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Abstract 

In this paper, a Gravitational Co-evolution and Opposition-based Optimization (GCOO) algorithm is proposed for 

solving unconstrained optimization problems. Firstly, under the framework of gravitation based co-evolution, 

individuals of the population are divided into two subpopulations according to their fitness values (objective 

function values), i.e., the elitist subpopulation and the common subpopulation, and then three types of gravitation-

based update methods are implemented. With the cooperation of opposition-based operation, the proposed 

algorithm conducts the optimizing process collaboratively. Three benchmark algorithms and fifteen typical 

benchmark functions are utilized to evaluate the performance of GCOO, where the substantial experimental data 

shows that the proposed algorithm has better performance with regards to effectiveness and robustness in solving 

unconstrained optimization problems. 

Keywords: Gravitation; Evolution algorithm; Co-evolution; Opposition-based; Optimization. 

1. Introduction 

Evolutionary algorithms are a series of problem solving 

methods based on simulating the natural evolving 

system, the development of which can be traced back as 

early as 1950s. Compared with the traditional numerical 

optimization methods, evolutionary algorithms have 

many advantages, such as, being unconstrained by the 

search space limitations or/and the function types, as 
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well function gradient information being unnecessary 

for optimizing, etc. Evolutionary algorithms have been 

widely applied to solving optimization problems. The 

canonical evolutionary algorithms, including genetic 

algorithms (GA)[1], differential evolution (DE)[2][3], 

etc., have some common disadvantages, for example, 

the relatively slow convergence speed, the tendency of 

being trapped in local optimum/optimums, and the 

unstable robustness for various of problems. Therefore, 

these canonical methods need to be improved, since the 

problems to be solved in the both the real word and the 

theoretical scope are increasingly complicated. 

Evolutionary algorithms are population-based 

algorithms, and the population usually consists of 

several to hundreds of individuals, depending on 

different strategies and applications. The individuals 

with high fitness values, namely elitist individuals or 

elites, play important roles in promoting the evolution 

process [4]. Elitist strategy is a method that keeps one or 

several individuals with the best fitness into offspring 

generation, unconditionally, which helps the excellent 

attributes or genes pass down to offspring, to accelerate 

the convergence speed. The elitist strategy has been 

applied to many evolutionary algorithms, for instances, 

the M-elite co-evolutionary algorithm (MECA)[5] keeps 

20 elites, while the fireworks algorithm[6] keeps only 

an elite to maintain the currently most excellent 

character of the population throughout the evolution. 

Inspired by the elitist strategy, the population sorting 

strategy[7] was used to differentiate individuals with 

different fitness, which could be seen as an enhanced 

strategy of elitism. 

D. H. Wolpert and W. G. Macready[8] proposed the no 

free lunch (NFL) theorem in 1997, which has given us a 

proof that any two algorithms for solving all the 

optimization problems could meet an equivalent 

performance in average. However, their work in 2005 

shows that cooperative evolution (co-evolution) is not 

constrained by the NFL theorem [9], thus, for all the 

optimization problems, two types of co-evolutionary 

algorithms may meet that, the average performance of 

one may be better than the other, which implies that the 

performance of the co-evolutionary algorithms are of 

great potential for improvement. 

Opposition-based differential evolution (ODE)[10][11] 

was firstly proposed by S. Rahnamayan, H. Tizhoosh, 

and et al. in 2006, which based on the principle of 

opposition-based learning, collaborated with DE. Since 

proposed in CEC’2006[11], ODE was widely and 

profoundly researched. In 2007 S. Rahnamayan and H. 

R. Tizhoosh added a variable jumping rate[12] into it, 

and in the same year proposed quasi-oppositional 

differential[13]. J. Tang and X. Zhao proposed an 

improved opposition-based DE[14] in 2010, which 

studied on the generating method of individuals. In 

2011, A. Esmailzadeh and S. Rahnamayan presented the 

strategy of protective generation jumping[15], i.e., the 

generation jumping was stopped, iff it did not take 

effect. 

As an improved version of the binary difference 

gravitational evolution (BDGE), the elitism and 

gravitational evolution based co-evolutionary algorithm 

(EGCoEA)[16] highlighted the status of the elitist 

individuals in the process of evolution, and gave up the 

process of individuals clustering. In EGCoEA, the 

search agents were divided into two subpopulations, 

thus, a subpopulation of elites and another common 

subpopulation, and they updated via three methods, 

included two types of mutual updates and an ego update. 

The evaluation of gravitational measurement (GM) is 

used to define the relationships of the elites and the 

common individuals. The update processes followed the 

following two principles: 1).the elitist individuals 

dominate the common individuals; 2).the elitist 

individuals and the common individuals cooperate to 

evolve.  

In this paper, we proposed the gravitational co-evolution 

and opposition-based optimization (GCOO) algorithm 

that inherits the general gravitation based frameworks, 

including the subpopulations division, the calculation of 

GM values, etc., but with some important regulation, 

includes using probability parameters to control the 

update rate. Three essential update operations via 

gravitational co-evolution are used to update the agents, 

as well as an operation based on the so called opposition 

individuals. In order to integrate the gravitational and 

opposition-based models organically, the parameters 

and strategies are adjusted based on a series of trial-and-

error experiments. 

The rest of this paper is organized as follows: Section 2 

gives the description of the two critical strategies, and in 

Section 3 the proposed algorithm is interpreted in detail, 

followed by a comprehensive series of experimental 

studies provided in Section 4. Finally, the work is 
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concluded in Section 5, and Appendix I lists all the 

benchmark functions. 

2. Preliminaries: Description of Optimization 

Strategies 

2.1. Problem Definition 

An unconstrained optimization problem can be 

generally described as follows. 

Minimize ( )f x , 
1, 2( , , )nx x x x S 

 

where nS R represents the search space, and ( )f  is a 

single objective function, the vector
1, 2( , , )nx x x x  

meets x x x   and represents an individual. Vectors 

1 2( , , , )nx x x x and 1 2( , , , )nx x x x  represent the 

lower bound and upper bound of the search space, 

respectively. 

Without loss of generality, in this paper, we consider the 

minimization problem only, and then the individual’s 

fitness is defined as ( ) ( )Fitness x f x  . 

2.2. Gravitational Co-evolution and Opposition-

based Strategies 

A population is denoted as
1 2( , , , )NPPop x x x , with 

the population size NP. At the initial stage of an 

iteration, the population is divided into two 

subpopulations based on individuals’ fitness values. M 

individuals with relatively better fitness constitute the 

elitist subpopulation, denoted as
1 2( , , , )MPopE x x x . 

The elitist individuals should always meet relationship 

of ( ) ( )i jFitness x Fitness x , 1 i j M   . The rest 

individuals constitute the common subpopulation PopC , 

which keeps NP M individuals and need no sorting 

operation for individuals.  

1

2

M

...

1

2
3

j

...

i

k

elitist

subpopulation

common 

subpopulation

 

Fig. 1 Elitist Strategy Illustration 

Fig. 1 shows a population that is partitioned into two 

subpopulations. The elitist individuals are on the left of 

the figure, and they are ordered according to their 

fitness values. The right part shows the common 

individuals, satisfied that any common individual’s 

fitness is worse than the worst elitist individual’s fitness. 

2.2.1 Gravitational Co-evolution Strategy 

Gravitation means the attractive force between two 

objects, which exists between any two objects with 

masses. The value of gravitation is in proportion to the 

mass of either object, while in inverse proportion to the 

distance of them. Calculation of gravitation can be 

described as
2

1 2 /F G m m r   , where G stands for 

gravity constant, 
1m and

2m stand for the mass of two 

objects, respectively, and r represents the distance 

between the two objects.  

The idea of solving optimization problems with 

gravitational model is based on the fact that if the 

calculated gravitational value is large, there may be two 

reasons for it, 1) either one or both objects have big 

masses; 2) the distance between the two objects is small. 

Obviously the first case is profitable, while the second 

not only brings benefit for the accuracy, but brings some 

risk as well, because it may lead to convergence in a 

local optimal. Inspired by the calculation of gravitation, 

i.e., 
2

1 2 /F G m m r   , we present the values that 

describe the relationship of two individuals belonging to 

two different subpopulations, namely the Gravitational 

Measurement (GM) values, which are calculated only 

between individuals from two different subpopulations, 

while individuals in the same subpopulation do not have 

the GM values. 

1

2

M

...

1

2

j

...

i

GM1,j

GM1,2

GM
1,i

GM
1,1GM

2,1

GMM,1

elitist
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common 
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Fig. 2 An Example of Gravitational Measurement 
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In Fig. 2 the dotted lines, connecting the elitist 

individual circle 1 with all other common individuals, 

represent the GM values of elite circle 1 to the common 

individuals, which are calculated and denoted as GM1,j, 

1 j NP M   . The other elites calculate the GM 

values to the common individuals in the same way, 

denoted as GMi,j, 1 i M  , 1 j NP M   . Inversely, 

for each common individual, a GM value to any elitist 

individual is also calculated. In Fig. 2 we take the 

common individual circle 1 as an example, where the 

dot dash lines describe the relationship of common 

circle 1 with any elitist individual. The relationships 

established by the gravitational measurements can be 

seen in two perspectives that no matter the leading roles 

are the elites or the commons individuals. Gravitational 

measurement values are calculated by Equation 1. 

 
,

,

( ) ( )
GM

i j

i j

i j

Fitness x Fitness x

r K





  (1) 

 

where, 
ix PopE , 

jx PopC , ,i jr is the Euclidean 

distance between elitist individual
ix and common 

individual jx . A constant 1K   ensures that the 

denominator is nonzero. A larger K value will offset the 

influence of ,i jr , which may rule out the large GM 

value caused by the tiny distance case. Theoretically, 

the optimal value of K should be: 

 
2

0

1

( )
n

i i

i

K K x x


    

Generally, the random initializations make individuals 

equivalent, thus, 
0K represents the farthest distance that 

any two individuals may reach in the search space. 

However, empirical setting shows that when 1K  , the 

influence of ,i jr is fairly small, and not local-optimal-

oriented. In [17], the authors firstly introduced K  in 

order to guarantee the denominator nonzero, which 

performs well in optimizing low-dimensional problems. 

2.2.2 Opposition-based Strategy 

There are particles and antiparticles, i.e., opposite 

particles in the field of physics, subject and object in 

philosophy, subject and object in philosophy of science, 

good and evil in animism, and Yin and Yang symbols in 

the Taichi, where black and white represent Yin and 

Yang, respectively, belonging to the Chinese traditional 

culture. It seems the footprints of the opposition concept 

can be observed in many areas around us. 

The opposition individual in evolutionary algorithms is 

defined as follows. Suppose a vector 1, 2( , , )Dx x x x
 

represents an individual of the D-dimensional space and 

every dimension of 1, 2 , , Dx x x meets [ , ]iiix x x , 

1,2, ,i D . Then, the opposition individual of x  is 

denoted as x , 
1 2( , , , )Dx x x x    , each dimension of 

which is generated according to the Equation 2. 

ii i ix x x x       (2) 

As shown in Fig. 3, there are three simplest examples of 

opposition individuals, including one, two and three 

dimensional cases. In the first case, individual and its 

opposite are symmetric about the central point. In the 

second case, opposition of 
1 2( , )P x x  is P

 with its 

ordinates of 1 21 2 1 1 2 2( , ) ( , )x x x x x x x x       . And 

in the last case, there are two pairs of individuals, thus, 

1P vs.
1P , and 

2P vs.
2P . 

xx

ix ix

( ) / 2iix x

1x

1x

2x

2x

P

P

1P

2P

1P

2P
 

Fig. 3 Illustration of Individuals and the Corresponding 

Oppositions 
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3. Gravitational Co-evolution and Opposition-

based Optimization Algorithm 

There are three gravitational-based update methods and 

one opposition-based operation in the proposed 

algorithm. For the sake of efficiency improvement, not 

all the updates or operations are implemented all the 

time. We bring two methods to control the utilities of 

updates. The first is for different individuals, the elitists 

and the commons, different update methods are used; 

and the second is that a jumping rate is introduced to 

control the probability of the opposition-based operation. 

3.1. GCOO Algorithm Description 

GCOO proposes three types of update methods, which 

are inherited from the EGCoEA in framework, but with 

some modifications, including parameters and strategies 

in order to adapt to the new algorithm. The three update 

methods include an ego update of elitist individuals 

themselves, a mutual compulsory update of common 

individuals and a cooperation update of common 

individuals. 

3.1.1 The Ego Update of Elitist Individuals 

The binary difference strategy [16][18] is used for an 

ordered elitist subpopulation, and a similar idea is 

presented in the MECA algorithm, as the cuboid 

crossover operator II (CCOII) operator[5]. As shown in 

Fig. 4, newly temporary individuals are generated by a 

two-candidate-mutation, but there are always more than 

three candidates in the mutation strategies of canonical 

differential evolution. 

1

elitist population

2 3 Mi ......

T1,2 T1,3 T2,3 Ti,j

 

Fig. 4 Binary Differential Evolution 

The ego updates of elitist individuals themselves 

introduces a probability parameters TR into binary 

difference proposed in [16] and [18], thus, the current 

dimension of the temporary individual is generated 

within a probability of TR , otherwise it is not updated 

and the original dimension is kept. The purpose of 

introducing 
TR

 
is to keep excellent features of elitist 

individuals better, and it can be described as Equation 3. 

, , ,

, ,

,

(0,1) ( ),  if (0,1)

,  otherwise    

1 ,  ,  1

i k k i k j k k T

i j k

i k

x U x x U R
T

x

i M i j M k n

   
 


     

 (3) 

 where
, ,i j kT is the th(1 )k k n  dimension of the 

temporary individual
,i jT , which is generated by elitist 

individuals
ix and jx , (0,1)U stands for a uniformly 

distributed random decimal between 0 and 1. 

The worse individual between the temporary 

individual ,i jT and the current worst elite is eliminated:  

, ,,   ( ) ( )

,  

i j i j M

M

M

T if Fitness T Fitness x
x

x otherwise


 


 (4) 

3.1.2. Common Individuals Update 

Common individuals have two types of update methods: 

a compulsory update and a cooperation update. In the 

evolutionary process, gravitational measurement values 

are used to describe the relationship between individuals 

belonging to the two subpopulations. 

For each elitist individual, a common individual that has 

the minimum gravitational measurement value to the 

elitist individual is selected, and compulsory update is 

implemented on the selected common individual. The 

compulsory updated individual will be completely 

replaced: either replaced by the elite which has the 

greatest distance from it, or by a randomly selected 

elitist individual.  

Supposed that a common individual [ ]jc i has the 

minimum gravitational measurement value with the 

elite ix , and then it is to be mandatorily updated: 

,max ( [ ]),  if (0,1)<
'

,  otherwise     

1 ,  1 ,  1

i j j R

j

rand

r c i U R
c

x

j NP M i M rand M


 


      

      (5) 

 

where ' jc stands for the replacement of the individual
jc , 

and
,max ( [ ])i j jr c i is the elite individual which has the 

greatest distance from the [ ]jc i , randx is the randomly 

selected elite. RR is the replacement probability 
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parameter, the analysis of which can be found in section 

4.1, as well as the temporary probability parameter
TR . 

For a common individual whom is not to be mandatorily 

updated, a cooperation update is performed. First, the 

elite which has the largest GM value from the common 

individual is searched, and then a cooperation update by 

the method of binary difference is implemented. The 

newly produced individuals via the cooperation update 

still remain part genes of their parent, i.e., the non-

mandatory-updated common individuals, and this means 

an incompletely (the mandatory updated is a complete 

one) replace process, and it is distinguished to the 

mandatorily updated. Supposed that a non-mandatory-

updated common individual
jc  has the largest GM value 

with the elitist individual
ix , and then a binary 

difference is implemented according to the Equation 6. 

, , , ,(0,1) ( ),

1 ,  1 ,  1

j k i k k i k j kc' x U x c

i M j NP M k n

   

      
  (6) 

where
,j kc' is the th(1 )k k n  dimension of the newly 

produced ' jc , and other symbols are as stated above. 

Fig. 5 shows an example that the elite individual circle 1 

with its all calculated GM values GM1, j , (j=1,2,…,NP-

M), among which the smallest is GM1,2, i.e., the value 

between the common individual circle 2 (shadowed) 

and the elite individual circle 1 calculated according to 

the Equation 1. Then the common circle 2 will be 

mandatorily updated according to the Equation 5. After 

that every elitist individual has eliminated a common 

individual, there still leave some common individuals 

survived. 

Initialization of Population Pop

（Size=NP）

Pop partition: PopE (Size=M) and PopC (Size=NP-M)

Calculating the GMi,j values

of  PopEi (i=1….,M) and PopEj (j=1….,NP-M)

Recombination of PopE and PopC as Pop

No

Yes

1.  PopE: ego update via binary difference;

2.  Each elite individual update a minimum-GM-

valued floating individual compulsively;

3.  Update the survived floating individuals via   

cooperation update.

Three Types of Gravitational Update Operation
i.e.

(2)

(1)

1. Generating the Opposition-based Population Opop 

(Size=M/Np/(Np-M));

2. Calculating the Fitness values of Opop;

3. Select Np Individuals from {Pop*, Opop}.

Rand<Jr ?

Opposition-based Operations
i.e.

Yes

No

Terminate ?

Fig. 6 Flowchart of Gravitational Co-evolution and Opposition-based 

Optimization Algorithm 
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Fig. 5 An Example of the Update Process  

In the reverse way, we take another example from the 

view that focuses on common individuals, where 
suppose the common individual circle 1 survives after 

the mandatory update, and then common circle 1 

obtains the right to choose the elitist individual which 

has the largest GM value, i.e., elitist circle 2 (shadowed) 

in Fig. 5, which has the maximal GM value, i.e., GM2,1 

among all the GMi,1, (i=1,2,…,M) values. Common 

circle 1 updates itself through the cooperation with elite 

circle 2 according to the Equation 6. Note that 

mandatory updates of common individuals are not 

equivalent to “be deleted”, and the survived individual 

indicates non-mandatory-updated. Since the population 

is divided into two subpopulations, and common 

subpopulation size is always greater than the elites, 

there are always survived individuals in the common 

subpopulation. 

3.1.3 Opposition-based Operation 

The opposition-based operation differential evolution is 

simple and effective, where a constantly jumping rate is 

used to control in the current generation whether the 

opposition-based operation is to be implemented. The 

operation is as well a simple one and we take the elitist 

subpopulation PopE as an example to illustrate the 

opposition-based operation. Once the condition is 

satisfied, and the elitist individuals are ready for the 

operation. The calculation of opposite individuals can 

be described as Equation 7. 

, ,

1 ,  1

ji j j i jPopE x x PopE

i M j D

   

   
  (7) 

where ,i jPopE
and ,i jPopE denote the thj variable of the 

thi vector of the elitist subpopulation PopE  and the 

opposite elitist subpopulation PopE , respectively. 

Consequently, we have a double-sized temporary 

population { PopE , PopE }, and the next step is to 

select M fittest individuals from{ PopE , PopE } to 

form the updated PopE . 

3.2. GCOO Flowchart 

Fig.6 shows the flowchart of GCOO algorithm. The 

module (1) shows the three update methods which are 

based on gravitational co-evolution, and the module (2) 

is the opposition-based operation. Note that in the Step 

3 of module (2), the *Pop represents that the population 

could be Pop , PopE or PopC , depending on which 

opposition-based strategy is employed, and it will be 

discussed in Section 4.2. 

4. Experimental Studies 

4.1. Probability Parameters Analysis 

The temporary probability parameter for the update of 

the elitist individuals and the replacement probability 

parameter for common are introduced to control the 

performance of the update method in the gravitation 

based co-evolution. The experiments focus on the 

alterations that affect the performance of optimization, 

using the functions F2 and F9 in Appendix I. The data is 

of the average of 50 independently random trials, and 

each trial stops when it reaches 300,000 times objective 

function evaluations. 

 
(a) TR  
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(b) 

RR  

Fig. 7 Analysis of Probability Parameters 

As shown in Fig. 7(a), the average performance of F9 

declines as 0.7TR  , and when 0.9TR  the result 

seems unsatisfied. A similar situation happens to F2, 

where when 0.9TR  the result starts to become bad. In 

Fig. 7(a), the overlapped two plots suggest that the 

change of 
RR has no influence on optimization of F2 

and F9. According to these, we can find that GCOO 

algorithm is not that sensitive to the change of the 

probability parameters when RT is less than 0.7, hence, 

we may empirically set the two parameters as RT = RR 

=0.5, which is acceptable for most of the optimization 

problems we meet. 

4.2. Operation Strategy Analysis 

As opposition-based operation is introduced into the 

population which consists of two subpopulations, we 

can easily find there are three possible strategies that the 

opposition-based operation can impact the performance. 

First one is that only the elitist individuals undergo the 

opposition-based operation, and we denote it as strategy 

S1. The second strategy should be that only the common 

individuals are operated by opposition-based operation, 

which is denoted as S2. The last one is both the two 

subpopulations undergo the opposition-based operation, 

and it is S3. In addition, we set a control group which 

does not include any opposition operation and we 

denote it as S0. Under the same of all the conditions, we 

compare the four strategies, using the functions F5, F9 

and F11 in Appendix I.  

Obviously, strategy S1 wins in the competitions of all, 

while S3 is better than S2. The results that strategy S3 

obtains are worse than that of S0, which implies it is not 

workable to apply the opposite operation on the 

common individuals.  

Table 1 Analysis of Four Types of Opposition-Based 

Operation Strategies 

Benchmark 

Functions 
F5 F9 F14 

Dimension 30 30 100 

Minimum 0 0 -99.60 

Mean 

Function 

Values 

(MFV) 

S0 5.417 2.387 -48.751 

S1 3.610E-31 0 -77.415 

S2 18.354 3.174 -45.810 

S3 1.691 0 -75.816 

4.3. Benchmark Test Settings 

A real valued function set F={F1, F2, ..., F15}  

including 15 well-known benchmark functions is 

employed to evaluate the performance of GCOO. These 

15 functions were used as evaluation tool in [5] and 

partly in [16]. The mathematical forms of these 

functions can be found in these references. Among the 

15 benchmark functions, F1~F5 are unimodal functions; 

F6 is a one-step function; F7 is a quartic function with 

noise; F8~F15 are multimodal functions. In the 

experiment, functions F1~F13 are 30-dimensional, 

while F14 and F15 are 100-dimensional. 

To evaluate the impact of the proposed algorithm, we 

compare the experimental results found by GCOO with 

other three benchmark evolutionary algorithms. The 

designs and parameters settings of algorithms are 

summarized below. 

1) GCOO: there are three parameters to set in GCOO, 

i.e., the population size 100NP  , the elitist 

subpopulation size 20M  , the jumping rate of 

opposition operation 0.5Jr  , and
TR =

RR =0.5, with 

the opposition-based operation strategy S1. 

2) MECA: the parameters of MECA are set in 

accordance with that in [5], i.e., the population size 

100NP  , the elitist subpopulation size 20M  , and 

the probability of cuboid crossover 0.3Pcu   . 

3)  EGCoEA: the parameters of MECA are set in 

accordance with that in [16], i.e., the population scale  
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Table 2 Mean Function Values (MFV) and Standard Deviations (SD) of 50 Independently Random 

Experiments F1~F5 

Benchmark 

Functions 
F1 F2 F3 F4 F5 

Dimension 30 30 30 30 30 

Minimum 0 0 0 0 0 

GCOO 
MFV 0 0 0 3.610E-31 0 

SD 0 0 0 6.217E-58 0 

EGCoEA 
MFV 0 0 6.291E-270 5.417 0 

SD 0 0 0 10.835 0 

MECA 
MFV 4.228E-183 1.845E-110 3.274E-95 7.973E-2 5.124E-2 

SD 0 3.113E-110 2.313E-94 5.638E-1 9.732E-2 

ODE 
MFV 0 0 0 28.796 481 3 0 
SD 0 0 0 6.858E-2 0 

 

Table 3 Mean Function Values (MFV) and Standard Deviations (SD) of 50 Independently Random 

Experiments F6~F10 

Benchmark 

Functions 
F6 F7 F8 F9 F10 

Dimension 30 30 30 30 30 

Minimum 0 0 -12 569.5 0 0 

GCOO 
MFV 0 5.755E-5 -12 569.486 6 0 4.441E-16 

SD 0 5.159E-5 0 0 0 

EGCoEA 
MFV 0 5.755E-5 -12 569.486 6 2.387 4.441E-16 

SD 0 5.159E-5 0 8.097 0 

MECA 
MFV 0 4.083E-4 -12 569.486 6 0 0 

SD 0 3.800E-4 7.350E-12 0 0 

ODE 
MFV 0 1.963E-4 - 0 4.441E-16 

SD 0 9.137E-5 - 0 0 

 

Table 4 Mean Function Values (MFV) and Standard Deviations (SD) of 50 Independently Random 

Experiments F11~F15 

Benchmark 

Functions 
F11 F12 F13 F14 F15 

Dimension 30 30 30 100 100 

Minimum 0 0 0 -99.60 0 

GCOO 
MFV 0 1.350E-32 1.571E-32 -77.415 -78.332 331 4 

SD 0 6.817E-48 1.915E-47 3.021E-2 0 

EGCoEA 
MFV 0 1.350E-32 1.571E-32 -48.751 -78.332 331 4 

SD 0 6.817E-48 1.915E-47 5.930 0 

MECA 
MFV 3.844E-3 1.350E-32 1.571E-32 -98.709 489 1 -78.332 331 4 

SD 0 1.106E-47 5.529E-48 1.450E-1 1.005E-13 

ODE 
MFV 0 6.473E-1 7.125E-2 - - 

SD 0 5.045E-1 4.058E-2 - - 

 

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                     857



Yang Lou et. al 

 

100NP  , the elitist subpopulation scale 20M  , and 

TR =
RR =0.5. 

4)  ODE: the parameters of ODE are set in accordance 

with that in [10], i.e., the population size 100NP  , the 

differential scale factor 0.5F  , crossover rate 

0.9Cr  , and jumping rate constant 0.3Jr  , with the 

mutation strategy of DE/rand/1/bin. 

The stop criterion is, if the accumulated number of 

function evaluations exceeds 300,000 times, the 

iteration stops. For each benchmark function, we carry 

out 50 independently random experiments on searching 

for its optimum. 

4.4. Benchmark Test Results Analysis 

Tables 2 to 4 list the experimental results of benchmark 

test, where the data including the mean function values 

(MFV) and standard deviations (SD) of the optimization 

results are collected from an average of 50 

independently random experiments. 

As can be seen from Table 2, GCOO and ODE find the 

theoretical minimum values of F1, F2, F3 and F5, 

performs better than the other algorithms. As for F4, 

only GCOO finds a relatively satisfied result that the 

MFV reaches 10
-31

, and the SD reaches 10
-58

.  

In Table 3, GCOO obtains the lead results of F6~F9, of 

which EGCoEA does unsatisfactory for F9, MECA does 

unsatisfactory for F7 and F8, and ODE for the MFV of 

F7. For F10, only MECA gets the theoretical minimum 

value, but the other three can finds a relative satisfied 

mean result reaching 10
-16

. 

In Table 4, where lists the relatively difficult problems 

to solve, both GCOO and EGCoEA find the relatively 

best minimum values of F11, F12, F13 and F15. As for 

F14, MECA find the best solution and GCOO ranks in 

the second place. 

Fig. 8 shows the convergence processes of GCOO, 

EGCoEA and MECA of 50-trial-averaged data of 

functions F3 and F11. As can be seen form the figure, 

the proposed algorithm has much higher convergence 

speed compared with EGCoEA and MECA. As for F3, 

the GCOO algorithm can calculate it within 150,000 

objective function evaluations; while for F11 which 

requires less than 3,000 evaluations. The converging 

figures of F3 and F11 are also partly reflected by the 

data in Tables 2 and 4, where GCOO finds better 

average results than MECA, while the plots of other 

comparison cannot be seen from tables because both 

GCOO and EGCoEA get the same average result when 

the terminal condition meets.  

 

 
(a) F3 

 
(b) F11 

Fig. 8 The Convergence Process of Solving 

(a) F3 and (b) F11 with Two Algorithms 

In summary, we tested GCOO, EGCoEA and MECA by 

15 functions and tested ODE by 12 functions. The 

proposed GCOO ranks in the first of all, because the 

algorithm finds the most satisfying minimums in 13 out 

of 15 functions. The solutions that GCOO finds in F10 

and F14 both rank the second place. This shows the 

effectiveness and stability of GCOO, which achieves a 

distinct improvement of both gravitation-based and 

opposition-based algorithms.  
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5. Conclusions 

In this paper, the gravitational co-evolution and 

opposition-based optimization algorithm was proposed. 

With the framework of gravitational-based co-evolution, 

individuals were divided into two subpopulations 

according to their fitness values, and three types of 

gravitational-based updates were implemented. With the 

opposition-based operation, both gravitational-based 

and opposition-based methods collaborated to find the 

optimization. Three benchmark algorithms and fifteen 

benchmark functions were employed to evaluate the 

performance of GCOO, and the substantial experimental 

data has shown that the proposed algorithm has better 

effectiveness and robustness in solving unconstrained 

optimization problems. 

Possible directions for future work include applying the 

algorithm into other optimization fields, e.g., multi-

objective optimization and large-scaled problems, and 

improving the usage of cooperative strategies and 

parameters as well.  

Appendix I 

1. Sphere Model 

2

1

1

D

i

i

F x


  

where x[-100,100]
D 

1min 1 (0, ,0) 0F F   

2. Schwefel's Problem 2.22 

2

1 1

| | | |
DD

i i

i i

F x x
 

    

where x[-10,10]
 D 

2min 2 (0, ,0) 0F F   

3.  Schwefel's Problem 1.2 

2

3

1 1

( )
D i

i

i j

F x
 

   

where x[-100,100]
 D

 

3min 3(0, ,0) 0F F   

4. Schwefel's Problem 2.21 

4 max{| |,  1 }i
i

F x i D    

where x[-100,100]
 D

 

4min 4 (0, ,0) 0F F   

5. Generalized Rosenbrock's Function 

1
2 2 2

5 1

1

[100( ) ( 1) ]
D

i i i

i

F x x x






     

where x[-30,30]
 D

 

5min 5 (1, ,1) 0F F   

6. Step Function 

2

6

1

( 0.5 )
D

i

i

F x


     

where x[-100,100]
 D

 

6min 6 (0, ,0) 0F F   

7. Quartic Function i.e. Noise 

4

7

1

[0,1)
D

i

i

F ix random


   

where x[-1.28,1.28]
 D

 

7min 7 (0, ,0) 0F F   

8. Generalized Schwefel's Problem 2.26 

2

8

1

( sin( | |))
D

i i

i

F x x


   

where x[-500,500]
 D

 

8min 8 (420.9687, ,420.9687) 12569.5F F    

9. Generalized Rastrigin Function 

 2

9

1

10cos(2 ) 10
D

i i

i

F x x


    

where x[-5.12,5.12]
 D

 

9min 9 (0, ,0) 0F F   

10. Ackley's Function 

2

10

1 1

1 1
20exp( 0.2 ) exp( cos(2 ))

20

n n

i i

i i

F z z
n n

e


 

   

 

   

where x[-32,32]
 D 

10min 10 (0, ,0) 0F F   

11. Generalized Griewank Function 

2

11

1 1

1
cos( ) 1

4000

DD
i

i

i i

x
F x

i 

     

where x[-600,600]
 D

 

11min 11(0, ,0) 0F F   

12. Generalized Penalized Function I 
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1
2 2 2

12 1 1

1

2

1

{10sin ( ) ( 1) [1 10sin ( )]

( 1) } ( ,10,100,4)

D

i i

i

D

D i

i

F y y y
D

y u x
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m

i i

i i

m

i i

k x a x a

u x a k m a x a

k x a x a

  


   
   

 

1
1 ( 1)

4
i iy x    

and x[-50,50]
 D 

12min 12 (1, ,1) 0F F   

13. Generalized Penalized Function II 
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1
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1
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where, 
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m

i i

i i

m

i i

k x a x a
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where x[-50,50]
 D 

13min 13(1, ,1) 0F F   

14. Function 14 

2
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1

sin sin ( )
D

i
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i

i x
F x




    

where x[0,π]
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14min 99.60F    

15. Function 15 

4 2

15

1

1
( 16 5 )

D

i i i

i

F x x x
N 

    

where x[-5,5]
 D

 

15min 78.33236F    
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