling the difference vector. 
xbest,g is the best individual vector with the best 
fitness value in the population at generation ‘g’. In 
this paper, (19) has been adopted as the mutation 
strategy. 
 
3.2.2 Crossover: 

  To complement the differential mutation search 
strategy, crossover operation is applied to increase 
the potential diversity of the population. The mutant 
vector vi,g exchanges its components with the target 
vector xi,g to generate a trial vector:  
 { }giDgigigi uuuu ,,,,2,,1, ,...,,=                    (27)         
      
 In the basic version, DE employs the binomial 
(uniform) crossover defined as 
 

( )( )
⎩
⎨
⎧ =≤

=
otherwise                                    

 or      1 ,0   if 

,,

,    ,,
,,

gji

randrjigij
gij x

jjCrandv
u  (28) 

    where j=1, 2,…,D.    

       The crossover rate  rC is user-specified 
constant within the range [1, 0], which controls the 
fraction of parameter values copied from the mutant 
vector. The parameter jrand is a randomly chosen 
integer in the range [1, D]. The binomial crossover 
operator copies the jth parameter of the mutant 
vector giv , to the corresponding element in the trial 
vector giu ,  if ( ) randrji jjCrand =≤ or      1,0, . 
Otherwise, it is copied from the corresponding 
target vector gix,  
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3.2.3 Selection: 

To keep the population size constant over 
subsequent generations, the next step of the 
algorithm calls for the selection to determine 
whether the target or the trial vector survives to the 
next generation i.e., at g=g+1. The selection 
operation is described in Eq.(29). 
 

( ) ( )
⎩
⎨
⎧ ≤

=+
otherwise                    

    if   
,

,,,
1,

gi

gigigi
gi

x
xfufux                   (29)              

Where f (x) is the objective / error fitness function 
to be minimized. So, if the new vector yields an 
equal or lower value of the objective function, it 
replaces the corresponding target vector in the next 
generation; otherwise the target is retained in the 
population. Hence the population either gets better 
(with respect to the minimization of the objective 
function) or remains the same in fitness status, but 
never deteriorates. 
            The above three steps are repeated 
generation after generation until the maximum 
number of generations or iteration cycles is reached. 
The desired optimal filter coefficients h(n) of  size 
(N/2 +1) and finally after concatenation, (N+1) 
optimal FIR LP and HP filters coefficients are 
obtained to get the optimal frequency spectrum. 
 
Proper selection of control parameters is very 
important for algorithm’s success and performance. 
The optimal control parameters are problem-
specific. Therefore, the set of control parameters 
that best fit each problem have to be chosen 
carefully. Values of F lower than 0.5 may result in 
premature convergence, while values greater than 1 
tend to slow down the convergence speed. Large 
populations help maintaining diverse individuals, 
but also slow down convergence speed. In order to 
avoid premature convergence, F or NP should be 
increased or rC should be decreased. Larger values 
of F result in larger perturbations and better 
probabilities to escape from local optima, while 
lower rC preserves more diversity in the 
population, thus avoiding local optima. 
 
3.3. Particle Swarm Optimization in combination 

with Differential Evolution (PSODE): 
The limitations of PSO and DE are that they may be 
influenced by parameter convergence and 
stagnation problem. To overcome the problems 
associated with DE and PSO; both of them can be 
merged so as to overcome their individual 

disadvantages. In this swarm optimization is 
combined with the evolutionary optimization to get 
better accuracy and efficiency of the results. The 
hybrid of PSO and DE is called PSODE.30 In 
PSODE new offspring is created by the mutation of 
the parent. The personal best and the global best of 
all the swarms are evaluated by PSO and then these 
all are mutated and undergo crossover to get better 
results. 
 
Steps of PSODE are as follows: 

• First a population is randomly initialised. 
• The fitness value of the population is evaluated 

Eq.(8), best among the fitness is considered to 
be gbest. 

• The velocity and the position of the particles in 
the search space is evaluated using Eq. (9) & 
Eq.(13). 

• Now the updated population by PSO will be 
used to employ differential evolution. 

• Donor vector is created by mutation using 
Eq.(24). 

• Trial vector is created by cross over process 
using  Eq.(28). 

• The fitness value of the trial vector is 
calculated and the one having the better fitness 
value among the trial and the target vector is 
finally taken as the updated population Eq.(29). 
 

3.4. Random Particle Swarm Optimization in 
combination with Differential Evolution 
(RPSODE): 
 

In Random Particle Swarm Optimization with 
Differential Evolution (RPSODE), the classical 
PSO is slightly modified with the additional 
concept of weighted particle known as Random 
PSO37 and used with DE. In conventional PSO, the 
swarms which are initialised in the population 
search space, move in the direction of location of 
particles associated with pbest and gbest. The 
movement of the swarms in conventional PSO 
donot take into account the negative experiences 
provides by the worst fitness values leading to slow 
convergence speed and the higher probability of the 
solution to get struck in local minima solution.The 
weighted particle behaves in a much similar way 
like a centre of gravity particle. The weighted 
particle helps to maintain a balance between the 
global and local search. A better direction of search 
is provided by this weighted particle and it avoids 
trapping of the solution in local optima, thus helps 
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in improving the quality of the solution as well as 
convergence speed. The weighted particle is 
calculated by taking into account both the best and 
worst fitness values encountered so far. By doing 
so, the weighted particles help the particles of the 
search space move closer to the best fitness value 
and far away from the worst fitness value. The 
weighted particle is generated if random value is 
lower than the adapting ratio by using the 
expressions given in Eq. (14), (15) and (16). If the 
random value generated is less than the adapting 
ratio, then the new position of the particles will be 
calculated by using the weighted particle otherwise 
the positions will be updated by using the 
conventional PSO, as given in Eq. (17) and (18).  
Gradually the swarm converges to the weighted 
particle after much iteration. 
The adapting ratio plays a major role in providing 
control in the direction of search. The value of 
adapting ratio has to be chosen carefully. The 
particles tend to adapt randomly and move 
according to the weighted particle, if the random 
value generated is less than the adapting ratio. The 
adapting ratio can be also varied as the search 
proceeds. The adapting ratio can be set to a higher 
value (0.5) in the beginning of the search process so 
as to favour global search or exploration by helping 
the swarms to adapt randomly. Gradually as the 
search proceeds, it can be set to a lower value 
(0.005) so as to favour local search or 
exploitation.37 

The particles are first initialised in the search space. 
Then according to the value of adapting ratio, the 
positions of the particles are updated by Random 
PSO. After the positions of the particles are 
updated, they undergo mutation and crossover. 
Thus the diversity of population is maintained by 
using DE to the results obtained after employing 
Random PSO. 
 
The steps for the RPSODE are written as follows: 

• Initial Particles: Randomly generate the initial 
population matrix. 

• Evaluate Particles: Calculate the fitness value 
for each set of particles in the population. 

• Update globalbest: Take the particle with the 
best fitness value or the minimum fitness value 
since it is a minimization problem as the global 
best. 

• Update Personalbest: Compare the newly 
calculated fitness value with the previous one 
for each and every individual and select the one 

having the better fitness value as the personal 
best. 

• Generate a random number to compare with 
the adapting ratio: Determine iα using Eq. 
(18). If the random number is lesser than the 
adapting ratio, then iα is equal to 1 otherwise 
0. 

• Calculate weighted Particle: Calculate the 
weighted particle using Eq. (14-16). 

• Update position of the Particle: According to 
the value of iα calculated, update the position 
of the particle either through Eq. (17) or Eq.(9) 
and Eq.(13). 

• Generate donor vector: The updated particles 
are used for creating the donor vector by 
mutation using Eq. (24). 

• Generate Trial Vector: The trial vector is 
created by mutation between donor and target 
vector using Eq.(28). 

• Selection: Among trial and target vectors, 
whichever proves itself to be better candidate 
in terms of fitness is selected for the final 
population. 

• Termination: If the maximum number of 
iterations is reached or terminating condition is 
satisfied. 

 
Pseudo code can be written as follows: 

For each particle, 
Initialise Particle 
End 
Do 
 For each particle 
     Calculate Fitness Value using Eq.(8) 
   If the fitness value is better than the best fitness 
value (Pbest) in memory 
       Set the current value as the new pbest 
   End If 
End 
Choose the particle with the best fitness value of all 
the particles as the gbest 
Choose the particle with the worst fitness value of 
all the particles as the gworst 
 
Calculate the weighted particle using Eq.(14-16) 
Calculate iα using Eq.(18) 
If rand<adapting _ratio 
      Calculate particle position using Eq.(17) 
Else 
       Update particle velocity using Eq. (9) 
       Update particle position using Eq. (13) 
End If 
For each particle in Parent set 
     Select four Particles 
    Calculate the weighted difference 
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    Generate donor vector after the mutation process 
using  Eq.(24) 
End 
Calculate the trial vector using Eq.(28) 
End 
For each Particle in the trial vector calculate the 
fitness value using Eq. (8) 
    If fitness (trial) <fitness (parent) 
        Replace the parent with the trial vector 
   End if 
End 
While maximum iteration or minimum error criteria 
is not reached 
The fitness based RPSODE can also be summarized 
in the form flowchart shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure1. Flowchart showing RPSODE. 

4. Simulation Results and Discussions 

This section presents the extensive simulation 
works performed on MATLAB for the design of 
FIR LP and HP filters. For each filter, the filter 
order is taken as 20, i.e., the number of coefficients 
is 21. The sampling frequency is taken to be fs = 
1Hz. The number of frequency samples is taken as 
128. The algorithms are run for 30 times. Table 1 
shows the best chosen parameters for PSO, DE, 
PSODE, and RPSODE, respectively. 
Tables 2-3 show the optimized filter coefficients 
obtained for FIR LP and HP filters, each of order 20 
when PSO, DE, PSODE, and RPSODE are 
individually adopted. Table 4 shows the comparison 
of the maximum stop band attenuations achieved 
for LP and HP filters using PM, PSO, DE, PSODE 
and RPSODE, respectively. Table 4 shows that the 
maximum stop band attenuation achieved for the 
LP filter using the RPSODE is 36.19dB and for the 
HP filter, the maximum stop band attenuation is 
32.82 dB. It is also observed from Table 4 that the 
RPSODE achieves the best stop band attenuation, 
as compared to those of PM, PSO, DE, and PSODE 
for both types of FIR filters.  
 
 
 
 
 
 
 
 
 
 
 
 

Initialisation:  Search 
Space, velocity, 

Max. teration? 
Min. Fitness? 

Next Iteration 

END 

Update Position of Particle 
Using  Eq.(17)-(18) 

Calculate Donor Vector by 
updated position of particles 
using Eq. (24) 

Fitness (Trial)< 
Fitness(Parent) 

Parent (new) =Trial Vector 

Parent (new) = Parent (old) 

YES 

NO 

Update velocity using Eq. (9) 
Update Position Using 
Eq.(13) 

YES 

Calculate Trial 
Vector using Eq.(28) 

NO 

Update global best 
and personal best

Calculate Weighted 
Particle Using Eq.(14)-(16) 

RandomNO<A
dapting _ratio? 

YES NO
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Table1. PSO, DE, PSODE and RPSODE Parameters 

Parameters PSO DE PSODE RPSODE 
Population 
Size 

20 20 20 20 

Iteration 
Cycles 

100 100 100 100 

Crossover rate ---- 0.8 0.8 0.8 
Scaling Factor ---- 0.7 0.7 0.7 
C1 2.05 ---- 2.05 2.05 
C2 2.05 ---- 2.05 2.05 
wmax 1 ---- 1 1 
wmin 0.4 ---- 0.4 0.4 
Adapting_ratio ---- ---- ---- 0.6 
 

Table2. Optimized coefficients of FIR LP filter of order 
20 using PSO, DE, PSODE and RPSODE 

 

 
 
 
 
 
 
 
 
 

Table 5. Compariosn of RPSODE with other reported 
results 

 
 
Table3. Optimized coefficients of FIR HP filter of order 
20 using PSO, DE, PSODE and RPSODE 
 

 
 

Table 4.Comparison summary of stop band attenuations 
for FIR LP and HP filters, each of order 20 

 

 
Table 5 summarizes the comparison of the results 
obtained by using RPSODE with other reported 
results. The RPSODE based approach for 20th 
order LP filter design results in 36.19 dB stop band 
attenuation and transition width = 0.1093. The 
results reported in Ref.16, shows that for the LP 
filter of same order, the maximum stop band 
attenuation (dB) is less than 27dB (approx) and 
transition width is more than 0.15. 
 The simulation results obtained for HP filter using 
RPSODE are as follows: 32.82 dB stop band 
attenuation and transition width = 0.1015. It is 
observed from Table 5 that the simulation results 
obtained for filter order 20 using RPSODE are 
much better than the other reported results.    
 

h(N) PSO DE PSODE RPSODE 
h(1)=h(21) 0.0172 0.0159 0.0214 0.0274 
h(2)=h(20) 0.0439 0.0461 0.0478 0.0392 
h(3)=h(19) -0.0022 0.0047 0.0039 0.0032 
h(4)=h(18) -0.0421 -0.0354 -0.0335 -0.0313 
h(5)=h(17) 0.0056 0.0008 0.0060 0.0074 
h( 6)=h(16) 0.0535 0.0589 0.0624 0.0614 
h(7)=h(15) 0.0000 0.0050 0.0034 0.0009 
h(8)=h(14) -0.1114 -0.1006 -0.0981 -0.0967 
h(9)=h(13) -0.0041 0.0024 0.0024 0.0038 
h(10)=h(12) 0.3076 0.3147 0.3177 0.3154 
h (11) 0.4953 0.4999 0.4978 0.4926 

Parameters  
 

Model 
Filter type Order Maximum 

stop band 
attenuation (dB) 

  Transition 
width 

Karaboga [16] Low pass 20 NR*   >0.16 
Luitel et al. [31] Low Pass 20 <27 dB   >0.13 

Najjarzadeh et al. 
[20] 

Low Pass 33 <29dB   NR* 

Ababneh et al. [22] Low pass 30 <30dB 
(Approx.) 

  0.05 

Sarangi et al. [25] Low Pass 20 < 27dB   >0.15 
Low Pass 20 36.19   0.1093 RPSODE  
High Pass 20 32.82   0.1015 

h(N) PSO DE PSODE RPSODE 
h(1)=h(21) 0.0153    0.0164      0.0251   0.0199 
h(2)=h(20) -0.0447   -0.0437    -0.0394    -0.0419 
h(3)=h(19) 0.0017    0.0019     0.0024     0.0052 
h(4)=h(18) 0.0386    0.0390     0.0429     0.0345 
h(5)=h(17) 0.0001   0.0022    0.0099    0.0030 
h( 6)=h(16) -0.0529   -0.0538    -0.0589    -0.0590 
h(7)=h(15) 0.0032    -0.0008    0.0033     0.0055 
h(8)=h(14) 0.1044    0.1034     0.1069    0.1030 
h(9)=h(13) 0.0023   0.0026    -0.0039    -0.0009 
h(10)=h(12) -0.3087   -0.3097    -0.3151    -0.3076 
h (11) 0.4878   0.4915    0.4886    0.4955 

Maximum Stop-band Attenuation (dB) Filter 
Type PM PSO DE PSODE RPSODE 
LP 23.56 27.06 28.69 29.88 36.19 
HP 23.55 26.87 28 29.13 32.82 
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Figure 2 shows the magnitude response of the LP 
filter using PM, PSO, DE, PSODE, and RPSODE. 
Figure 3 shows the magnitude response of the HP 
filter using the same algorithms. From Figures 2-3, 

it is observed that RPSODE gives the best 
magnitude response as compared to PSO, DE and 
PSODE, respectively. 
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Figure 2: dB plots for the FIR LP filter of order 20. 
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Figure 3: dB plots for the FIR HP filter of order 20. 

 

From the above figures and tables, it is observed 
that the RPSODE model results in the best 
magnitude response (dB) and stop band ripple for 
both LP and HP filters.  
 

4.1. Comparative effectiveness and convergence 
profiles of PSO, DE, PSODE and RPSODE 
algorithms. 

 
 Figure 4 shows the convergence profiles obtained 
for LP filter using PSO, DE, PSODE and RPSODE 
algorithms, respectively. The minimum error values 
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are plotted against the number of iteration cycles to 
get the convergence profiles for the optimization  

From Figure 4, it is observed that RPSODE 
converges to a much lower fitness value than 
PSODE, PSO and DE, respectively, for the LP 
filter. It is seen from Figure 4 and Table 6 that 
RPSODE converges to a fitness value of 3.005 in 
5.2562s, whereas PSODE converges to 3.02 in 
5.2374s, DE converges to 3.029 in 3.2284s and 
PSO converges to 3.039 in 3.4508s, respectively. 
Figure 5 shows the convergence profiles obtained 
for the HP filter. It is observed from Figure 5 and 
Table 6 that RPSODE converges to a fitness value 
of 3.035 in 5.2746s, whereas PSODE, DE and PSO 
converge to 3.045 in 5.1093s, 3.086 in 3.4528s and 
3.109 in 3.5785s, respectively.  Thus for both types 

of filter RPSODE converges to much lower fitness 
value than PSODE, PSO and DE, respectively. 

 
Table 6.Comparison of minimum error fitness value and 

execution time for LP and HP filters 
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                          Figure 4. Comparison of convergence profiles for PSO, DE, PSODE and RPSODE of LP filter of order 20.  
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                    Figure 5. Comparison of convergence profiles for PSO, DE, PSODE and RPSODE of HP filter of order 20. 

Low Pass Filter (LP) High Pass Filter (HP) Filter 
Type 

Minimum 
Error 
Fitness 
Value 

Execution 
Time for 100 
cycles 

Minimum 
Error 
Fitness 
Value 

Execution 
Time for 
100 cycles 

PSO 3.039 3.4508s 3.109 3.5785s 
DE 3.029 3.2284s 3.086 3.4528s 
PSODE 3.02 5.2374s 3.045 5.1093s 
RPSODE 3.005 5.2562s 3.035 5.2746s 
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5. Simulink Model Of The LP and HP Filter 
Designed By The RPSODE Algorithm. 

Figure 6 shows the implementation of the FIR LP 
and HP filters designed by RPSODE algorithm as a 
Simulink model in MATLAB.  The Simulink model 
consists of two digital filter blocks, one random 
noise source, one sine wave source and vector 
scopes for displaying the signals.   
The Simulink model is used to remove the high 
frequency noise of the sine wave using LP and HP 
filters designed by RPSODE.  A sine wave is 
generated by DSP sine wave source. The output of 
vector scope 2 which is a sine wave is shown in 
Figure 7. The Digital Filter1 block in Figure 6 
behaves as the designed HP filter using the 
RPSODE based optimal filter coefficients of Table 
3 and transforms the random noise into a high 
frequency noise after passing through it, which is 
shown in Figure 8. The add block acts as an adder 
for adding the high frequency noise to the sine 
wave to make it a noisy sine wave which is shown 

as the output of vector scope 3 in Figure 9. In 
Figure 6, the Digital Filter 2 block serves the 
designed LP filter using the RPSODE based 
optimal filter coefficients of Table 2. The noisy sine 
wave is then passed through the digital Filter 2 
block. The matrix concatenate block in Figure 6 
does the work of adding the original sine wave, the 
noisy sine wave and the filtered sine wave with 
eliminated high frequency noise.  
Thus the output of vector scope 4 is shown in 
Figure 10, it is observed that a filtered sine wave 
with eliminated high frequency noise is obtained, 
when it is passed through the LP filter designed by 
the RPSODE.  Thus the Simulink model in Figure 6 
shows the implementation of the LP and HP filters 
designed by this proposed algorithm RPSODE.   
 
 
 

 

 

Figure 6. Simulink Model showing the implementation of FIR LP and HP filters designed by RPSODE. 
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Figure 7. The original sine wave used in the Simulink model. 

 

                                  

                                          Figure 8. The random high frequency noise used in the Simulink model. 
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                                               Figure 9. The noisy sine wave used in the Simulink model.  

 

                         

          Figure 10. The original sine wave, noisy sine wave and the filtered sine wave used in the Simulink model.        
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6. Conclusion

In this paper, the authors have proposed an 
algorithm formed by the combination of Random 
PSO and DE, termed as Random PSODE 
(RPSODE). Random PSO algorithm is incorporated 
into the DE algorithm in order to maintain the 
diversity and explore the search space more 
efficiently. Use of hybrid optimization techniques 
involves the best practices of both algorithms and 
thus helps to reduce the design time. Also, the 
fitness is significantly improved because the 
hybridization helps to save the particles from being 
trapped in local minima, thus guiding them towards 
the global solution.  It is revealed that RPSODE has 
the ability to converge to the best quality near 
optimal solution and possesses the best convergence 
characteristics among the algorithms. It is observed 
from the above given tables and figures that 
RPSODE is more efficient in successfully 
optimizing the filter coefficients. RPSODE gives 
better magnitude response as well as the lowest 
error value as compared to other algorithms. Thus 
RPSODE proves itself to be a viable candidate for 
the optimal design of FIR filters. It is worth noting 
that, although the algorithm used here is 
implemented to constrain synthesis for FIR filters, 
one can see from the proposed technique it is not 
limited to this case only. It can easily be 
implemented for the global optimization of Antenna 
design, Digital filters and in Electrical power 
systems. 
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