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Abstract

This paper proposes a new scheme for preventing a Particle Swarm Optimizer from premature conver-
gence on multimodal optimization problems. Instead of only using fitness evaluation, we use a new index
called particle age to guide population towards more promising region of the search space. The particle
age is a measure of how long each particle moves towards a better solution. The main novelty of the pro-
posed method is to let each particle learn from not only neighbours with better fitness values but also the
neighbours whose fitness values are updated more frequently. To achieve this, we design a comprehensive
age-based learning strategy, in which age is used for excluding old particles, selecting learning exemplars
and deciding mutation strength and inertial weight for each particle. Experiments were conducted on 15
multimodal test functions to assess the performance of this new strategy in comparison with 7 state-of-
the-art PSOs from the literature. The experimental results show the good performance of the proposed
algorithm in solving multimodal functions when compared with several existing PSO variants.

Keywords: soft computing; function optimization; particle swarm optimizer (PSO); swarm intelligence.

1. Introduction

Particle Swarm Optimizer (PSO) has been shown to
be very successful in solving complex and challeng-
ing optimization problems 1,2. However, a common
problem often experienced when applying PSO to
multimodal function optimization is that the particle
population loses diversity too rapidly before it con-
verges to some reasonable solutions 3,4,5,6,7, which
is commonly referred as premature convergence.

Various schemes have been proposed to enhance

PSO to cope with premature convergence. These
methods can be divided into two categories, one em-
ploying population diversity maintenance and an-
other adopting some mechanism to escape local op-
tima. More specifically, methods for diversity main-
tanance include those using parameter adjustment
8,9,10, mutation 3,11,12, improved topology structure
5,7,13,14 and multi-population 4,13,15,16. Although
these works keep a reasonable balance between di-
versity and convergence, it is still far from optimal.
When this occurs, sometimes the only choice is to

∗Corresponding author.

International Journal of Computational Intelligence Systems, Vol. 6, No. 5 (September, 2013), 862-880

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                      862

willieb
Typewritten Text
Received 22 May 2012

willieb
Typewritten Text
Accepted 9 January 2013



Bo Jiang, Ning Wang, Xiaodong Li

restart 17. Restarting strategy does help to improve
the performance of PSO 18, however one problem is
to decide when the entire population needs restart-
ing.

An alternative strategy to restart the entire swarm
is to restart part of the population regularly in con-
junction with the use of an aging operator 19. Basi-
cally the aging operator works by accumulating its
ages, an individual with its age exceeding the max-
imal age τ is removed from the current population
and a new randomly generated individual is inserted.
τ is predefined by an user to determine the lifespan
of each individual. The aging operator maintains
population diversity through consecutive individual
replacement during the search process. Compared to
restarting the entire population, one advantage of ag-
ing operator is that new individuals coexist with old
population and can learn useful information from
them. It was previously demonstrated that aging op-
erator can achieve performance improvements that
restarts cannot20. In the past decade, the aging oper-
ator has been employed in many evolutionary algo-
rithms (EAs) to control ways of how a population
is generated 21,22,23. Two typical aging operators
are evolutionary aging24 and static pure aging21,22.
Jansen’s work25 shows the static pure aging can help
escape from local optima and evolutionary aging is
more effective on optimize functions with plateau .

The aim of this paper is to propose a new age-
based search strategy to improve the performance of
PSO for solving multimodal problems. We propose
four core age-based operators, which are particle re-
placement, neighbour selection, hypermutation and
inertial weight adjustment. This new algorithm dif-
fers from the existing age-based EAs and PSOs in
the following aspects.

(1) We propose a new and PSO-oriented age def-
inition that can be used for detecting both fit-
ness stagnation and oscillation.

(2) The age index is used not only for excluding
particles but also for constructing a compre-
hensive age-based learning strategy.

(3) Instead of the gbest population topology, an
age-based population topology is used to se-
lect neighbours for each particles, to improve

the performance of PSO on multimodal prob-
lems in particular.

(4) A new age-based hypermutation is developed
to decide the mutation strength for selected
particles according to their age.

(5) A new age-based adaptive scheme is used to
dynamically determine the inertial weight for
each particle. In this scheme, particles with
different ages have different inertial weights.

The rest of this paper is organized as follows.
The related work about PSO and aging operators
are reviewed in Section 2. In Section 3, we inves-
tigate two important phenomena of PSO to explain
why the proposed definition of particle age is use-
ful. Then, we present the framework of the proposed
age-based learning strategy in Section 4. Experi-
mental results are shown in Section 5. The discus-
sions and conclusion are presented in Section 6.

2. Related Works

2.1. PSO

PSO was first proposed by Kennedy and Eberhart in
1995 26. Each particle i is composed of two vec-
tors that are position vector xt

i =
[
xt

i,1,x
t
i,2, ...,x

t
i,D

]
and velocity vector vt

i =
[
vt

i,1,v
t
i,2, ...,v

t
i,D

]
, where D

denotes the dimension of search space and t is the
generation. Each particle’s personal best position
(pbest) pt

i =
[

pt
i,1, pt

i,2, ..., pt
i,D

]
and neighbor’s best

position (nbest) pt
n =

[
pt

n,1, pt
n,2, ..., pt

n,D

]
are used

for communicating information about the good po-
sitions in the search space to each particle. xt

i and vt
i

are updated as follows9:

vt+1
i = ωvt

i + c1r1
(
pt

i−xt
i
)
+ c2r2

(
pt

n−xt
i
)

(1)

xt+1
i = xt

i +vt+1
i (2)

where ω is called inertia weight and c1 and c2 are
acceleration constants. r1 and r2 are two random
numbers in the range [0,1]. The ω dampens the in-
fluence of previous velocity to the current velocity
and can be interpreted as the fluidity of the medium
where each particle moves27. c1 and c2 control the
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weight of stochastic acceleration terms that pull each
particle toward pbest and nbest, respectively5. To
better control the velocity, a positive value Vmax is
used to clamp each particle’s velocity on each di-
mension within [−Vmax,Vmax]. According to popula-
tion topology structure, there are two kinds of PSO,
global best version PSO (gbestPSO) and local best
version PSO (lbestPSO). In gbestPSO, each particle
chooses the global best position of the current popu-
lation as its nbest. In lbestPSO, each particle selects
the best position in its neighbourhood defined by lo-
cal population topology as nbest.

2.2. Diversity maintenance methods in PSO

Many works have been reported on the issue of
maintaining population diversity of PSO and some
of the representative works are reviewed here.
PSO’s search behaviour is highly influenced by two
parameters, i.e. inertial weight and acceleration con-
stants, so the easiest method used to keep effec-
tive diversity during search may be adjusting the
two parameters dynamically. For example, a time-
decreasing inertia weight9, different inertial weight
for each particle 28, time-varying acceleration con-
stants 8,10. Another important parameter is popu-
lation size. For example, adjusting population size
according to the status of the global best position 29.
In addition, incremental social learning is also intro-
duced to construct a growing population size 6. Be-
sides these learning parameter, population topology
also plays an important role in maintaining diver-
sity. Many static lbest topology have been proposed
to improve PSO’s performance on multimodal func-
tions, such as ring topology16, von Neuman topol-
ogy 30 and fully informed structure31. Eberhart and
Kennedy 32 has shown that a static lbest ring topol-
ogy converges more slowly than gbest topology but
performs better on multimodal functions. Recently,
some dynamic topologies have been developed, for
example random topology 13, comprehensive learn-
ing 5 and orthogonal learning 7.

Some effective diversity maintaining methods
used in other EAs are also introduced to PSO. Mu-
tation is one of them. Several mutation strate-
gies have been proposed, such as Gaussian muta-
tion, Cauchy mutation and hypermutation 12. Be-

sides mutation, multi-population methods have also
been introduced to PSO for multimodal function op-
timization. The first category of multi-population
method in PSO evolves multiple subpopulations in
parallel and each subpopulation searches a different
region of the landscape. This method is often used
to search the landscape of a multimodal function or
deal with dynamic optimization problems. Cluster-
based PSO33,34 and niching PSO 16,35 are two repre-
sentative multipopulation based methods. Another
multipopulation based method is cooperative coevo-
lution PSO, which splits solution vectors into multi-
ple smaller vectors and each of these smaller search
spaces is searched by a separated population. Bergh
and Engelbrecht 4 introduced cooperative coevolu-
tion into PSO, then Li and Yao 36 improved it to op-
timize large-scale continuous problems.

2.3. Aging operators

If premature convergence happened, the only way is
to restart the entire population to search once again
till the terminal condition is achieved. Instead of
restarting all individuals, aging operator selects part
of individuals to restart every time according to the
age of an individual. In a way, aging operator can be
seen as a steady-state version of the restart method.

Most of the current aging operators are used to
remove particles with poor performance. Two fre-
quently used aging operators are evolutionary aging
23,37,24,38 and static pure aging 22,21,39,40. The evolu-
tionary aging is often used in EAs and the static pure
aging is used in artificial immune systems(AISs).
What is in common between these is that each in-
dividual with its age exceeding maximal age τ is re-
placed by a new randomly generated individual. The
main difference between the two aging operators lies
in the definition of an individual’s age. In the evolu-
tionary aging, each new offspring generated through
crossover or mutation is assigned age 0 and the age
of each remaining individual is increased by one in
each generation 23,24. The parent individuals are in-
cluded in the remaining individuals if the parents can
exist with their offspring 24. In the static pure ag-
ing, each new offspring is assigned age 0 only if its
fitness is better than its parents fitness, otherwise it
inherits its parents age 21. It is obvious that the in-
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dividual age defined in evolutionary aging does not
depend on individual fitness but measures how long
the individual survives. In contrast, the age in static
pure aging represents how long an individual has not
reproduced a better offspring. For a minimization
problem, the definition of age in the two aging oper-
ators are as follows 25:
Definition 1 (evolutionary age) y.age = 0.

Definition 2 (static pure age) if f (y) < f (x) then
y.age = 0 else y.age = x.age.

where x and y represent parent individual and child
individual, respectively. Jasen’s recent work 25 com-
pares the above two aging operators and shows that:
the static pure aging can recognize local optima
while the evolutionary aging fails. On the other
hand the evolutionary aging is able to optimize func-
tions with plateau but the static pure aging can’t.
To improve the performance of static pure aging on
plateau, a new aging called genotypic aging was also
proposed 25. The age in genotypic aging is defined
as follows:
Definition 3 (genotypic age) if f (y)6 f (x)∧y 6= x
then y.age = 0 else y.age = x.age
Different from static pure aging, offspring with the
same fitness but in different place with respect to its
parent, is assigned age 0 in genotypic aging. It is
obvious that this mechanism allows for the random
walk on plateau. Besides the above three agings,
Hornby 41 proposed a new aging, called the age-
layered population structure (ALPS). In ALPS, ran-
domly created individuals start with age 0 and the
age is then increased by 1 in each generation if an
individual is used for producing an offspring. Indi-
viduals created through mutation and crossover start
with age 1 plus the maximal age of their parents.

3. Proposed Definition of Particle Age

3.1. Fitness stagnation and oscillation

Before defining new age for PSO, let us first con-
sider the drawback of the original PSO, which will
be used to explain why the existing age definitions
are unsuitable for PSO. To do this, consider the orig-
inal PSO with gbest topology for multimodal fun-
tion minimization. In Eq.(1) and (2), we eliminate

the velocity term and transform them to the format
as follows:

xt+1
i +(φ1 +φ2−ω−1)xt

i +ωxt−1
i = φ1pt

i +φ2pt
g

(3)
where φ1 = c1r1 and φ2 = c2r2. A particular solution
of this second-order difference equation Eq. (3) is:

ot
i =

φ1pt
i +φ2pt

g

φ1 +φ2
(4)

Furthermore, existing work has proved the follow-
ing equation under certain conditions42:

lim
t→∞

xt
i = E(ot

i) =
c1pt

i + c2pt
g

c1 + c2
(5)

This means that, particle i will converge to or oscil-
lates around an equilibrium point E(ot

i), which is a
weighted average of pt

i and pt
g if t is big enough. In

the initial stage, due to the |gbest−x| is significantly
larger than |pbest−x| , each particle is attracted to-
ward gbest position because its big influence. As
search continues, the gap between |gbest− x| and
|pbest−x| is reduced gradually, the velocity of each
particle becomes small. Under this circumstance,
if gbest and pbest are on the same valley of fitness
landscape, the particle is still attracted to move to-
ward gbest direction. However, it brings a problem
that is if the gbest is a local optima, the particle may
be impossible to jump out of this local optima once
its pbest has moved into the same area with the gbest
5. We call this fitness stagnation, because all indi-
viduals are trapped in the same valley or peak and
cannot jump out. Another situation is that if the fit-
ness of gbest and pbest are very close and they are in
two different valleys of the function landscape, they
would make the particle oscillate 16between them.
Oscillation is also regarded as a kind of premature
as gbest and pbest are not changed during oscilla-
tion. This is called fitness oscillation.

When the fitness stagnation takes place, both
the particle’s fitness value and its pbest fail to fur-
ther improve. However, when the fitness oscillation
happens, particle’s fitness value is fluctuated but its
pbest dose not change. So all the above three exist-
ing aging operators fail to detect fitness oscillation
because no pbest information is used in them.
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3.2. Particle age

To recognize the fitness oscillation of PSO, we pro-
pose a new definition of age for particles in PSO.
The new age is defined as follows:
Definition 4 (particle age) if f (xt

i) < f (pt
i) then

xt+1
i .age = 0 else xt+1

i .age = xt
i.age+1

In particle age, each new particle begins from age 0
and the change of its age depends on whether it can
find a better pbest after one iteration. If a particle
find a better pbest to replace the current one, its age
becomes 0. On the other hand, if it fails to update its
pbest, its age is increased by 1 in this iteration.

A distinct feature of particle age is that it utilizes
particle’s best historical information and particle’s
current information to determine the age for each
particle. It can recognize the two kinds of prema-
ture convergence, because no matter which of them
happens it is impossible to change a particle’s pbest.
Thus it causes a linear increase on age of the particle.
When the sharp increase is detected, some remedial
measures, such as adjusting parameters and restart-
ing, can be utilised to allow the particle to escape
from the current local optima. An example of the
change of particle age during optimization is shown
in Fig.1. The objective particle was randomly se-
lected from 40 particles used in a basic PSO for op-
timizing 30-D Rastrigin function 5. From Fig.1, this
particle was relatively easy to update its pbest at the
earlier stage of search but difficult to find a better
pbest after about 1500 generations. This may be
caused by the lose of population diversity after cer-
tain number of generations. Furthermore, this ten-
dency appeared on other multimodal functions such
as Rosenbrock, Griewank, Ackley, Weierstrass and
Schwefel function5 when the original PSO was used.

4. Particle Swarm Optimizer with Age

4.1. Framework of PSOA

As defined above, the age of each particle shows
whether the space around it is a promising region for
itself or other particles, in order to search for better
solutions. A too old particle means that the direc-
tion it lies is hopeless and we do not hope any par-
ticles search toward it. In other words, it is possible
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Fig. 1. Example of the change in age of a particle when
using basic PSO to optimize 30-D Rastrigin function.

for population to find a better solution if more parti-
cles are used to search around a particle whose age is
zero. According to this basic guideline, we propose
the following three learning principles: First, any
particle whose age exceeding the permitted maximal
age is replaced by a new random particle. Second,
each particle learns information from the younger
particles. Third, to avoid being replaced, a high
probability should be assigned to the older particle
so that it can update its pbest.

PSOA starts from a randomly generated initial
swarm with a random topology. The framework of
PSOA is given in Algorithm 1. Four main compo-
nents of PSOA, i.e. particles replacement, neigh-
bours selection, hypermutation and inertial weight
adjustment, which are the four age-based operators
are described in the following sections.

4.2. Particle replacement

The original aging operator that excludes particles
with their age exceeding τ is used in PSOA to man-
age population dynamically. We call it particle re-
placement in this paper. At the end of each genera-
tion, the age of each particle is computed according
to the particle age defined in Definition 4. Specifi-
cally, if particle i find a new position that is strictly
better than its current pbest its age αi is changed to
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Algorithm 1 The framework of the proposed PSOA
Initialization:

1: Randomly generate an initial swarm S with size P;
2: Set the fitness evaluations counter f evals = 0;
3: Set the age of initial swarm αi = 0(i = 1,2, ...,P);

Iterations:
4: while stop condition is not satisfied do
5: if regular interval achieves then
6: ParticlesReplacement(S,α,τ, f evals);
7: NeighbourSelection(S,α);
8: end if
9: for i = 1 : P do

10: InertiaWeightAd justment(S,ω,α);
11: Update velocity and position according (1) and (2) ;
12: end for
13: if mutation condition is satisfied then
14: Hypermutation(S,a);
15: end if
16: FitnessEvaluation(S, f evals);
17: Update age according the Definition 4
18: end while

0 ( αi = 0), else αi is increased by one (αi = αi +1)
. When the latter happens, αi will be compared with
τ . If αi > τ , the particle i is excluded from the cur-
rent population. Then, a new particle with age 0 is
randomly generated in the search space and inserted
into population. The above process is executed on
each particle in the population.

4.3. Neighbour selection

Population topology structure has significant influ-
ence on the performance of PSO for multimodal
function optimization. Instead of using gbest topol-
ogy, an age based population topology with K neigh-
bours is proposed in this paper. In this age topol-
ogy, each particle first randomly selects K particles
in population as its neighbours then chooses the par-
ticle with the best fitness among the K neighbours
as its nbest. At regular intervals, this procedure is
repeated to select new neighbours for each particle.
One important question is how to select the K neigh-
bours from the population. In existing work 13, the
K neighbours for each particle is randomly selected

from the entire population. In PSOA, each particle
selects ones that not older than itself as its neigh-
bours. One benefit of this strategy is improving the
chance to share information with good particles and
reduce the probability to search on poor directions.
Specifically, we select neighbours for particle i as
follows.

(1) We first find out all particles except i with their
age not exceeding the age of particle i (αi).
The number of particles is N.

(2) If N > K, randomly choose K particles from
the N individuals as the neighbours of particle
i. If N < K, choose the global best particle of
current population as its only neighbour.

(3) If N > K, compare the fitness value of these K
particles’ pbest and select the best one as the
nbest of particle i.

This procedure is executed at every age-gap gener-
ations. For example, if the value of age-gap is 15,
the topology of each particle is reconstructed at gen-
eration 15, 30, 45, . . . . To leave enough time for
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Figure 2: Determine mutation region in different situation. (a) the length after the hotspot is longer than li.
(b)the length after the hotspot is shorter than li

each particle to learn more information from good
neighbours, the age-gap is set to the maximal age τ

in this paper. The main difference between the pro-
posed topology and other random topology 13 is that
it uses age to decide the constitution of neighbour-
hoods but not randomly selects them from the en-
tire population. Since age represents the ability of a
particle to update its pbest, searching around young
particles may provide more promising solutions.

4.4. Hypermutation

Hypermutation is a basic mechanism of cell im-
mune response and has been simulated in artificial
immune systems (AISs) for machine learning and
optimization43. Its distinct feature is that it makes
all dimensions in a contiguous region of vector to be
mutated. Our preliminary work 12 implemented this
idea in PSO and found its good performance on mul-
timodal problems. Instead of using a random muta-
tion strength as in 12, we use the particle age to de-
termine the range of the contiguous region. We hope
the older particles have the higher mutation strength
to push them to a new position, since they have stag-
nated or oscillated for a long time.

For particle i with age αi, if it is selected to be

mutated, its mutation length li is as follow.

li =


d1+(

D
2
−2)∗ αi

τ +1
e αi 6 τ

D
2

αi > τ

(6)

In (6), D is the particle dimensions and de is ceiling
function. If αi = 0, only one dimension of particle
i is chosen to be mutated and this is same with one
point mutation. With the increase of αi, the mutation

length li is also increased from one to
D
2

. If αi > τ ,

the mutation length is D/2, which is the highest mu-
tation strength allowed in PSOA. In this paper, the
mutated particles are not considered as new parti-
cles because at least half of these particles’ dimen-
sions information are retained. As a result, the age
of them remain unchanged. For particle i, a hotspot
(mutation point) is first randomly selected within the
dimension of it to implement the hypermutation. If
the distance between hotspot and the end of the vec-
tor is longer than li, then all li dimensions that from
the hotspot onward are mutated (Fig.2(a)). If the dis-
tance between them is shorter than li, the remainder
dimensions are used from the beginning of vector i
(Fig.2(b)).
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4.5. Inertia weight adjustment

Although particle replacement can discard aged par-
ticles and introduce new particles to replace them, it
may lose useful information in the discarded parti-
cles. Furthermore, adding new particles needs ad-
ditional fitness evaluations. In order to make the
best use of the existing particles, it may be better
to keep them through finding better pbest. So, it is
reasonable to equip the old particles with better local
search capability. To do this, we build a connection
between each particle’s age and inertia weight to de-
crease ω when it gets old. The inertia weight for
particle i (ωi) is changed as follows.

ωi =

0.729(1− αi

τ +1
) αi 6 τ

0 αi > τ

(7)

In PSOA, ω is initialized to 0.729 which can keep
the search balanced between global best and per-
sonal best position27. From (7), the ωi of particles
with age 0 are assigned 0.729. The ωi is decreased
by 1/(τ + 1) when the age of particle i (αi) is in-
creased by one till the αi is larger than τ . Due to the
particle replacement is performed at every age-gap
generations, some particles with their age exceed-
ing τ may be kept in population. For these particles,
we assign them age 0 to give them the highest local
search abilities to update their pbest and they will be
excluded in the next iteration if this is failed.

4.6. Setting the maximal age τ

To select an appropriate τ , six 30-D multimodal
functions are used to investigate the influence of τ .
The six function are Rosenbrock, Griewank, Ack-
ley, Rastrigin, Weierstrass and Schwefel function5.
First, we use the basic gbestPSO to run it 30 times
on all functions. Table 1 shows the average and stan-
dard deviation of the age of the entire population
during optimization process. The data before the ter-
mination of the PSOA is used for statistical analysis.
It is obvious that the population ages in the six func-
tions are very close and their mean value is about
seven. It means that each particle spends average
about 7 iterations to find a better pbest when dealing
the six functions. Therefore, the lower limit should

be larger than seven to leave enough time for most
particles to search. Based on this, we run PSO with
particle replacement on the six functions using 15
different τ from 7 to 21. The experiments is also run
30 times on each level and the average of the final fit-
ness value are plotted in Fig.3. Four test functions,
including Ackley, Rastrigin, Weistrass and Schwefel
functions, are very sensitive to τ and three of them
achieve the best results when τ is 19. The other
two test functions, i.e. Rosenbrock and Griewank
functions also get good result when τ is around 19.
So, the maximal age τ is set at 19 for all benchmark
functions used in this paper.

Table 1. Statistic results of α for the six test functions.
f1 f2 f3 f4 f5 f6

α 7.9±4.1 5.7±1.6 5.4±1.3 9.0±4.1 4.8±1.1 7.1±2.5

5. Experiments Results

The experiments conducted in this paper are divided
into two parts: the first part is to investigate the re-
spective influence of the four proposed schemes to
PSO and the second part compares PSOA with other
well-known PSOs.

5.1. Test functions

In order to test the PSOA on multimodal functions
and compare it to other algorithms, we choose fif-
teen widely used multimodal test functions from
5,44,45. The fifteen test functions are listed in Table
2, where the dimension D is set to 30 in this pa-
per. The xmin for the functions f1− f5 and f7− f11 is
{0}D, for the functions f6 and f12 is {420.96}D and
for the functions f13− f15 is { f bias}D. The col-
umn ’Range’ represents the initialization range and
search range.

The function f1 − f6 are six basic multimodal
functions. The Rosenbrock function f1 is unimodal
in a 2-D or 3-D search space but can be seen as mul-
timodal function in high dimension space7,46. In the
six functions, the f1 and f6 are nonseparable and the
other four are separable. The functions f7− f12 are
the rotated version of the functions f1 − f6. The
last three functions f13 − f15 are three more diffi-
cult shifted rotated multimodal functions, which are
proposed in CEC 200545. To make problems non-
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Table 2: Benchmark Test Functions
Functiona Range fmin Accuracy

f1 = ∑
D−1
i=1 [100(xi+1− x2

i )
2 +(xi−1)2] [−30,30]D 0 1.0e+02

f2 = ∑
D
i=1

1
4000 x2

i −∏
D
i=1 cos( xi√

i
)+1 [−600,600]D 0 1.0e-06

f3 = 20+ e−20exp(−0.2
√

1
D ∑

D
i=1 x2

i )− exp( 1
D ∑

D
i=1 cos(2πxi)) [−30,30]D 0 1.0e-06

f4 = ∑
D
i=1(x

2
i −10cos(2πxi))+10D [−5.12,5.12]D 0 1.0e-06

f5 = ∑
D
i=1(∑

20
k=0[0.5

k cos(2π0.3k(xi +0.5))])−D∑
20
k=0 0.5k cos(π0.3k) [−0.5,0.5]D 0 1.0e-06

f6 = 418.9829D+∑
D
i=1[−xi sin(

√
|xi|)] [−500,500]D 0 2.0e+03

f7
b= ∑

D−1
i=1 [100(yi+1− y2

i )
2 +(yi−1)2]

[−100,100]D 0 1.0e-02
f8

b= ∑
D
i=1(y

2
i −10cos(2πyi))+10D

[−5.12,5.12]D 0 1.0e+02
f9

b= 20+ e−20exp(−0.2
√

1
D ∑

D
i=1 y2

i )− exp( 1
D ∑

D
i=1 cos(2πyi)),

[−30,30]D 0 1.0e-06
f10

b= ∑
D
i=1(∑

20
k=0[0.5

k cos(2π0.3k(yi +0.5))])−D∑
20
k=0 0.5k cos(π0.3k),

[−0.5,0.5]D 0 1.0e-06
f11

b= ∑
D
i=1

1
4000 y2

i −∏
D
i=1 cos( yi√

i
)+1

[−600,600]D 0 1.0e-06
f12

b= 418.9829D+∑
D
i=1[−yi sin(

√
|yi|)],

[−500,500]D 0 5.0e+03
f13

c= ∑
D
i=1

1
4000 z2

i −∏
D
i=1 cos( zi√

i
)+1+ f bias, f bias =−180,

[−600,600]D -180 1.0e-01
f14

c= ∑
D
i=1(z

2
i −10cos(2πzi))+10D+ f bias, f bias =−330

[−5,5]D -330 1.0e-01
f15

c= ∑
D
i=1(∑

20
k=0[0.5

k cos(2π0.3k(zi +0.5))])−D∑
20
k=0 0.5k cos(π0.3k)

[−0.5,0.5]D 90 1.0e-01
+ f bias, f bias = 90

a f1 Rosenbrock function, f2 Griewank function, f3 Ackley function, f4 Rastrigin function, f5 Weiestrass function, f6
Schwefel function, f7 Rotated Rosenbrock function, f8 Rotated Rastrigin function, f9 Rotated Ackley function, f10 Ro-
tated Weiestrass function, f11 Rotated Griewank function, f12 Rotated Schwefel function, f13 Shifted Rotated Griewank
function, f14 Shifted Rotated Rastrigin function, f15 Shifted Rotated Weiestrass function;

b y=M*x,M is an orthogonal matrix;
c z=(x-o)*M, M is an orthogonal matrix and o is the shifted global optimum.

Table 3: Nine PSOs used for comparision
Name Parameters Setting
GPSO ω = 0.729,c1 = c2 = 1.49445,Vmax = 0.5∗Ra,Pm = 0.1.
SPSO07 ω = 1/(2∗ ln(2)),c1 = c2 = 0.5+ ln(2),K = 3.
FIPS ω = 0.729,∑c = 4.1,Vmax = 0.5∗R.
DMS-PSO ω = 0.9∼ 0.2,c1 = c2 = 2.05,Vmax = 0.2∗R,m = 3,R = 5.
CLPSO ω = 0.9∼ 0.4,c = 1.49445,Vmax = 0.2∗R,m = 7.
IPSO ω = 0.729,c1 = c2 = 1.49445,Vmax = 0.5∗R, psmin = 1, psmax = 1000.
EPUS-PSO ω = 1/(2∗ ln(2)),c1 = c2 = 0.5+ ln(2),k = 3, psmin = 1, psmax = 20.
PSOA ω = 0.729,c1 = c2 = 1.49445,τ = 19,K = 3,Pm = 0.2.
a R means the search range.
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Figure 3: The variance of the final fitness value of PSO against the parameter τ (tau) on the six benchmark
functions.

separable, an orthogonal matrix M is used to rotate
coordinate. The original vector x is multiplied by M
to generate a vector y = M∗x. In this paper, the or-
thogonal matrix M is generated through Salomon’s
method5,29,47.

Table 2 also shows the search range of each di-
mension of the particle (column 2), the global opti-
mal fitness fmin(column 3) and the acceptable accu-
racy for each function (column 4). In our following
experiment, the initialization range is the same with
the search range. The accuracy index 7 is used to
measure the desired accuracy for each function.

5.2. Experimental setup

Experiments will be conducted to compare PSOA
with seven existing PSO variants on the fifteen test
functions. Table 3 lists the algorithms name and pa-
rameters configuration. All parameter settings are
based on the suggestions in the corresponding ref-
erences. The first PSO is Gaussian PSO (GPSO)
where a Gaussian mutation is used 48. The second
is Clerc’s standard PSO 2007 version (SPSO07) 14,

where a random topology is used. The third one is
fully informed particle swarm (FIPS)31 where each
particle is related to all other particles of the popu-
lation. The fourth one is dynamic multi-swarm PSO
(DMS-PSO)13 where a dynamic random topology is
applied to organize learning among particles. The
fifth one is comprehensive learning PSO (CLPSO) 5

that uses all others personal best position to update a
particles velocity. The sixth one is incremental PSO
(IPSO) 6 which uses the incremental social learn-
ing to control the population size dynamically. The
last PSO for comparisons is the efficient population
utilization strategy PSO (EPUS-PSO) 29 in which a
dynamic population size is also employed.

All algorithms were programmed and compiled
under Matlab R2011b on an Intel Core i5-760
2.8GHz computer running Microsoft Windows 7. In
the following experiments, the population size is set
to 40 for all algorithms except IPSO and EPUS-
PSO. In IPSO and EPUS-PSO, the minimum popu-
lation size of both is set to 1 and the maximum popu-
lation size is set to 1000 and 20 respectively, accord-
ing to their original setting in6,29. Furthermore, all
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the algorithms uses the same maximum number of
fitness evaluations (FEs) 2.0e+05 in each run for all
functions. In experimental setup, each algorithm is
run with the same parameter setting across all test
functions. To verify the effectiveness of the pro-
posed algorithms, each algorithm is run 30 times in-
dependently for every function and the mean value
and standard deviation value are calculated. Be-
sides, two additional indexes success rate(SR) and
convergence speed(CS) are used for algorithm com-
parisons. The SR index is the percentage of runs that
reach the desired accuracy and the CS is measured
on the mean number of FEs required to reach an ac-
ceptable solution among successful runs7. Note that,
in the all following experimental results tables,the
better results on each index are in bold.

5.3. Effects of the proposed strategies

In this section, we investigate whether the proposed
strategies, i.e. particle replacement, neighbours se-
lection, hypermutation and inertia weight adjust-
ment, can significantly improve PSO ’s performance
on multimodal function. To do this, we add each of
the three ideas to basic PSO one by one to produce
four different algorithm as shown in Table 4. We
named them PSOA, PSOA1, PSOA2 and PSOA3
respectively. Then we run basic PSO, PSOA and
the three PSOA variants on the fifteen test functions
listed in Table 2, 30 times independently.

Table 4. Relation between the four different PSOA versions.
Name Content
PSOA PSO + ParticleReplace
PSOA1 PSOA + NeighborSelection
PSOA2 PSOA1 + Hypermutation
PSOA3 PSOA2 + InertiaWeightAdjust

Table 5 compares the experimental results of the
five algorithms. The better results on each test func-
tion are highlighted in bold. It is noticeable that
the performance fluctuates a lot when different aging
operators are used. Firstly, the basic PSO gave bet-
ter results than any PSOA variants on f1. For PSOA,
there was no significant enhancement on all test
functions compared to basic PSO though particle re-
placement was used in it. On the contrary, PSOA

using an age based random topology (PSOA1) got
a better performance than PSO and PSOA on most
functions except f1 and f7. In addition, PSOA1 gave
the best results on the function f15. Furthermore,
PSOA2 gave a better solution than PSOA1 on all
functions except f13- f15. On the function f8, f10,
f11 and f12, PSOA2 achieved the best results among
the five PSOs. Finally, PSOA3 achieved the best ac-
curacy on the function f2− f7, f9, f13 and f14. Ta-
ble 5 also compares the t-test results among the five
PSOs. The first group of t-test is between PSOA
and PSO, it can be noted from the results (B vs A
column ) that PSOA performed worse than PSO on
all of the fifteen functions. It is obvious that PSOA1
was significantly better than PSOA on 12 out of the
15 benchmarks. Furthermore, PSOA2 outperformed
PSOA1 on nine functions. From results of the last
group (PSOA3 vs PSOA2), PSOA3 performed sig-
nificantly better than PSOA2 on ten functions.

Table 6 compares the success rate and conver-
gence speed of PSO and the four PSOA variants.
On success rate measure, the basic PSO only per-
formed well on the function f1 and the PSOA totally
converged to the desired accuracy on the function f1
and f12 in the 30 runs. Although the average suc-
cess rate of PSOA1 (55.3%) was significant better
than PSO and PSOA, it only gave 100% success rate
on the function f3 and f12. Compared to PSOA1,
PSOA2 showed better results of success rate on nine
test functions, i.e. f1 − f5 and f8 − f11. Finally,
PSOA3 got the best average success rate (75.3%)
among the five PSO variants and was converged on
nine test functions. Another measure is about the
convergence speed in the successful runs. On this
measure, PSO, PSOA and PSOA3 gave better results
on one, four and seven test functions, respectively.

From the statistical results shown in Table 5,
it seems that the particle replacement can not im-
prove the performance of PSO. This is understand-
able because there is no additional mechanism to al-
low other trapped particles to learn the information
in the new ones. On the contrary, the new particles
are easily attracted by these particles in local optima.
This conjecture is verified in the results of PSOA1.
When the age-based topology is added to PSOA, its
solution accuracy, converge speed and success rate
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on most test functions were all enhanced substan-
tially. This is because the new born and young par-
ticles can provide more promising information than
the gbest. More important, the age-based popula-
tion topology provides the chance for trapped parti-
cles to learn these information and escape from local
optima. Fig.4 compares the change of population di-
versity and fitness value when applying PSO, PSOA
and PSOA1 on Rastrigin functions f4. The results
are the average value of 30 independent runs and
the diversity is computed according to Morrison and
De Jong’s moment of inertia diversity measure 49.
From Fig.4, it is clearly observed that PSOA failed
to maintain diversity during search but PSOA1 was
able to keep an effective diversity in a high level. It
is noted that the similar tendency happened on all of
the other fourteen test functions.

5.4. Comparisons with other PSOs

In this section, the PSOA2 and PSOA3 are compared
with other seven improved PSO variants, which are
listed in Table 3. Table 7 shows the average value
and standard deviation results of the nine PSOs.
PSOA2 gave the better results on f8, f10, f11 and f15.
PSOA3 performed the best on the eight out of the fif-
teen functions, i.e. f2− f5, f7, f9 and f13− f14. FIPS
got better results on the function f12 and CLPSO
performed very well on the function f1 and f6. Over-
all, it can be observed that PSOA2 and PSOA3 gave
the better results on most of the test functions.

Table 8 lists the t-test results at the confidence
level of 5% between PSOA3 and the other seven
PSO variants (except PSOA2). ”+” and”-” indi-
cate that PSOA3 is significantly better and worse
than the compared algorithm, respectively. ”≈” in-
dicates the difference is not significant. From Table
8, it is obvious that PSOA3 was significantly better
than all the other seven PSO variants on the function
f2, f4, f5, f8 and f15. On the function f3, f9, f12
and f13, PSOA3 outperformed six out of the seven
compared PSOs. On the function f1, f10 and f14,
it beat five out the seven algorithms. In addition,
it performed better on four of the functions on the
function f7 and f11. Finally, it performed poorly on
the Schwefel function f6. From another perspective,
for GPSO and DMS-PSO, it performed significantly

better than them on most of the test functions and
worse than them on the function f6. For SPSO07,
IPSO and EPUS-PSO, they failed to performed well
on any of the test functions. For FIPS, the proposed
algorithm was better than it on twelve out of the fif-
teen functions but defeated on the function f6 and
f12. For CLPSO, the proposed algorithm also beat it
on twelve test functions and performed bad on three
functions, i.e. f1, f6 and f11.

Table 9 compares the success rate and con-
verge speed in the successful runs of the nine
PSO variants. The results show that PSOA2 and
PSOA3 achieved the highest average success rate
70.7% and 75.3% respectively, DMS-PSO ranked
second at 62.7%, followed by CLPSO, SPSO07,
GPSO(FIPS), IPSO and EPUS-PSO. Moreover,
PSOA3 converged very fast on most of the functions
and gave the best performance on the function f1, f4,
f5 and f8− f10. GPSO was fastest on f6 and f12 and
SPSO07 performed fastest on f13. In addition, IPSO
is very fast on f3 and EPUS-PSO performed well on
f2 and f11. Fig.5 and 6 show the convergence plot
of PSOA3, DMS-PSO, CLPSO and SPSO07, which
all performed very well on the fifteen test functions
in the seven compared PSOs. It can be noted that
PSOA3 converged fast to the best solution on most
of the test functions, especially on f2− f5, f8, f9, f12
and f15. Overall, compared to the other seven PSOs,
PSOA2 and PSOA3 show better performance both
on the success rate and the convergence speed.

6. Conclusion

In this paper, we presented a novel PSOA to cope
with premature converge when solving multimodal
functions. Firstly, we gave a new definition of age
for PSO, which used the update of pbest of each
particle to determine its age. One useful feature of
particle age is that it can recognize both fitness stag-
nation and fitness oscillation. Based on this, we first
introduced the original aging operator (particle re-
placement) into PSO. However, many valuable in-
formation in the new and young particles were not
fully utilized. To make use of these information,
three age related operators were proposed in this pa-
per, i.e. age based neighbourhood selection, hyper-
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Table 5: Results with four variations of PSOA and PSO on the 15 test functions
Function PSO PSOA PSOA1 PSOA2 PSOA3 t-Testa

A B C D E B vs Ab C vs B D vs C E vs D

f1
avg. 7.85e+00 9.48e+00 3.14e+01 2.19e+01 1.84e+01 ≈ − ≈ +std. 5.70e+00 1.59e+01 3.31e+01 2.31e-01 3.60e-01

f2
avg. 1.23e-02 6.12e-02 7.14e-03 1.18e-15 0.00e+00 ≈ ≈ + +std. 1.63e-02 1.87e-01 1.05e-02 1.25e-15 0.00e+00

f3
avg. 2.22e+00 1.49e+00 1.80e-12 1.64e-12 7.70e-15 ≈ + ≈ +std. 2.47e+00 8.56e-01 1.83e-12 1.75e-12 1.35e-15

f4
avg. 8.22e+01 9.15e+01 2.41e+01 1.17e-14 0.00e+00 ≈ + + +avg. 1.79e+01 2.70e+01 1.78e+01 7.81e-15 0.00e+00

f5
avg. 6.90e+00 7.08e+00 1.84e-01 1.84e-13 0.00e+00 ≈ + + +std. 2.83e+00 3.05e+00 4.84e-01 1.54e-13 0.00e+00

f6
avg. 3.30e+03 3.35e+03 2.08e+03 2.40e+03 1.94e+03 ≈ + ≈ +std. 6.13e+02 5.87e+02 6.05e+02 7.36e+02 5.22e+02

f7
avg. 2.53e+01 2.59e+01 6.08e+01 2.34e+01 2.17e+01 ≈ − + +std. 2.52e+01 2.23e+01 4.42e+01 2.87e-01 1.41e+00

f8
avg. 9.38e+01 1.01e+02 6.48e+01 1.34e-14 1.03e+01 ≈ + + −std. 2.67e+01 3.07e+01 1.80e+01 7.53e-15 9.29e+00

f9
avg 2.17e+00 2.29e+00 1.97e-01 1.52e-12 6.87e-15 ≈ + + +std. 7.41e-01 8.67e-01 5.20e-01 2.37e-12 1.30e-15

f10
avg. 1.41e+01 1.40e+01 4.98e+00 4.44e-06 1.77e-01 ≈ + + ≈std. 2.91e+00 3.67e+00 2.40e+00 1.07e-05 7.98e-01

f11
avg. 2.21e-02 1.68e-02 4.43e-03 2.83e-15 2.14e-03 ≈ + + −std. 2.37e-02 2.15e-02 7.15e-03 2.04e-15 5.00e-03

f12
avg. 3.54e+03 3.60e+03 2.44e+03 1.54e+03 1.93e+03 ≈ + + −std. 8.09e+02 6.64e+02 6.58e+02 2.79e+02 4.41e+02

f13
avg. -156.203 -158.085 -179.967 -178.261 -179.980 ≈ + − +std. 6.97e+01 4.50e+01 3.75e-02 4.34e+00 1.28e-02

f14
avg. -199.865 -209.418 -273.955 -264.267 -289.445 ≈ + − +std. 4.18e+01 2.98e+01 1.44e+01 1.97e+01 1.16e+01

f15
avg. 118.101 118.070 110.204 110.343 110.419 ≈ + ≈ ≈std. 3.59e+00 3.95e+00 3.76e+00 4.31e+00 3.69e+00

Total 1 0 1 4 9 0+ 12+ 9+ 10+
a A t-test with significance level of 0.05 and freedom of 58 degrees was conducted;
b ‘B vs A‘ means a t-test is executed between A and B, ‘+‘ and ‘−‘ indicate B is significantly better and

worse than A, respectively. ‘≈‘ means the difference between B and A is not statistically significant.

Table 6: Success rate and convergence speed in successful runs of the five PSOs

Function
PSO PSOA PSOA1 PSOA2 PSOA3

SR CS SR CS SR CS SR CS SR CS
f1 100% 1.61e+04 100% 1.79e+04 97% 4.10e+04 100% 1.42e+04 100% 9.09e+03
f2 40% 2.10e+04 13% 2.25e+04 57% 4.16e+04 100% 3.57e+04 100% 2.16e+04
f3 10% 3.22e+04 13% 3.26e+04 100% 5.90e+04 100% 4.91e+04 100% 2.99e+04
f4 0% ×b 0% × 0% × 100% 3.91e+04 100% 2.86e+04
f5 0% × 0% × 83% 1.02e+05 100% 5.64e+04 100% 3.72e+04
f6 3% 4.32e+03 0% × 53% 6.34e+04 27% 9.16e+04 57% 5.51e+04
f8 70% 7.26e+03 50% 6.94e+03 97% 1.96e+04 100% 1.61e+04 100% 8.58e+04
f9 3% 3.22e+04 0% × 83% 7.06e+04 100% 4.98e+04 100% 2.98e+04
f10 0% × 0% × 0% × 70% 7.37e+04 90% 4.48e+04
f11 30% 2.15e+04 23% 2.03e+04 67% 4.23e+04 100% 3.37e+04 83% 2.07e+04
f12 93% 2.52e+03 100% 2.42e+03 100% 4.68e+03 100% 4.86e+03 100% 4.43e+03
f13 23% 3.12e+04 37% 3.00e+04 93% 5.91e+04 63% 1.21e+05 100% 8.19e+04

avga. 24.6% 22.4% 55.3% 70.7% 75.3%
a results for the function f7, f14 and f15 are not shown in this table because none of the eight PSOs is able to

achieve the desired accuracy on them;
b ‘×‘ means the corresponding algorithm fails to converge to the desired region once during the 30 runs.
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Figure 4: Comparision of PSO, PSOA and PSOA1’s diversity and convergence on the function Rastrigin f4. (a)
diversity plot. (b) enlarged view of the diversity plot between 1 and 2000 generations. (c) convergence plot.

Table 7: Results with PSOA and the compared eight PSOs on the 15 functions with 30-D
Function GPSO SPSO07 FIPS DMS-PSO CLPSO IPSO EPUS-PSO PSOA2 PSOA3

f1
avg. 3.56e+01 4.04e+01 2.72e+01 3.06e+01 7.58e+00 4.36e+01 3.50e+01 2.19e+01 1.84e+01
std. 3.16e+01 3.10e+01 1.12e+01 2.03e+01 7.94e+00 3.80e+01 3.80e+01 2.31e-01 3.60e-01

f2
avg. 8.54e-03 5.50e-03 7.64e-05 4.81e-08 2.02e-09 9.02e-03 1.56e-02 1.18e-15 0.00e+00
std. 9.68e-03 7.56e-03 3.31e-04 2.62e-07 2.85e-09 1.32e-02 1.67e-02 1.25e-15 0.00e+00

f3
avg. 6.30e-09 3.10e-02 3.64e-07 6.55e-14 1.54e-06 7.65e-08 2.62e+01 1.64e-12 7.70e-15
std. 6.29e-09 1.70e-01 9.97e-08 2.95e-14 5.26e-07 1.28e-07 6.80e-01 1.75e-12 1.35e-15

f4
avg. 5.06e+00 3.69e+01 6.99e+01 2.22e+01 9.69e-09 2.17e+01 6.36e+01 1.17e-14 0.00e+00
std. 5.98e+00 1.04e+01 1.05e+01 2.24e+00 7.31e-09 1.15e+01 2.07e+01 7.81e-15 0.00e+00

f5
avg. 4.43e-04 1.34e-01 7.11e-02 1.97e-14 1.13e-07 2.31e-01 1.51e+01 1.84e-13 0.00e+00
std. 3.86e-04 2.63e-01 7.87e-02 1.18e-14 6.82e-08 5.28e-01 2.48e+01 1.54e-13 0.00e+00

f6
avg. 1.62e+03 3.22e+03 6.98e+02 1.62e+03 3.82e-04 2.16e+03 1.22e+03 2.40e+03 1.94e+03
std. 2.92e+02 8.06e+02 4.56e+02 3.26e+02 1.68e-09 4.12e+02 2.20e+03 7.36e+02 5.22e+02

f7
avg. 7.22e+01 2.38e+01 2.60e+01 2.53e+01 8.85e+01 3.93e+01 2.56e+01 2.34e+01 2.16e+01
std. 1.37e+02 1.49e+01 7.88e-01 1.72e+00 2.76e+01 2.98e+01 1.37e+01 2.87e-01 1.41e+00

f8
avg. 5.14e+01 4.44e+01 1.29e+02 3.40e+01 3.83e+01 6.06e+01 8.80e+01 1.34e-14 1.03e+01
std. 1.68e+01 1.08e+01 1.52e+01 3.97e+00 5.75e+00 1.82e+01 3.43e+01 7.53e-15 9.29e+00

f9
avg. 7.83e-01 6.21e-02 5.02e-07 7.41e-14 5.06e-05 9.49e-01 4.44e+00 1.52e-12 6.87e-15
std. 7.79e-01 2.36e-01 1.54e-07 4.75e-14 3.28e-05 7.46e-01 1.20e+00 2.73e-12 1.30e-15

f10
avg. 1.03e+01 1.52e+00 3.33e-01 6.85e-02 2.96e+00 9.47e+00 1.80e+01 4.44e-06 1.78e-01
std. 3.09e+00 1.95e+00 6.44e-01 5.81e-02 8.01e-01 2.76e+00 3.36e+00 1.07e-15 7.99e-01

f11
avg. 1.37e-02 6.73e-03 6.73e-03 3.89e-06 4.76e-05 1.26e-02 1.07e-02 2.83e-15 2.13e-03
std. 1.66e-02 8.54e-03 9.53e-05 1.88e-05 4.31e-05 1.13e-02 1.44e-02 2.04e-15 5.00e-03

f12
avg. 2.88e+03 2.61e+03 1.10e+03 4.88e+03 2.66e+03 3.74e+03 4.32e+03 1.54e+03 1.93e+03
std. 6.99e+02 6.37e+02 8.24e+02 2.78e+02 2.53e+02 6.75e+02 7.40e+02 2.79e+02 4.41e+02

f13
avg. -179.980 -179.978 -179.924 -179.926 -178.323 -179.979 -179.971 -178.261 -179.984
std. 1.55e-02 1.62e-02 4.28e-02 1.03e-01 2.71e-01 5.02e-01 2.51e-02 4.34e+00 1.28e-02

f14
avg. -214.017 -282.550 -147.447 -274.534 -218.698 -212.691 -70.730 -264.267 -289.445
std. 4.21e+01 1.64e+01 1.04e+01 5.38e+00 1.60e+01 4.00e+01 8.69e+02 1.91e+01 1.16e+01

f15
avg. 115.034 122.385 129.161 117.199 117.781 113.874 124.348 110.343 110.429
std. 3.95e+00 2.12e+00 1.17e+00 1.17e+00 2.12e+00 3.54e+00 3.61e+00 4.31e+00 3.69e+00

Total 0 0 1 0 2 0 0 4 8
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Table 8: t-test results between PSOA3 and GPSO, SPSO07, FIPS, DMS-PSO, CLPSO, IPSO and EPUS-PSO
PSOA3

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15
Total

Versus + ≈ −
GPSO + + + + + − ≈ + + + + + + + + 13 1 1

SPSO07 + + ≈ + + + ≈ + ≈ + ≈ + + ≈ + 10 5 0
FIPS + + + + + − + + + ≈ + − + + + 12 1 2

DMS-PSO + + + + + − + + + ≈ ≈ + + + + 12 2 1
CLPSO − + + + + − + + + + − + + + + 12 0 3
IPSO + + + + + ≈ + + + + + + ≈ + + 13 2 0

EPUS-PSO ≈ + + + + ≈ ≈ + + + + + + ≈ + 11 4 0
+ 5 7 6 7 7 1 4 7 6 5 4 6 6 5 7 83

Total ≈ 1 0 1 0 0 2 3 0 1 2 3 0 1 2 0 15
− 1 0 0 0 0 4 0 0 0 0 1 1 0 0 0 7

Table 9: Comparisons of success rate(SR)and convergence speed (CS) in successful runs on the 15 functions
with 30-D

Function GPSO SPSO07 FIPS DMS-PSO CLPSO IPSO EPUS-PSO PSOA2 PSOA3

f1
SR 100% 100% 100% 97% 100% 97% 93% 100% 100%
CS 3.41e+04 1.41e+04 6.26e+04 1.24e+05 9.92e+04 3.98e+04 2.32e+04 1.42e+04 9.09e+03

f2
SR 37% 57% 67% 97% 100% 53% 20% 100% 100%
CS 1.55e+05 2.20e+04 1.54e+05 1.45e+05 1.60e+05 8.83e+04 1.60e+04 3.57e+04 2.16e+04

f3
SR 100% 97% 100% 100% 23% 100% 0% 100% 100%
CS 1.84e+05 3.15e+04 1.89e+05 1.51e+05 1.98e+05 1.52e+04 ×b 4.91e+04 2.99e+04

f4
SR 7% 0% 0% 0% 100% 0% 0% 100% 100%
CS 1.76e+05 × × × 1.75e+05 × × 3.91e+04 2.87e+04

f5
SR 0% 20% 0% 100% 100% 0% 0% 100% 100%
CS × 4.55e+05 × 1.67e+05 1.89e+05 × × 5.64e+04 3.72e+04

f6
SR 87% 0% 97% 100% 100% 37% 17% 27% 57%
CS 2.11e+04 × 1.04e+05 1.19e+05 2.97e+04 9.60e+04 6.05e+04 9.16e+04 5.51e+04

f8
SR 100% 100% 3% 100% 100% 100% 70% 100% 100%
CS 9.54e+03 2.07e+04 1.92e+05 2.93e+04 7.03e+04 1.41e+04 6.96e+03 1.61e+04 8.58e+03

f9
SR 47% 93% 100% 100% 0% 27% 0% 100% 100%
CS 1.83e+05 3.19e+04 1.92e+05 1.60e+05 × 1.57e+05 × 4.98e+04 2.98e+04

f10
SR 0% 0% 0% 0% 0% 0% 0% 70% 90%
CS × × × × × × × 7.37e+04 4.48e+04

f11
SR 37% 53% 70% 90% 0% 30% 43% 100% 83%
CS 1.37e+05 2.35e+04 1.46e+05 1.58e+05 × 7.03e+04 1.56e+04 3.37e+04 2.07e+04

f12
SR 100% 100% 100% 77% 100% 100% 40% 100% 100%
CS 3.26e+03 8.11e+03 1.87e+04 1.22e+05 3.35e+04 2.07e+04 3.09e+04 4.86e+03 4.44e+03

f13
SR 100% 100% 77% 80% 0% 80% 97% 63% 100%
CS 1.13e+05 2.95e+04 1.75e+05 1.78e+05 × 9.07e+04 3.19e+04 1.21e+05 8.19e+04

avg.SRa 47.6% 48.0% 47.6% 62.7% 48.2% 41.6% 25.3% 70.7% 75.3%
a results for the function f7, f14 and f15 are not shown in this table because none of the eight PSOs is able to achieve the

desired accuracy on them;
b ‘×‘ means the corresponding algorithm fails to converge to the desired region once during the 30 runs.
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Figure 5: Average best fitness value for PSOA3, DMS-PSO,CLPSO and SPSO07 on the test functions.(a) f1.
(b) f2. (c) f3. (d) f4. (e) f5. (f) f6. (g) f7. (h) f8. (i) f9.

mutation and inertia weight adjustment.
Experiments were conducted on 15 multimodal

test functions. From the results, we can summarize
some distinct features of PSOA variants as follows.

(1) It is found that the isolated particle replace-
ment operator fails to improve PSO signifi-
cantly on both population diversity and con-
verge accuracy. This is because the added par-
ticles are easily attracted by gbest particle if
there is no other strategy to stop them. On the
other hand, the particle replacement operator
is necessary for the proposed strategy because

it can provide the enough age diversity that is
the foundation of the other three operators.

(2) Age based neighbours selection is able to
maintain effective population diversity and
improve convergence results. From the par-
ticle age definition, the young particles are
more promising than the old ones. Selecting
particles with same or smaller age as neigh-
bours distinguishes it from the other neigh-
bourhood topologies.

(3) Age based hypermutation and inertial weight
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Figure 6: Average best fitness value for PSOA3, DMS-PSO,CLPSO and SPSO07 on the test functions.(a) f10.
(b) f11. (c) f12. (d) f13. (e) f14. (d) f15.

decreasing give the older particles more
chances to generate better pbest so that they
can avoid to be discarded. Older particles play
a very significant role in retaining effective
particles and thereby reducing fitness evalu-
ations that should have to be computed. In
addition, hypermutation makes PSOA insen-
sitive to the different initialization condition.

(4) The proposed three PSOAs are less sensitive
to coordinate rotation and shift than the other
seven compared PSOs. However, they may
not be efficient in optimizing nonseparable
problems with deep local optima far from the
global optima, such as the function f6.

It can be seen that the proposed three aging opera-
tors can prevent particles from getting stuck by the
local optima, maintain effectively population diver-
sity, guarantee robustness and improve performance
of PSO. In future, we will apply the proposed algo-
rithm to solve some real-world optimization prob-

lems, such as data clustering problems and image
segmentation problems.
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