
New LMI-based Criteria for Lagrange Stability of Cohen-Grossberg Neural
Networks with General Activation Functions and Mixed Delays

Xiaohong Wang 1 ∗, Huan Qi 2

1 Department of Control Science and Engineering, Huazhong University of Science and Technology,
1037 Luoyu Road,

Wuhan, 430074, China
E-mail: wxhong2006@163.com

2 Department of Control Science and Engineering, Huazhong University of Science and Technology,
1037 Luoyu Road,

Wuhan, 430074, China
E-mail: qihuanster@gmail.com

Abstract

In this paper, the problem on Lagrange stability of Cohen-Grossberg neural networks (CGNNs) with
both mixed delays and general activation functions is considered. By virtue of Lyapunov functional and
Halanay delay differential inequality, several new criteria in linear matrix inequalities (LMIs) form for
the global exponential stability in Lagrange sense of CGNNs are obtained. Meanwhile, the limitation on
the activation functions being bounded, monotonous and differentiable is released, which generalizes and
improves those existent results. Moreover, detailed estimations of the globally exponentially attractive
sets are given out. It is also verified that outside the globally exponentially attractive set, there is no
equilibrium state, periodic state, almost periodic state, and chaos attractor of the CGNNs. Finally, two
numerical examples are given to demonstrate the theoretical results.
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1. Introduction

Since the discovery of the Cohen-Grossberg neu-
ral networks (CGNNs) [1] in 1983, a lot of appli-
cations have been appeared in many fields to solve
control, signal processing, associative memory, par-
allel computation and nonlinear optimization prob-
lems. In employing CGNNs to solve these prob-
lems, one of the most desirable properties of CGNNs
is the Lyapunov stability. From a dynamical system

point of view, globally stable networks in Lyapunov
sense are monostable systems, which have a unique
equilibrium attracting all trajectories asymptotically.
A large body of research now exists on the study
of globally stable in Lyapunov sense for CGNNs,
more specific results are referred to [2-11]. In many
other applications, however, monostable neural net-
works have been found computationally restrictive
and multistable dynamics are essential to deal with
important neural computations desired. In these cir-
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cumstances, neural networks are no longer globally
stable and more appropriate notions of stability are
need to deal with multistable systems. In this con-
text, many researchers focus on the Lagrange stabil-
ity.

It is worth to mention that unlike Lyapunov sta-
bility, Lagrange stability refers to the stability of the
total system, rather than the stability of the equilib-
riums, because the Lagrange stability is considered
on the basis of the boundedness of solutions, which
depend on the existence of global attractive sets (see
[12, 18, 19, 21-25]). We also note that Lagrange
stability has attracted phenomenal worldwide atten-
tion. In [13], Rekasius considered asymptotic stabil-
ity in Lagrange sense for nonlinear feedback control
systems. In [14], Lagrange stability was discussed
by Thornton and Mulholland as a useful concept
for determining the stability of ecological systems.
Soon, Passino and Burgess [15] adapt the concept of
Lagrange stability to investigate discrete event sys-
tems. See also [16, 17] for recent results on La-
grange stability for pendulum-like systems.

In recent years, Lagrange stability has been fur-
ther researched into various kinds of neural net-
works. However, it should be noted that, in hard-
ware implementation, time delays occur due to fi-
nite switching speed of the amplifiers and commu-
nication time. The time delays may lead to oscilla-
tion, divergence, or instability, which may be harm-
ful to a system. On the other hand, it has also
been shown that the process of moving images re-
quires the introduction of delay in the signal trans-
mitted through the networks. Therefore, the study
of Lagrange stability of neural networks with de-
lays is practically required, and it has been exten-
sively studied. For example, in [18, 19], Liao et al.
apply Lyapunov functions to study Lagrange stabil-
ity for recurrent neural networks with constant time
delays and time-varying delays. In [20], Yang and
Cao consider stability in Lagrange sense of a class
of feedback neural networks for optimization prob-
lems. Then [21] and [22] continued to probe further
into the Lagrange stability for neutral type and pe-
riodic recurrent neural networks along the methods
in [18, 19], respectively. In [24, 25], Lagrange sta-
bility is discussed for Cohen-Grossberg neural net-

works (CGNNs) with time-varying delays and finite
distributed delays. To our best knowledge, these re-
sults of Lagrange stability analysis for neural net-
works depend mainly on Lyapunov-like functions,
and there are few results made on it by LMIs [32].

Moreover, in conducting stability analysis of a
neural network, the conditions to be imposed on
the neural network are determined by the charac-
teristics of activation function as well as network
parameters. As we know, when neural networks
are designed for problem solving, it is desirable for
their activation functions to be general. To facilitate
the design of neural networks, it is important that
the neural networks with general activation func-
tions are studied. The generalization of activation
functions will provide a wider scope for neural net-
work designs and applications. So, in [23], Tu et
al. study the Lagrange stability for recurrent neural
networks with general activation functions and time-
varying delays. At present, although a series of re-
sults for Cohen-Grosseberg neural networks are ob-
tained (see [2-12, 24, 25]), However, most of the ex-
isting results about CGNNs focus on the Lyapunov
stability analysis. Up to now, there is no reported re-
sult, to our best knowledge, dealing with the global
Lagrange exponential stability for CGNNs with gen-
eral activation functions and finite distributed delays
and time-varying delays. Especially, the criteria of
Lagrange stability for CGNNs by means of linear
matrix inequalities (LMIs) also do not appear at all.
Hence this field remains important and challenging.

Motivated by the above discussion, the objec-
tive of this paper is to study the global exponen-
tial stability in Lagrange sense and estimate the size
of globally exponentially attractive sets for the ad-
dressed CGNNs with general activation functions
and mixed time delays. Different from most of the
previous conclusions, the results are performed in
LMIs, which will be efficiently solved by the Mat-
lab LMI Toolbox [26]. The main innovative points
are as follows:

(I) The methodology developed in [27] will be
extended to study the Lagrange stability for gen-
eral Cohen-Grossberg neural networks with time-
varying and finite distributed delays (1), which will
be introduced in the next section. Meanwhile, the
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globally exponentially attractive sets are also ob-
tained. The conclusion contains some existing re-
sults as its special cases.

(II) When studying the properties of Lagrange
stability for neural network systems, people usu-
ally assume that their activation functions are mono-
tonic, or differentiable, even or bounded. However,
the activation function discussed in this paper is nei-
ther bounded, nor monotonous nondecreasing. What
is more, with regard to time delay, it is only need to
bounded, not considering its differential form.

(III) In addition, as a direct application of the re-
sults, it will be obtained later by a further theorem.

In the next section, some preliminaries, includ-
ing some necessary notations, definitions, assump-
tions and lemmas are described. The main results
and their corresponding proofs for CGNNs to have
globally exponentially attractive sets and positive
sets are given in Section 3. What’s more, an appli-
cation is present in Section 4 and finally a summery
is demonstrated give in Section 5.

Notations: Throughout this paper, the sym-
bols Rn and Rn×m stand, respectively, for the n-
dimensional Euclidean space and the set of all n×m
real matrices. AT and A−1 denote the matrix trans-
pose and matrix inverse. A > 0 or A < 0 denotes
that the matrix A is a symmetric and positive defi-
nite or negative definite matrix. Meanwhile, A < B
indicates A−B < 0 and ‖∗‖ is the Euclidean vector
norm. Moreover, in symmetric block matrices, we
use “ ∗ ” as an ellipsis for the terms that are intro-
duced by symmetry.

2. Model Description and Preliminaries

Considering the following CGNNs model with time-
varying delays and finite distributed delays:

ẋ(t) = α(x(t))[−Dx(t)+Ag(x(t))+Bg(x(t− τ(t)))

+C
∫ t

t−σ(t)
g(x(s))ds+U ], (1)

where x(t) = (x1(t), . . . ,xn(t))T and xi(t) is
the state variable associated with the neuron.
α(x(t)) = diag{α1(x1(t)), . . . ,αn(xn(t))} and αi
is an appropriately amplification function. D =

diag{d1, . . . ,dn} and di denotes the behaved func-
tion. g(x(t)) = (g1(x1(t)), . . . ,gn(xn(t)))T , g(x(t −
τ(t))) = (g1(x1(t − τ1(t))), . . . ,gn(xn(t − τn(t))))T .
The activation function g j shows how the neu-
rons respond to each other.

∫ t
t−σ(t) g(x(s))ds =

(
∫ t

t−σ1(t) g1(x1(s))ds, . . . ,
∫ t

t−σn(t) gn(xn(s))ds)T . The
time-varying delay τ(t) = (τ1(t), . . . ,τn(t))T satis-
fies 0 6 τi(t) 6 τi, and the finite distributed delay
σ(t) = (σ1(t), . . . ,σn(t))T satisfies 0 6 σi(t) 6 σi,
here τi and σi are constants. A = (ai j),B = (bi j),C =
(ci j) ∈ Rn×n tell us how the neurons are connected
in the network. U = (U1, . . . ,Un)T and Ui is the
input. Function αi is continuous and satisfies
0 < α−

i 6 αi(·) 6 α+
i .

Here, let τ = max16i6n τi, and σ = max16i6n σi.
C[X ,Y ] is a class of continuous mapping set from
the topological space X to the topological space Y .
Especially, C = [[−h,0],Rn], where h = max{τ,σ}.
For any initial function ϕ(s) ∈C,s ∈ [t0− h, t0], the
solution of (1) that starts from the initial condition
ϕ will be denoted by x(t, t0,ϕ) or simply x(t) if no
confusion should occur.

Throughout this paper, we make the following
assumption:

(A) There exist two diagonal matrices L =
diag{L1, · · · ,Ln} and F = diag{F1, · · · ,Fn} such
that the following inequalities hold:

Li 6 gi(x)−gi(y)
x− y

6 Fi

for all x,y ∈ R, x 6= y, i = 1,2, · · · ,n.

Remark 1. In the literature [24, 25], the results
were obtained under the condition that the time-
varying delays are continuously differentiable, of
which the derivative was bounded and smaller than
one, and the activation functions were limited on
bounded and monotonically non-decreasing. It is
needed to point out that, in this paper, the presented
results do not need the conditions mentioned above.

In the remaining part of this section, it will give
some basic definitions and five lemmas so that the
main conclusions can be expediently explained in
the ensuing sections.
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Definition 1. [19] If there exists a compact
set Ω ∈ Rn such that ∀s ∈ [t0 − h, t0],∀x(s) ∈
Rn\Ω, limt→+∞ρ(x(t),Ω) = 0, then Ω is said to
be a globally attractive set of (1), where Rn\Ω is
the complement set of Ω. A set Ω is called positive
invariant set of (1), if ∀s ∈ [t0−h, t0],∀x(s) ∈Rn\Ω
implies x(t) ∈Ω for t > t0.

Definition 2. [19] If there exists a radially un-
bounded and positive definite Lyapunov function
V (x(t)), which satisfies V (x(t)) > ‖x‖β̃ , where β̃ >
0 is a constant, and constants ζ > 0,β > 0, such that
for V (x(t0)) > ζ ,V (x(t)) > ζ , t > t0, the inequal-
ity V (x(t))− ζ 6 (V (x(t0))− ζ )exp{−β (t − t0)}
always holds. Then, {x|V (x(t)) 6 ζ} is said to be
a globally exponentially attractive set of (1), where
V (x(t0)) > V (x(t0)) and V (x(t0)) is a constant.

Definition 3. CGNNs (1) with globally expo-
nentially attractive set is said to be globally ex-
ponentially stable in Lagrange sense. CGNNs (1)
with globally attractive set is said to be ultimately
bounded.

Lemma 1. Let a,b ∈ Rn, Y be a positive definite
matrix, then the following inequality holds

±2aT b 6 aTY−1a+bTY b.

Proof. Since Y > 0, it can obtain aTYa± 2aT b +
bTY−1b = (Y 1/2a±Y−1/2b)T (Y 1/2a±Y−1/2b) > 0.
From this, it can easily obtain the inequality of
Lemma 1.

Lemma 2. (Jensen’s Inequality [28]) For any
constant matrix P ∈ Rn×n,PT = P > 0, γ >
0, vector function ω : [0,γ] → Rn such that
the integrations concerned are well defined,then
(
∫ γ

0 ω(s)ds)T P(
∫ γ

0 ω(s)ds) 6 γ
∫ γ

0 ωT (s)Pω(s)ds.

Lemma 3. (Schur Complement [29]) Given con-
stant matrices P, Q and R, where PT = P,QT = Q,
then the following LMI:(

P R
RT Q

)
< 0

is equivalent to the following conditions:

(1)Q < 0,P−RQ−1RT < 0;
(2)P < 0,Q−RT P−1R < 0.

Lemma 4. (Halanay Inequality [30]) Assume
there exist r1 > r2 > 0 and a nonnegative con-
tinuous quantity function x(t), which satisfies
D+x(t) 6 −r1x(t) + r2x(t), for all t ∈ [t0 − h, t0],
then x(t) 6 x(t0)exp(−λ (t− t0)) holds for ∀t > t0,
where x(t) = supt−h6s6t x(s), h > 0, and λ is the
unique positive root of λ = r1− r2eλh.

The following lemma provides a key step in
proving the main results of Lagrange stability for the
CGNNs with mixed delays (1).

Lemma 5. Given constant matrices
A1,A2,A3,B1,B2,B3 ∈ Rn×n, and appropriate re-
versible matrices X ,Y,Z, let

Σ1 =
(

A1
B1

)
X−1

(
A1
B1

)T

+
(

A2
B2

)
Y−1

(
A2
B2

)T

+
(

A3
B3

)
Z−1

(
A3
B3

)T

,

Σ2 =
(

A1 A2 A3
B1 B2 B3

)


X−1 0 0
0 Y−1 0
0 0 Z−1




(
A1 A2 A3
B1 B2 B3

)T

,

then Σ1 = Σ2.

Proof. Firstly, we discuss Σ1, and

Σ1 =
(

A1X−1

B1X−1

)(
A1
B1

)T

+
(

A2Y−1

B2Y−1

)(
A2
B2

)T

+
(

A3Z−1

B3Z−1

)(
A3
B3

)T

=
(

A1X−1AT
1 A1X−1BT

1
B1X−1AT

1 B1X−1BT
1

)

+
(

A2Y−1AT
2 A2Y−1BT

2
B2Y−1AT

2 B2Y−1BT
2

)

+
(

A3Z−1AT
3 A3Z−1BT

3
B3Z−1AT

3 B3Z−1BT
3

)
=

(
∆1 ∆2
∆T

2 ∆3

)
,

where ∆1 = A1X−1AT
1 +A2Y−1AT

2 +A3Z−1AT
3 , ∆2 =

A1X−1BT
1 +A2Y−1BT

2 +A3Z−1BT
3 , ∆3 = B1X−1BT

1 +
B2Y−1BT

2 +B3Z−1BT
3 .
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Calculating Σ2, we obtain

Σ2 =
(

A1 A2 A3
B1 B2 B3

)


X−1 0 0
0 Y−1 0
0 0 Z−1







AT
1 BT

1
AT

2 BT
2

AT
3 BT

3




=
(

A1X−1 A2Y−1 A3Z−1

B1X−1 B2Y−1 B3Z−1

)


AT
1 BT

1
AT

2 BT
2

AT
3 BT

3




=
(

∆1 ∆2
∆T

2 ∆3

)
.

Comparing the above equations, we can know
Σ1 = Σ2. The proof is finished.

3. Main Results

In this section, we will give some sufficient con-
ditions for global exponential stability in Lagrange
sense of CGNNs (1) in accordance with the lemmas
in Section 2.

Theorem 6. Under assumption (A), the CGNNs sys-
tem (1) is globally exponentially stable in Lagrange
sense if there exist five positive diagonal matrices
P,Q,R,S,T and a positive definite matrix H ∈ Rn×n

such that the following LMIs hold:



Θ11 Θ12 Θ13 Θ14 P−LQ
∗ Θ22 QB QC Q
∗ ∗ −S 0 0
∗ ∗ ∗ −T 0
∗ ∗ ∗ ∗ −H




< 0, (2)

WSW 6 P, (3)

where Θ11 = α−1(P + Q(F − L)) − PD − DP +
2LQD + W (R + σ2T )W, Θ12 = PA − LQA −
DQ, Θ13 = PB− LQB, Θ14 = PC − LQC,Θ22 =
QA + AT Q− R, α = diag{α−

1 ,α−
2 , . . . ,α−

n }, α =
diag{α+

1 ,α+
2 , . . . ,α+

n }, W = diag{w1,w2, . . . ,wn},
wi = max{|Li|, |Fi|},∀i = 1,2, . . . ,n. Moreover, the
set Ω = {x∈ Rn | xT (t)α−1Px(t) 6 UT HU

ε } is a glob-
ally exponentially attractive set and positive invari-
ant set of system (1), where 0 < ε ¿ 1.

Proof. We consider the following radially un-
bounded and positive definite Lyapunov functional
with the given positive definite diagonal matrices
P = diag{p1, . . . ,pn} and Q = diag{q1, . . . ,qn},

V (x(t)) = 2
n

∑
i=1

pi

∫ xi(t)

0

s
αi(s)

ds

+2
n

∑
i=1

qi

∫ xi(t)

0

1
αi(s)

(gi(s)−Lis)ds. (4)

Calculating the derivative of V (x(t)) along the
positive semi-trajectory of (1), we can obtain

dV (x(t))
dt

|(1) 6 2xT (t)P[−Dx(t)+Ag(x(t))

+Bg(x(t− τ(t)))+C
∫ t

t−σ(t)
g(x(s))ds+U ]

+2(g(x(t))−Lx(t))T Q[−Dx(t)+Ag(x(t))

+Bg(x(t− τ(t)))+C
∫ t

t−σ(t)
g(x(s))ds+U ] =

2(xT (t)P+gT (x(t))Q− xT (t)LQ)
(−Dx(t)+Ag(x(t)))
+2(xT (t)PB+gT (x(t))QB− xT (t)LQB)
g(x(t− τ(t)))
+2(xT (t)PC +gT (x(t))QC− xT (t)LQC)∫ t

t−σ(t)
g(x(s))ds

+2(xT (t)P+gT (x(t))Q− xT (t)LQ)U. (5)

From assumption (A), for given positive diago-
nal matrix R we derive

2(xT (t)P+gT (x(t))Q− xT (t)LQ)
(−Dx(t)+Ag(x(t)))
6 2xT (t)(−PD+LQD)x(t)
+2gT (x(t))QAg(x(t))
+2xT (t)(PA−LQA−QD)g(x(t))
+xT (t)WRWx(t)−gT (x(t))Rg(x(t)) =
(

x(t)
g(x(t))

)T (
ϒ Θ12
∗ Θ22

)(
x(t)

g(x(t))

)
,(6)

where ϒ =−PD−DP+2LQD+WRW .
By using assumption (A), Lemma 1 and Lemma

2, we know that there exist two positive diagonal
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matrices S,T and a positive definite matrix H such
that the following inequalities hold

2(xT (t)PB+gT (x(t))QB− xT (t)LQB)
g(x(t− τ(t))) 6
(xT (t)PB+gT (x(t))QB− xT (t)LQB)S−1

(xT (t)PB+gT (x(t))QB− xT (t)LQB)T

+gT (x(t− τ(t)))Sg(x(t− τ(t)))

6
(

x(t)
g(x(t))

)T (
(P−LQ)B

QB

)
S−1

(
(P−LQ)B

QB

)T (
x(t)

g(x(t))

)

+xT (t− τ(t))WSWx(t− τ(t)), (7)
2(xT (t)PC +gT (x(t))QC− xT (t)LQC)∫ t

t−σ(t)
g(x(s))ds 6

(xT (t)PC +gT (x(t))QC− xT (t)LQC)T−1

(xT (t)PC +gT (x(t))QC− xT (t)LQC)T

+(
∫ t

t−σ(t)
g(x(s))ds)T T (

∫ t

t−σ(t)
g(x(s))ds)

6
(

x(t)
g(x(t))

)T (
(P−LQ)C

QC

)
T−1

(
(P−LQ)C

QC

)T (
x(t)

g(x(t))

)

+σ2xT (t)WTWx(t), (8)
2(xT (t)P+gT (x(t))Q− xT (t)LQ)U
6 (xT (t)P+gT (x(t))Q− xT (t)LQ)H−1

(xT (t)P+gT (x(t))Q− xT (t)LQ)T +UT HU

=
(

x(t)
g(x(t))

)T (
P−LQ

Q

)
H−1

(
P−LQ

Q

)T (
x(t)

g(x(t))

)
+UT HU. (9)

Based on Lemma 5 and (5)-(9), we have

dV (x(t))
dt

|(1) 6
(

x(t)
g(x(t))

)T

Π
(

x(t)
g(x(t))

)

+
(

x(t)
g(x(t))

)T

Λ
(

x(t)
g(x(t))

)

+xT (t− τ(t))WSWx(t− τ(t))+UT HU, (10)

where

Π =
(

ϒ+σ2WTW Θ12
∗ Θ22

)
,

Λ =
(

(P−LQ)B (P−LQ)C P−LQ
QB QC Q

)




S−1 0 0
0 T−1 0
0 0 H−1







BT (P−LQ) BT Q
CT (P−LQ) CT Q

P−LQ Q


 .

Following from (2), there exists 0 < ε ¿ 1 such that




Θ̃ Θ12 Θ13 Θ14 P−LQ
∗ Θ22 QB QC Q
∗ ∗ −S 0 0
∗ ∗ ∗ −T 0
∗ ∗ ∗ ∗ −H




< 0,

where Θ̃ = (1+ε)α−1(P+Q(F−L))−PD−DP+
2LQD +W (R + σ2T )W . In the light of Lemma 3,
one gets

(
Θ̃ Θ12
∗ Θ22

)
+Λ < 0,

meanwhile, it is noticed that
(

Θ̃ Θ12
∗ Θ22

)
= Π+

(
M 0
0 0

)
.

where M = (1 + ε)α−1(P + Q(F −L)). Therefore,
it can be deduced that

Π+Λ <

( −(1+ ε)α−1(P+Q(F−L)) 0
0 0

)
. (11)

Combining (3), (10) and (11), we can derive

dV (x(t))
dt

|(1) 6

−(1+ ε)xT (t)α−1(P+Q(F−L))x(t)
+xT (t− τ(t))Px(t− τ(t))+UT HU, t > t0.(12)

From assumption (A) and the formula (4), one has

V (x(t)) 6 xT (t)α−1(P+Q(F−L))x(t), t > t0. (13)
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According to (12) and (13), we obtain

dV (x(t))
dt

|(1) 6−(1+ ε)V (x(t))+V (x(t))

+UT HU, t > t0, (14)

where V (x(t)) = supt−h6s6t V (s).
On the basis of (14), when V (x(t)) >

η ,V (x(t)) > η , one gets

d(V (x(t))−η)
dt

|(1) 6−(1+ ε)(V (x(t))−η)

+(V (x(t))−η), t > t0, (15)

where η = UT HU
ε . According to Lemma 4, we

are able to derive (V (x(t)) − η) 6 V ((x(t)) −
η)exp(−λ t), where λ is the unique positive root of
λ = (1+ ε)−eλh. Simultaneously, judging by [31],
it is easy to prove that there exists a constant β̃ such
that V (x(t)) > ‖x‖β̃ . In terms of Definition 1, Def-
inition 2 and noticing V (x(t)) > xT (t)α−1Px(t), it
is said that Ω = {x ∈ Rn | xT (t)α−1Px(t) 6 UT HU

ε }
is a globally exponentially attractive set and positive
invariant set of system (1). Hence, the CGNNs sys-
tem (1) is globally exponentially stable in Lagrange
sense via the Definition 3. So, the proof of Theorem
6 is completed.

Remark 2. Obviously, in light of Definition 3,
it is known that if the network (1) have a global
attractive set, it is ultimately bounded; and if the
network (1) has a globally exponentially attractive
set, it is globally exponentially stable in Lagrange
sense. Furthermore, the latter include the former.
Hence, the study of Lagrange stability depends on
the existence of global exponentially attractive set,
not considering uniformly bounded of the system.
However, in the reference[18, 21-25], the Lagrange
stability was determined by both uniformly bounded
and globally exponentially attractive set.

Remark 3. We denote Σ = {ψ ∈C(R,R)|sψ(s) >
0, s 6= 0, and D+ψ(s) > 0,s ∈ R}. Four different
types of activation functions are listed as follows:

(H1) g(·) ∈ Γ1, where Γ1 = {g(·)|gi ∈
C(R,R), ∃ki > 0, |gi(xi)| 6 ki, ∀xi ∈ R, i =

1,2, · · · ,n}, and g(·) is the bounded continuous
function.

(H2) g(·) ∈ Γ2, where Γ2 = {g(·)|gi ∈ Σ, ∃ki >
0, xigi(xi) 6 kix2

i , ∀xi ∈ R, i = 1,2, · · · ,n}, and
g(·) is the Lurie-type function.

(H3) g(·) ∈ Σ, where g(·) is the continuous non-
decreasing function.

(H4) g(·) ∈ Γ3, where Γ3 = {g(·)|gi ∈ Σ, ∃ki >
0, |gi(x) − gi(y)| 6 ki|x − y|, ∀xi ∈ R, i =
1,2, · · · ,n}, and g(·) is the Lipschitz-type function.

In [18, 19, 21, 22, 24, 25], the scholars studied
the global stability in Lagrange sense of neural net-
works with both time-varying delays and three dif-
ferent types of activation functions which include
(H1)-(H3). Owing to the constants Li,Fi in assump-
tion (A) being arbitrary, the condition about activa-
tion function of this paper is weaker than (H1), (H2)
and (H4). It is also observed that assumption (A)
and (H3) don’t embody each other.

Corollary 7. Under assumptions (A) and let α =
diag{α−

1 , . . . ,α−
n }, α = diag{α+

1 , . . . ,α+
n },σ(t) =

0. The CGNNs system (1) is globally exponentially
stable in Lagrange sense if there exist four positive
diagonal matrices P,Q,R,S and a positive definite
matrix H ∈ Rn×n such that the following LMIs hold:




Ξ Θ12 Θ13 P−LQ
∗ Θ22 QB Q
∗ ∗ −S 0
∗ ∗ ∗ −H


 < 0, (16)

WSW 6 P, (17)

where Ξ = α−1(P + Q(F − L)) − PD − DP +
2LQD + WRW, W = diag{w1, . . . ,wn}, wi =
max{|Li|, |Fi|},∀i = 1,2, . . . ,n. Moreover, the set
Ω = {x ∈ Rn | xT (t)α−1Px(t) 6 UT HU

ε } is a glob-
ally exponentially attractive set and positive invari-
ant set of system (1), where 0 < ε ¿ 1.

Proof. The course of proof is almost parallel to
that of Theorem 6, except for the inequality (8) in
the theorem 6. So the proof is omitted in here.

In the CGNNs system (1), if let α(t) ≡ 1, the
system (1) will degenerate into the following mixed
delayed recurrent neural network which is described
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by the matrix form:

ẋ(t) =−Dx(t)+Ag(x(t))+Bg(x(t− τ(t)))

+C
∫ t

t−σ(t)
g(x(s))ds+U. (18)

Similarly, there also exist the following results.

Theorem 8. Under assumption (A), the system (18)
is globally exponentially stable in Lagrange sense if
there exist two positive definite matrices P,H ∈ Rn×n

and four positive diagonal matrices Q,R,S,T such
that the following LMIs hold:




Ξ1 Θ12 Θ13 Θ14 P−LQ
∗ Θ22 QB QC Q
∗ ∗ −S 0 0
∗ ∗ ∗ −T 0
∗ ∗ ∗ ∗ −H




< 0, (19)

WSW 6 P, (20)

where Ξ1 = P + Q(F − L)− PD−DP + 2LQD +
W (R + σ2T )W, W = diag{w1,w2, . . . ,wn}, wi =
max{|Li|, |Fi|},∀i = 1,2, . . . ,n. Moreover, the set
Ω1 = {x∈ Rn | xT (t)Px(t) 6 UT HU

ε } is a globally ex-
ponentially attractive set and positive invariant set
of system (18), where 0 < ε ¿ 1.

Proof. Chosen the Lyapunov functional V1(x(t)) =
xT (t)Px(t) + 2∑n

i=1 qi
∫ xi(t)

0 (gi(s) − Lis)ds, trans-
formed LMIs (2) and (3) into LMIs (19) and (20),
and used a similar technique to compute the deriva-
tive of V1(x(t)) along the positive half trajectory of
(18), the next course of proof is analogous to that of
Theorem 8, so it is omitted in here.

Remark 4. When assuming σ(t) = 0 in the theorem
8, it could be found that the conclusion of theorem 8
in this paper will turn to the main result of Theorem
1 in [23] right now.

In particular, when H is elected as a positive di-
agonal matrix in Theorem 8 and let σ(t) = 0. Based
on (19) and by virtue of Lemma 3, one gets




Ξ2 PA−LQA−DQ PB−LQB
∗ QA+AT Q−R QB
∗ ∗ −S




+




P−LQ
Q
0


H−1




P−LQ
Q
0




T

< 0,(21)

where Ξ2 = P + Q(F − L)− PD−DP + 2LQD +
WRW . Owing to H is a positive diagonal matrix,
so H−1 is a positive diagonal matrix too. Therefore,
from (21) and on the basis of S-produce method
[29], one gains




Ξ2 PA−LQA−DQ PB−LQB
∗ QA+AT Q−R QB
∗ ∗ −S


 < 0.

Then it is known that the network (18) has a unique
equilibrium point (see [27]). As a result, the follow-
ing corollary is obtained.

Corollary 9. Under assumption (A) and if there ex-
ist four positive diagonal matrices Q,R,S,H and a
positive definite matrix P ∈ Rn×n such that the fol-
lowing LMIs hold:




Ξ2 Θ12 Θ13 P−LQ
∗ Θ22 QB Q
∗ ∗ −S 0
∗ ∗ ∗ −H


 < 0, (22)

WSW 6 P, (23)

where W = diag{w1,w2, . . . ,wn}, and wi =
max{|Li|, |Fi|},∀i = 1,2, . . . ,n. Then the network
(18) is globally exponentially stable in Lyapunov
sense.

Remark 5. Corollary 9 in this paper is the main
result of Theorem 1 in [27].

4. Qualitative study on the trajectory of
CGNNs (1) in the complementary set of the
globally exponential attracting set Φ

In this section, we only present a theorem to illus-
trate the application of the globally exponentially at-
tractive set and positive invariant set. Because the
equilibrium points, periodic solution, chaotic attrac-
tor and almost periodic solution of Eq.(1) or Eq.(24)
are all positive invariant sets. So, as a direct applica-
tion of the results obtained in the previous, we prove
for general case of positive invariant set, more de-
tails see the following theorem.
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Theorem 10. Let Φ is a globally exponentially at-
tractive set and positive invariant set of CGNNs (1),
then in the complementary set R3/Φ, (i.e., outside
of the globally exponentially attractive set Φ), there
are no bounded positive invariant sets that do not
intersect Φ.

Proof. Suppose this is not true. Without loss of
generality, assume that Ψ is a positive invariant set
of R3/Φ. Then Ψ∪Φ = φ , where φ denotes the
empty set. This implies that Φ and Ψ do not in-
tersect. So we have infy∈Φ,x∈Ψ ‖x− y‖ > 0. From
the definition of positive invariant set, we know that
x(t, t0,x0) ∈Ψ, for x0 ∈Ψ and t > t0. Hence,

inf
y∈Φ,x(t,t0,x0)∈Ψ,t>t0

‖y− x(t, t0,x0)‖> 0.

On the other hand, since Φ is a globally exponen-
tially attractive set, we have that x(t, t0,x0)→ Φ for
any x0 ∈ R3 as t →+∞, which implies that

inf
y∈Φ,x(t,t0,x0)∈Ψ,t>t0

‖y− x(t, t0,x0)‖= 0,

leads to a contradiction to the above inequality. This
shows that the conclusion of Theorem 10 is true.

5. Illustrative Examples

In this section, we will give two numerical examples
to verify our theoretical results with different activa-
tion functions.

Example 1. Consider a three-neuron CGNNs sys-
tem (1) with the following parameters:
α(x(t))= 2+0.5cos(x(t)),τ(t)= 0.8|sin(t)|,δ (t)=
2|cos(t)|,U = (0.8862,0.6455,0.9312)T ,

D =




3.5 0 0
0 6.2 0
0 0 4.3


,

A =




8 −2 5
−8 6 9
4 2 −5


, B =




2 −5 1
4 8 5
7 −6 −7


,

C =



−1.32 0.34 −0.55
−0.10 0.13 0.28
0.02 0.36 0.75


.

Case 1: When the activation function is selected
as g(x(t)) = 1

16(x(t)+ tanh(x(t))), it is obvious that

the activation function g(·) satisfies assumption (A)
with L = 0,

F = W =




0.125 0 0
0 0.125 0
0 0 0.125


 .

Then we calculate the parameters α+
1 = α+

2 = α+
3 =

2.5, α−
1 = α−

2 = α−
3 = 1.5.

So, α−1 =




0.4 0 0
0 0.4 0
0 0 0.4


,

α−1 =




0.667 0 0
0 0.667 0
0 0 0.667


.

By using the Matlab LMI Control Toolbox, the so-
lutions to the LMIs in (2) and (3) are derived as fol-
lows:

P =




3.7705 0 0
0 4.3831 0
0 0 3.6559


,

Q =




0.7541 0 0
0 0.7091 0
0 0 2.7052


,

R =




275.0812 0 0
0 144.3950 0
0 0 113.1999


,

S =




122.8730 0 0
0 216.0459 0
0 0 134.5125


,

T =




43.7955 0 0
0 60.0178 0
0 0 50.1016


,

H =




87.4051 −1.1089 1.7740
−1.1089 86.2600 −0.8219
1.7740 −0.8219 86.5896


.

Calculating the eigenvalues of H, we get the eigen-
values are 85.1731, 85.6617, 89.4199. Therefore,
following from Theorem 6, we gain that the net-
work (1) is globally exponentially stable in La-
grange sense, and the set Ω = {x ∈ Rn | 1.5082x2

1 +
1.7532x2

2 +1.4624x2
3 6 180.1224

ε } is a globally expo-
nentially attractive set and positive invariant set of
(1), where 0 < ε ¿ 1. However, according to the
theorem 3.2 of the reference [25], we gain
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Σ1 =




−15 −2 5 1 −2.5
8 −38.6 9 2 4
4 2 −34.4 3.5 −3
1 −2.5 0.5 −0.2 0
2 4 2.5 0 −0.2

3.5 −3 −3.5 0 0
−0.66 0.17 −0.275 0 0
−0.05 −0.065 0.14 0 0
0.01 0.18 0.375 0 0

0.5 −0.66 0.17 −0.275
2.5 −0.05 −0.065 0.14
−3.5 0.01 0.18 0.375

0 0 0 0
0 0 0 0

−0.2 0 0 0
0 3 0 0
0 0 3 0
0 0 0 3




.

By calculating we get the six eigenvalues of Σ1
are -41.3715, -32.5883, -13.6091, -0.6148+0.5381i,
-0.6148-0.5381i, 0.1755, 3.0172, 3.0059, 3.0000,
from which we are able to know that is not negative
definite. So the conclusion in [25] can’t be applied to
ensure the global exponential stability in Lagrange
sense of (1). Hence, for this case, our results in this
paper are less conservative than those in [25].

Case 2: On the other hand, let α(t) ≡ 1 and
chose g(x(t)) = 1

16(|x + 1| − |x− 1|), the activation
function g(·) satisfies assumption (A) with

L =



−0.125 0 0

0 −0.125 0
0 0 −0.125


,

F = W =




0.125 0 0
0 0.125 0
0 0 0.125


 .

Analogously, by using the Matlab LMI Control
Toolbox, the solutions to the LMIs in (19) and (20)
are derived as follows:

P =




5.2500 0.9791 −2.1937
0.9791 5.8322 1.1810
−2.1937 1.1810 7.4673


,

Q =




1.9109 0 0
0 1.6459 0
0 0 4.1828


,

R =




260.7605 0 0
0 190.7273 0
0 0 194.4384


,

S =




153.7660 0 0
0 183.9017 0
0 0 138.0816


,

T =




51.0309 0 0
0 77.4338 0
0 0 75.3789


,

H =




104.2528 −0.1554 0.2436
−0.1554 103.6230 0.5247
0.2436 0.5247 104.1278


.

Calculating the eigenvalues of P and H, we get
the eigenvalues of P are 3.1123, 6.5290, 8.9081
and that of H are 103.2528, 104.4315, 105.0220.
Therefore, following from Theorem 8, we gain
that the network (18) is globally exponentially sta-
ble in Lagrange sense, and the set Ω = {x ∈ Rn |
3.1123x2

1 + 6.5290x2
2 + 8.9081x2

3 6 215.6712
ε } is a

globally exponentially attractive set and positive
invariant set of (18), where 0 < ε ¿ 1.

Remark 6. The activation functions in Case 1 of
this example don’t meet with (H1),(H2) or (H3),
which means that the conclusion in [18, 19, 21, 22,
24, 25] can’t be applied to ensure the global expo-
nential stability in Lagrange sense of (1). Hence,
our results in this paper are less conservative than
those in [18, 19, 21, 22, 24, 25].

Example 2. Considering the following two-neuron
recurrent neural networks with time-varying delay:

ẋ(t) =−Dx(t)+Ag(x(t))+Bg(x(t− τ(t)))+U,
(24)

where τ(t) = 0.8|sin(t)|,U = (1,1.5)T ,

D =
(

3.5 0
0 6.2

)
, A =

(
8 −2
4 2

)
,

B =
(

2 −5
4 8

)
.

Case 1: We consider the activation function
g(x(t)) = 1

8(|x + 1|− |x− 1|). In this case, the acti-
vation function g(·) satisfies assumption (A) with

L =
( −0.25 0

0 −0.25

)
, F =W =

(
0.25 0

0 0.25

)
.
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Analogously, the solutions are derived as follows:

P =
(

3.2329 0.2169
0.2169 6.4594

)
, Q =

(
1.7007 0

0 1.7889

)
,

R =
(

134.3960 0
0 89.2271

)
,

S =
(

41.9425 0
0 86.8791

)
,

H =
(

63.4544 0.0122
0.0122 62.7065

)
.

Calculating the eigenvalues of P and H, we get the
eigenvalues of P are 3.2184, 6.4739 and that of H
are 63.4546, 62.7063. Therefore, following from
Theorem 8, we gain that the network (18) is glob-
ally exponentially stable in Lagrange sense, and the
set Ω = {x ∈ Rn | 3.2184x2

1 + 6.4739x2
2 6 204.5438

ε }
is a globally exponentially attractive set and positive
invariant set of (24), where 0 < ε ¿ 1.
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0.8
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Fig.1. State curves x1(t) of system (24) with activation function

g(x(t)) = 1
8 (|x+1|− |x−1|).

0 20 40 60 80 100
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x 2

Fig.2. State curves x2(t) of system (24) with activation function

g(x(t)) = 1
8 (|x+1|− |x−1|).

Remark 7. From Corollary 9, we can know that
the network (24) has a unique equilibrium point
which is globally exponentially stable. In fact, the

global exponential stability in Lyapunov sense of the
unique equilibrium point is demonstrated in Fig.1
and Fig.2 which are ten trajectories of state x1(t) and
x2(t) of the system (24) with random initial condi-
tions.

Case 2: If we choose the activation functions as
g(x(t)) = 1

5(x(t) + tanh(x(t))), it is obviously that
the activation function g(·) satisfies assumption (A)

with L = 0, F = W =
(

0.4 0
0 0.4

)
.

Then by using the Matlab LMI Control Toolbox, the
solutions are derived as follows:

P =
(

5.2632 0.2579
0.2579 9.0456

)
, Q =

(
1.0160 0

0 1.7402

)
,

R =
(

170.0008 0
0 115.4947

)
,

S =
(

73.5609 0
0 143.4947

)
,

H =
(

79.0877 −0.3404
−0.3404 78.1530

)
.

Calculating the eigenvalues of P and H, we get the
eigenvalues of P are 5.2457, 9.0631 and that of
H are 79.1985, 78.0421. Therefore, following from
Theorem 8, we gain that the network (24) is globally
exponentially stable in the Lagrange sense, and the
set Ω = {x ∈ Rn | 5.2457x2

1 + 9.0631x2
2 6 254.7932

ε }
is a globally exponentially attractive set and positive
invariant set of (24), where 0 < ε ¿ 1. However,
according to the theorem 4.2 of the reference [18],
we gain

Q(1) =




9 −2 1 −2.5
4 3 2 4
1 −2.5 −1 0
2 4 0 −1


.

By calculating we get the four eigenvalues of Q(1)

are 7.1618+3.3577i, 7.1618-3.3577i, -1.6052, -
2.7183, from which we are able to know that Q(1) is
not negative definite. So the conclusion in [18] can’t
be applied to ensure the global exponential stability
in Lagrange sense of (24). Hence, for this example,
our results in this paper are less conservative than
those in [18].

The following figures are given to testify the va-
lidity of the results. Fig.3 shows the state trajecto-
ries of system (24) with g(x(t)) = 1

5(x + tanh(x))
and Fig.4 shows the behavior of system (24) with
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ten state trajectories of random initials.
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Fig.3. The trajectories of state of system (24) with activation function

g(x(t)) = 1
5 (x+ tanh(x)) and arbitrary initial condition.
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Fig.4. The behavior of system (24) with ten state trajectories of

random initials.

6. Conclusions

In this paper, we have investigated the Lagrange sta-
bility problem for a class of Cohen-Grossberg neu-
ral networks with general activation functions and
mixed time delays. The mixed time delays con-
sidered here are time-varying delays and finite dis-
tributed delays. Based on assuming that the activa-
tion functions are neither bounded nor monotonous
or differentiable, a set of novel algebra criteria for
global exponential stability in Lagrange sense of
CGNNs are obtained by virtue of Lyapunov func-
tional, Halanay delay differential inequality and lin-
ear matrix inequality. Obviously, our approaches are
different from those of the pre-existing, and more
importantly, the obtain results extend and generalize
that of the works [18, 23, 25, 27]. Meanwhile, our
results also show that the globally exponentially at-
tractive set does contribute to the Lagrange stability

of the considered system. Yet again, it is verified that
outside the global exponential attractive set, there is
no periodic state, almost periodic state or chaos at-
tractor. These Lagrange stability analysis can nar-
row the search domains of optimization and asso-
ciative memories, and provide theoretical guidelines
for applications. Finally, we give two examples to
show the effectiveness of our theoretical results.
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