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Abstract 

In this paper, a multi-objective particle swarm optimization algorithm with a new global best (gbest) selection 
strategy is proposed for dealing with multi-objective problems. In multi-objective particle swarm optimization, 
gbest plays an important role in convergence and diversity of solutions. A K-means algorithm and proportional 
distribution based approach is used to select gbest from the archive for each particle of the population. A symmetric 
mutation operator is incorporated to enhance the exploratory capabilities. The proposed approach is validated using 
seven popular benchmark functions. The simulation results indicate that the proposed algorithm is highly 
competitive in terms of convergence and diversity in comparison with several state-of-the-art algorithms. 

Keywords: Particle swarm optimization; Multi-objective optimization; K-means algorithm; Global best; Symmetric 
mutation operator. 
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1. Introduction 

Many real-world optimization problems involve 
multiple objectives that should be optimized 
simultaneously. Sometimes, these objectives are even 
conflicting. Improve one objective would worsen at 
least one other objective. Contrary to single objective 
(SO) optimization problem, there is no single optimal 

solution in multi-objective (MO) optimization problem, 
but a set of trade-off solutions. 
Evolutionary algorithms can deal with a set of possible 
solutions (so-called population) simultaneously which 
allows us to find a set of optimal solutions in a single 
run of the algorithm.1 So it is very promising to apply 
evolutionary algorithms to MO problems. Since 
Schaffer first proposed a Vector Evaluated Genetic 
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Algorithm (VEGA),2,3 many evolutionary algorithms 
have been proposed to solve MO problems, such as 
NSGA-II, SPEA2, Micro-GA, etc.4-6 These clever 
designed methods have been proved to be very effective 
in dealing with MO optimization problems. 

As numerous genetic algorithm based methods have 
been proposed, many researchers are paying more and 
more interest in using Particle Swarm Optimization7 
(PSO) to solve MO problems. PSO is a relatively new 
algorithm, which is inspired by the social interaction of 
bird flocking. A standard particle swarm optimization 
includes a swarm of particles. Each particle represents a 
candidate solution of the problem. Particles fly in a 
multi-dimensional search space looking for the optimal 
position according to its own flying experience and the 
experience of the best particle in the swarm. PSO has 
been proved to be very effective in a wide variety of 
optimization problems due to its fast convergence and 
ease of implementation.8 

The original PSO was proposed to solve SO 
problems. Extending original PSO to multi-objective 
PSO requires a redefinition of the global best (gbest) in 
order to obtain a set of non-dominated solutions. The 
gbest in the PSO has a great impact on convergence and 
diversity of solutions. Contrary with the SO 
optimization, there is no single gbest, but a set of non-
dominated solutions. Choosing the proper gbest from 
the set of non-dominated solutions for each particle in 
the prime swarm to direct its flight is very important and 
difficult. The difficulties lie in the following aspects: 
(i) It’s difficult to define criteria of choosing gbest 

since all the particles in the non-dominated set are 
pareto optimal. They do not dominate other 
particles nor dominated by others.9 

(ii) The appropriate gbest should be able to cover the 
entire non-dominated front and encourage the 
exploration of the sparse regions. 

(iii) The gbest selection method should be adapted to 
different kinds of problems. 

Various gbest selection methods have been proposed 
in past years. Hu et al.10 proposed a dynamic 
neighborhood PSO, which optimizes one objective in 
one cycle. The gbest is chosen according to the 
objective to be optimized in each cycle. The algorithm 
may be sensitive to the ordering of objectives. Coello et 
al.11 introduced an algorithm called MOPSO. An 
external archive is used to store the non-dominated 

solutions and the adaptive grid is adopted to choose 
gbest from the archive. It shows good convergence 
performance and has lower computational cost but falls 
behind NSGA-II on diversity mechanism. On the basis 
of MOPSO, Raquel et al.12 introduced the crowding 
distance operator4 into MOPSO for the gbest selection 
instead of the adaptive grid. All the non-dominated 
particles in the archive are sorted based on a decreasing 
crowding distance. Gbest is randomly chosen from the 
top 10% particles. The new algorithm improves the 
diversity of solutions compared with MOPSO. Li13 
proposed NSPSO in which the main mechanisms of 
NSGA-II are adopted in a PSO algorithm. Two methods, 
niche counts and crowding distance, are used to select 
gbest in this algorithm. A strategy to find gbest in 
MOPSO, named sigma method, was proposed in Ref. 14. 
All the particles both in the population and the archive 
have a sigma value. For each particle in the population, 
it chooses its gbest from the archive according to the 
sigma value. A heuristic using a particle swarm 
optimizer and fitness sharing was proposed in Ref. 15, 
in which niche count is used for selecting gbest and 
archive pruning. Liu et al.16 proposed a memetic 
algorithm for MO problems, which combines the global 
search ability of PSO with a synchronous local search 
heuristic. In order to provide diversity, they use fuzzy 
gbest instead of a crisp location which can encourage 
the particles to explore a region beyond that defined by 
the search trajectory. Shang-Jeng Tsai et al.17 proposed 
an improved multi-objective particle swarm optimizer 
named PDJI-MOPSO. A disturbance operation is 
introduced into the gbest selection method which would 
affect particles to move towards unexpected directions.  
Yang et al.9 introduced a gbest selection method which 
is a combination of the adaptive grid and the sigma 
method. The new gbest selection method can 
compromise global and local searching based on the 
process of evolution. Lei18 proposed a multi-objective 
PSO for job shop scheduling problem, in which gbest is 
chosen according to crowding measure. Carvalho et al.19 
applied multi-objective PSO to software fault prediction 
problem. The sigma method is used for gbest selection 
in their approach to maintain diversity of solutions. 

In the existing gbest selection methods, the adaptive 
grid11, the crowding distance method12 and the sigma 
method14 are the most frequently used methods.  These 
methods show promising results, however, there are still 
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some disadvantages in these gbest selection methods. 
The adaptive grid has the advantage of low 
computational time but it fails in maintaining diversity 
of the generated solutions when compared with other 
MO algorithms. The crowding distance method only 
chooses gbest from the sparse regions. The chosen gbest 
cannot represent the entire non-dominated front which 
may result in bad convergence. The sigma method can 
guide the particles move to the Pareto front directly and 
show good convergence ability. However, this behavior 
may lead to premature and bad diversity when the initial 
particles of the archive are bad-distributed.9 

For dealing with the aforementioned disadvantages, 
a multi-objective particle swarm optimization algorithm 
(KMOPSO) with a novel gbest selection strategy is 
presented in this paper. A K-means algorithm and 
proportional distribution based gbest selection strategy 
is used to select gbest from the external archive. This 
gbest selection strategy considers both global and local 
information of the non-dominated front. It can capture 
the whole non-dominated front while encouraging 
diversity. Particles in the population would move 
towards the entire non-dominated front uniformly. The 
simulation results and analysis prove that this strategy 
can achieve good convergence, diversity and spread. 

Some researchers have incorporated K-means 
algorithm to improve the performance of PSO.20, 21 
However, they incorporated K-means algorithm in 
single-objective PSO. In their studies, K-means 
algorithm is used to divide the population into several 
clusters according to their values in the decision space. 
In our study, we use K-means algorithm in multi-
objective PSO to select gbest from the archive 
according to their corresponding objective values. 

Also, a symmetric mutation operator is presented to 
strengthen the exploratory capabilities of the proposed 
algorithm. PSO is known for its high speed of 
convergence, which would leads to the loss of 
population diversity. The behavior can also lead the 
swarm to be trapped in a local optimum from which 
they cannot escape. The symmetric mutation operator 
can help PSO to overcome its disadvantages by 
providing PSO the ability of jumping out of local 
optimum. 

The remainder of this paper is organized as follows. 
Section 2 describes the basic concepts of MO problems. 
Section 3 gives some basic knowledge of PSO. In 

Section 4, we describe our approach in detail. Section 5 
presents a comparative study with other well known 
MO evolutionary algorithms. Section 6 concludes the 
paper.  

2. Basic Concept of MO Problems 

In contrast to SO optimization, MO problems are 
characterized by a set of optimal solutions, known as 
Pareto Optimal solutions. Without any loss of 
generality, we consider a multi-objective minimization 
problem. It can be stated as: 

1

1 1

( ) ( ( ), , ( ))
( , , ) , ( , , )

n

m n

Min f f f
x x y y

 

   

y x x x

x X y Y
            (1) 

where x is the decision vector, X is the decision space, 
y is the objective vector and Y is the objective space. A 
vector kx is said to dominate another vector lx , denoted 
as: 

1,2, , : ( ) ( )
1,2, , : ( ) ( )

i k i l

i k i l

i n f f
i n f f

  

  

x x

x x
                    (2) 

A decision vector kx is called Pareto optimal if 
there does not exist another vector l x X that 
dominates it. The set of all non-dominated vectors in the 
decision variable set is the Pareto optimal set. The 
corresponding set of objective vectors is called Pareto 
optimal front. 

3. Particle Swarm Optimization 

PSO is a heuristic technique inspired by the social 
behavior of bird flocking. A standard particle swarm 
optimization includes a swarm of particles which 
represent solutions of the problem. Let 1 2( , ,i i ix x x  

, )iDx  be the ith particle in the swarm. D is the 
dimension of the search space. Its current velocity 
is 1 2( , , , )i i i iDv v v v . In the basic PSO algorithm, the 
positions of particles are updated by the following 
equations: 

1
1 1 2 2( ) ( )t t t t t t t t

id id id id d idv v c r pbest x c r gbest x           (3) 
1 1t t t

id id idx x v                                  (4) 
where t

idv is the dth dimension of the velocity of particle 
i in cycle t; t

idx  the dth dimension of the position of 
particle i in cycle t; t

idpbest  is the dth dimension of the 
position of personal best of particle i in cycle t; t

dgbest  
is the dth dimension of the position of gbest in cycle t; 
 is the inertia weight. Inertia weight plays an 
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important role in balancing global and local search. A 
large inertia weight promotes global search and a small 
inertia weight is more appropriate for local search. The 
value is typically set between 0 and 1. c1 is the cognitive 
weight and c2 is the social weight; 1

tr  and 2
tr  are two 

random numbers. 

4. Proposed Approach 

In the beginning of the algorithm, the positions of all the 
particles are randomly initialized. Their speed is set as 
0.Their pbest are their present positions. All the non-
dominated solutions are stored in an external archive. A 
gbest selection strategy based on K-means algorithm 
and proportional distribution is used to choose gbest 
from the archive in order to spread the particles along 
the Pareto front. The archive is updated after each cycle. 
When it reaches its limit, a nearest neighbor based 
pruning technique is used to control its size. Besides, a 
symmetric mutation operator is employed to improve 
the exploratory capability. 

The steps of KMOPSO are as follows. 
% M is the population size 
% x is the position of particle 
% v is the speed of each particle 
% P is the population 
% t is the iteration counter 
% K is the number of clusters 
(i) Initialize the population: 

a. For i =1 to M  
b. Initialize ix  randomly 
c. Initialize 0iv   

(ii) Evaluate all the particles. 
(iii) Store the non-dominated solutions in P into the 

external archive A. 
(iv) Initialize the personal best of each particle i: 

i ipbest x   
(v) While t < maximum number of iterations 
DO 

(a) Compute the speed of each particle with Eq. 
(3).  

(b) Compute the new position of each particle with 
Eq. (4). 

(c) If ix goes beyond its search boundaries, we take 
two measures: 1) set the decision variable the 
value of its corresponding lower of upper 
boundary; 2) its velocity is multiplied by -1 in 

order to make it searches the opposite 
direction. 

(d) Apply the mutation operator. 
(e) Evaluate all the particles in population. 
(f) Update the external archive A. 
(g) Update pbest for each particle. 
(h) Increment the loop counter: 1t t  . 

End while. 

4.1.  Gbest selection strategy based on K-means 

algorithm and proportional distribution 

In MOPSO, gbest is very important in guiding the entire 
population moving towards the true Pareto front. 
Different from single objective optimization problem, 
there exists a set of non-dominated solutions in the 
external archive. So this leads to the problem of how to 
choose gbest from the non-dominated solutions. This 
paper introduced a gbest selection strategy based on K-
means algorithm and proportional distribution in order 
to lead to a diverse and uniformly distributed set of 
solutions. 

As shown in Fig.1, the first step of the gbest 
selection method is to divide the particles in the archive 
into K clusters according to their corresponding 
objective function values.22 It operates as follows: 
(i) Randomly choose K solutions, each of which 

represents a cluster center. 
(ii) For each of the remaining solutions, each solution 

is assigned to the cluster to which it is the most 
similar, based on the Euclidean distance between 
the solution and the cluster center. 

(iii) Compute the new center of each cluster. 
(iv) Iterate step 2 and 3 until convergence of objective 

function: 

min f1
m

in f2

 

Fig. 1.  Divide particles into K clusters. 
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1 i

K

i
i C

E
 

 
f

f m                         (5) 

        where E is the sum of the square error for all 
solutions in the archive; f is the point in space 
representing a given solution; im is the mean of the 
cluster Ci. 

(v) In each cluster, find the solution nearest to the 
centroid, and make it the representative solution of 
the cluster. 

After the clustering process, the clusters are 
separated from each other and the solutions in the same 
cluster are similar. The representative solutions lie in 
diverse regions of the non-dominated front. The next 
step is to choose gbest from the K representative 
particles. In the K clusters, they contain different 
numbers of particles. If a cluster has a large number of 
particles, it means this region is crowded. We should 
encourage particles move towards those less crowded 
regions. A proportional distribution method is used to 
select gbest from those K representative particles. The 
probability of a representative particle i being chosen as 
gbest is calculated as follows: 

            

1

1

1
i

i K

ii

num
p

num






                              (6) 

where ip is the probability of the ith representative 
particle being chosen as gbest. inum is the number of 
particles in the ith cluster. As shown in Eq. (6), the 
representative particle i has more opportunity to be 
chosen as the gbest if its corresponding cluster has less 
particles. 

This gbest selection method considers both the 
global and local information of the non-dominated front. 
In the clustering process, we first consider the 
distribution of all the particles in the non-dominated 
front. The particles in a small crowded region would be 
merged into one cluster and the particles in a sparse 
region will be assigned to one cluster with only a few 
particles. Then in the proportional distribution, the local 
information is considered. The representative particle 
whose corresponding cluster has fewer particles has 
more opportunity to be chosen as the gbest. The gbest 
chosen by this algorithm can represent the distribution 
of all the non-dominated solutions and encourage the 
exploration of the sparse regions. The particles in the 

crowded regions also have the opportunity to be chosen 
as the gbest. Hence this algorithm would not decrease 
the convergence speed. 

4.2. External archive and the pruning method  

In our algorithm, elitism is implemented by using a 
fixed-size external archive to prevent the loss of good 
particles. External archive is used to store the non-
dominated particles found during the evolution process. 
The archive is updated in each cycle. If the candidate 
solution is not dominated by any solution in the archive, 
it will enter the archive. Any archive members 
dominated by this solution will be removed from the 
archive. 

The size of external archive is limited considering 
the computational cost. When the external archive is full, 
a pruning method based on the nearest neighbor is 
carried out to determine which solution in the archive is 
to be replaced. It is chosen according to the following 
steps: 
(i) For i = 1: N (N is the archive size) 
(ii) Calculate the Euclidean distance between the ith 

solution and the other N-1 solutions and store the 
minimum one. 

(iii) End for. 
(iv) Choose the solution with the minimum distance to 

another solution. If several solutions tie, then 
compare their distance to their second nearest 
neighbors and so forth. 

By this pruning method, diversity can be promoted 
in the archive as the most crowded solution is replaced 
by a new non-dominated solution. 

4.3. The mutation operator  

PSO is known for its high convergence speed. In MO 
optimization, such convergence speed may be harmful 
because this may lead the algorithm converge to a local 
Pareto front. In some complex MO problems, there 
exists many local optimal. If gbest corresponds to one of 
the local optima, the swarm would converge to the 
vicinity of the local optimal rapidly. This motivates the 
use of a mutation operator. A symmetric mutation 
operator is adopted to enrich the exploratory abilities. 
The mutation operator is performed on the entire 
population. 
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p1

p2

1 2

alb m ub

 
Fig. 2. The mutation operator 

 
The mutation operator is described in Fig. 2. For 

each decision variable of particle, the search space is 
divided into two symmetric regions, region 1(r1) and 
region 2(r2). Particle will mutate in the region in which 
it locates. As shown in Fig. 2, particle a lies in r1and it 
will mutate inside r1. The new position of a will be 
updated as follows: 
(i) Calculate its distance to the lower bound (lb) and 

the middle point (mp). Denote distolb as the 
distance to the lower bound. Denote distomp as the 
distance to the middle point. 

(ii) Generate a random real number rand between 0 

and 1. If distomprand
distolb distomp




, particle a will 

search in the direction of lower bound. The 
position of particle a will be: 

( , )a RandomDouble lb a                   (7) 
( , )RandomDouble lb a means generating a random 

number between lb and a. 

If distomprand
distolb distomp




, particle a will search in 

the opposite direction. The position of particle a will 
be: 

( , )a RandomDouble a m                   (8) 
If particle is nearer to the lower bounder, it has more 

opportunity to search in the direction of the lower 
bounder. If particle is nearer to the middle point, it has 
more opportunity to search in the direction of the 
middle point. For particles in r2, the mutation operator 
works in the same way. 

4.4. Redefinition of the pbest  

In MO problems, the traditional way to update pbest is 
as follows: if the current particle dominates its present 
pbest, the pbest will be updated. If neither of them 
dominates the other, one of them is selected as the new 
pbest randomly. Due to the aforementioned searching 

behavior in MO problems, the pbest will usually stay 
the same in many cycles16. In this situation, the pbest 
has no effect on guiding particles move to a new place. 
Particle would adjust their search strategies only with 
their gbest. 

In this paper, the pbest is redefined to solve this 
problem. In section 4.1, K representative particles are 
selected by the gbest selection strategy. In each cycle, 
for each particle in the population, calculate the distance 
to all K representative particles. The nearest 
representative particle will be its new pbest. 

5. Experiment and Analysis 

5.1. Performance metrics  

In order to provide a quantitative assessment for the 
performance of the proposed MO optimization 
algorithms, three measures are used. 

Generational distance (GD): The metric of 
generational distance was introduced by Van 
Veldhuizen and Lamont23 as an indication of the gap 
between the discovered Pareto front and the true Pareto 
front. It is defined as: 

           
2

1

n

i
i

GD d n


                              (9) 

where n is the number of non-dominated solutions 
found by the algorithm and di is the Euclidean distance 
between the solution i and its nearest solution in the true 
Pareto front. 0GD  means that the generated solutions 
are in the Pareto optimal set. 

Spacing (S): The metric of spacing24 measures how 
evenly the solutions are distributed along the discovered 
front. 

2

1

1 ( )
1

n

i
i

S d d
n 

 

                         (10) 

where 1 1 2 2min(| ( ) ( ) | | ( ) ( ) |), ,i j i j
id f x f x f x f x i j      

1, ,n , d is the mean of all id , n is the number of non-
dominated solutions found by the algorithm. 0S   
indicates that all the generated solutions are evenly 
distributed. 

Maximum spread (MS): The metric of maximum 
spread measures how well the true Pareto front is 
covered by the found Pareto front. It is defined as: 

max max min min
2

max min
1

min( , ) max( , )1 [ ]
M

i i i i

i i i

f F f F
MS

M F F





      (11) 
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where M is the number of objectives, 
max

if  and min
if  are 

the maximum and minimum of the ith objective in the 
found solutions, respectively. max

iF and min
iF are the 

maximum and minimum of the ith objective in the true 
Pareto solutions, respectively. 1MS  means the 
generated solutions cover the full extent of the true 
Pareto front. 

5.2. Benchmark problems  

In this paper, seven benchmark problems SCH, FON, 
POL, ZDT1, ZDT3, ZDT4, and ZDT6 are selected to 
examine the performance of the proposed KMOPSO. 
Many researchers have applied these problems to 
examine their proposed algorithms.4, 11, 13, 16 The 
definition of these problems is summarized in Table 1. 
 

Table 1 . Test problems used in this paper. 
Test 

Problem Objective Functions 

SCH 

2
1

2
2

3 3

( )

( ) ( 2)

10 10 .

f x x
f x x
where x



 

    

FON 

23
1 1

23
2 1

( ) 1 exp( ( 1 3) )

( ) 1 exp( ( 1 3) )

4 4.

ii

ii

i

f x x

f x x

where x





   

   

  





 

POL 

2 2
1 1 1 2 2

2 2
2 1 2

1

2

1 1 1 2 2

2 1 1 2 2

( ) 1 ( ) ( )

( ) ( 3) ( 1)
0.5sin1 2cos1 sin 2 1.5cos2
1.5sin1 cos1 2sin 2 0.5cos2
0.5sin 2cos sin 1.5cos
1.5sin cos 2sin 0.5cos

.i

f x A B A B
f x x x
A
A
B x x x x
B x x x x
where x 

    

   

   

   

   

   
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ZDT1 

1 1

2 1

2

( )

( ) 1

( ) 1 9( ) ( 1)

30, 0 1

m
ii

i

f x x

f x f g

g x x m

where m and x




 

  
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

 

ZDT3 

1 1

1 1
2 1

2

( )

( ) 1 ( )sin(10 )

( ) 1 9( ) ( 1)

10, 0 1

m
ii

i

f x x

f ff x fg g

g x x m

where m and x







  

  
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

 

ZDT4 

1 1

2 1

2
2

1

( )

( ) 1

( ) 1 10( 1) ( 10cos(4 ))

10, 0 1, 5 5( 2, , )

m
i ii

i

f x x

f x f g

g x m x x

where m and x x i m






 

    

      



 

ZDT6 

6
1 1 1

21
2

0.25
2

( ) 1 exp( 4 )sin (6 )

( ) 1 ( )

( ) 1 9(( ( 1)) )

10, 0 1

m
ii

i

f x x x
ff x g

g x x m

where m and x





  

  

  

  


 

5.3. Comparative algorithms  

The performance of KMOPSO is compared to three MO 
algorithms, including NSGA-II, MOPSO, and MOPSO-
CD. NSGA-II4 is an improved version of the NSGA25 
(non-dominated sorting genetic algorithm). It 
incorporates elitism and a crowding distance operator 
that keeps diversity. It has been very popular in the last 
a few years, becoming a landmark against which other 
MO optimization algorithms have to be compared. 
MOPSO10 was proposed by Coello et al.. MOPSO 
shows competitive results compared to PAES26 and 
NSGA-II. MOPSO-CD11 is a revised version of 
MOPSO. The experimental results show this algorithm 
is competitive in converging towards the Pareto front 
and generating a well distributed set of non-dominated 
solutions. 

5.4. Parameter settings 

The experiments are performed on a machine with 
Intel(R) Core(TM) 2 Quad CPU E7300 at 2.66 GHz and 
2.00 GB of RAM. The operating system is MS 
Windows XP and the compiler is VC++ 6.0. 

In this study, the NSGA-II used a population size of 
100, a crossover rate 0.8, tournament selection, and a 
mutation rate of 1/L, where L is the number of decision 
variables. The MOPSO used a population of 100 
particles, 30 divisions for the adaptive grid, and a 
mutation rate of 0.5.  , r1, and r2 were 0.4, 1.0, and 1.0, 
respectively. The MOPSO-CD was run using 100 
particles in the population, and a mutation rate of 0.5. 
 , r1, and r2 were 0.4, 1.0, and 1.0, respectively. 
KMOPSO used 100 particles in the population.  , r1, 
and r2 were 0.3, 1.5, and 1.5, respectively. The number 
of cycles in the K-means algorithm was 20. The 
mutation rate was 0.1 except in ZDT4 (the mutation rate 
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was set as 0.2 in this test function.) The number of K is 
crucial to the algorithm. If K is too small, the chosen K 
particles are unable to cover the distribution of the 
whole non-dominated front. If K is too large, the chosen 
particles lose representativeness. In our research, the 
number of clutters was time varying. It is shown as 
follows: 

0 3
3 3 10
5 10 30

10 30 100

A when A
when AK
when A
when A

  


 
 

 
  

                (12) 

According to our experiment, when the number of 
particles in the archive is more than 30, the number of 
K should be between 10 and15 in order to achieve 
good performance. 

The total number of function evaluation was 10,000 
for SCH, FON, KUR, and POL, 40,000 for ZDT1, and 
ZDT4, 20,000 for ZDT3 and ZDT6. Each experiment 
was repeated 30 times to restrict the influence of 
random effects. In this paper, the best average results 
obtained with respect to each metric are shown in 
boldface. 

5.5. Results and discussions 

Figs. 3, 5, 7, 9, 11, 13, and 15 show the Pareto fronts 
generated by KMOPSO on the seven test problems. The 
solutions shown here correspond to the median value 
with respect to the generational distance. Figs. 4, 6, 8, 
10, 12, 14, and 16 show the box plots of KMOPSO, 
NSGA-II, MOPSO, and MOPSO-CD on these test 
problems. In these seven figures, X-axis is the label of 
each algorithm. Y-axis denotes the value of each 
algorithm considering different metrics. Tables 2-22 
show the comparison of the three algorithms 
considering the three metrics. 
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Fig. 3. Pareto fronts produced by KMOPSO for SCH. 
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Fig. 4. Box plots for the metrics of generational distance (a), 
spacing (b), maximum spread(c), KMOPSO (1), NSGA-II (2), 
MOPSO (3), MOPSO-CD (4). 
 
Table 2 . Results of the generational distance metric for SCH. 

GD KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 8.05E-04 8.32E-04 7.64E-04 8.67E-04 

Worst 0.0011 1.00E-03 1.00E-03 1.00E-03 
Average 9.44E-04 9.39E-04 9.21E-04 9.24E-04 
Median 9.43E-04 9.50E-04 9.24E-04 9.20E-04 

Std. Dev. 5.78E-05 4.32E-05 5.16E-05 3.74E-05 
 

Table 3 . Results of the spacing metric for SCH. 
S KMOPSO NSGA-II MOPSO MOPSO-CD 

Best 0.01 0.0198 0.0322 0.0231 
Worst 0.0156 0.0461 0.0641 0.0299 

Average 0.0126 0.0284 0.0442 0.0268 
Median 0.0128 0.0268 0.0435 0.0268 

Std. Dev. 0.0014 0.0057 0.0071 0.0019 
 

TABLE 4 . Results of the maximum spread metric for SCH. 
MS KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 1 1 1 1 

Worst 0.9993 0.9992 0.9423 0.9992 
Average 0.9999 0.9998 0.9906 0.9998 
Median 0.9999 0.9999 0.9938 0.9998 

Std. Dev. 1.60E-04 1.83E-04 0.0113 2.03E-04 
 

From Fig. 4(a), it can be observed that all four 
algorithms can converge to the true Pareto front. The 
average performance of MOPSO is the best with respect 
to the GD. But its advantage over other algorithm is not 
obvious. In terms of S, KMOPSO is the best. Other 
algorithms have much higher spacing values, especially 
the MOPSO. KMOPSO can cover the full extent of the 
true Pareto front, as illustrated by the high value of MS. 
NSGA-II and MOPSO-CD place slightly below 
KMOPSO, while MOPSO falls behind. 
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Fig. 5. Pareto fronts produced by KMOPSO for FON. 
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Fig. 6. Box plots for the metrics of generational distance (a), 
spacing (b), maximum spread(c), KMOPSO (1), NSGA-II (2), 
MOPSO (3), MOPSO-CD (4). 
 
Table 5 . Results of the generational distance metric for FON. 

GD KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 2.07E-04 3.25E-04 2.36E-04 2.66E-04 

Worst 2.53E-04 4.31E-04 3.07E-04 3.65E-04 
Average 2.26E-04 3.74E-04 2.70E-04 3.23E-04 
Median 2.25E-04 3.77E-04 2.69E-04 3.22E-04 

Std. Dev. 9.73E-06 2.44E-05 1.71E-05 2.34E-05 
 

Table 6 . Results of the spacing metric for FON. 
S KMOPSO NSGA-II MOPSO MOPSO-CD 

Best 0.0022 0.0059 0.0066 0.0054 
Worst 0.0033 0.0090 0.0102 0.0069 

Average 0.0027 0.0077 0.0082 0.0061 
Median 0.0028 0.0075 0.0080 0.0061 

Std. Dev. 0.0003 0.0007 0.0009 0.0004 
 

Table 7 . Results of the maximum spread metric for FON. 
MS KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 1.0000 1.0000 0.9951 0.9994 

Worst 0.9948 0.9952 0.9694 0.9937 
Average 0.9990 0.9987 0.9827 0.9977 
Median 0.9993 0.9990 0.9830 0.9980 

Std. Dev. 0.0010 0.0013 0.0071 0.0015 
 
It can be seen from Fig. 6(a) that the average 

performance of KMOPSO is the best with respect to the 
GD. And it’s also able to evolve a diverse and well-
distributed solution set, as shown in Fig. 6(b) and Fig. 
6(c). Other algorithms fall behind KMOPSO in all three 
metrics in this test function. 
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Fig. 7. Pareto fronts produced by KMOPSO for POL. 
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(a)                             (b)                             (c) 

Fig. 8. Box plots for the metrics of generational distance (a), 
spacing (b), maximum spread(c), KMOPSO (1), NSGA-II (2), 
MOPSO (3), MOPSO-CD (4). 
 
Table 8 . Results of the generational distance metric for POL. 

GD KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 0.0011 0.0013 0.0013 0.0011 

Worst 0.004 0.0554 0.0449 0.003 
Average 0.0015 0.0082 0.0084 0.0017 
Median 0.0013 0.0015 0.0019 0.0015 

Std. Dev. 6.46E-04 0.0171 0.0135 4.54E-04 
 

Table 9 . Results of the spacing metric for POL. 
S KMOPSO NSGA-II MOPSO MOPSO-CD 

Best 0.0349 0.0682 0.0891 0.0662 
Worst 0.0783 0.1153 0.3296 0.0911 

Average 0.0492 0.0947 0.141 0.0802 
Median 0.0466 0.0951 0.1147 0.081 

Std. Dev. 0.0099 0.0088 0.0708 5.50E-03 
 

Table 10 . Results of the maximum spread metric for POL 
MS KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 1 1 1 1 

Worst 0.9836 0.9943 0.9745 0.9856 
Average 0.9957 0.9983 0.9942 0.9957 
Median 0.9962 0.9986 0.9958 0.997 

Std. Dev. 0.0035 0.0016 0.0057 0.0041 
 
It can be seen from Table 8 that the average 

performance of KMOPSO is the best with respect to the 
GD. NSGA-II and MOPSO don’t perform well in 
several trials which affect their average values. 
Furthermore, the solutions found by KMOPSO are more 
uniformly distributed than the other algorithms. Other 
algorithms fail to evolve a diverse and well-distributed 
solution set compared to KMOPSO. By looking at 
maximum spread, KMOPSO plays second, tied with 
MOPSO-CD. 
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Fig. 9. Pareto fronts produced by KMOPSO for ZDT1. 
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Fig. 10. Box plots for the metrics of generational distance (a), 
spacing (b), maximum spread(c), KMOPSO (1), NSGA-II (2), 
MOPSO (3), MOPSO-CD (4). 
 

Table 11 . Results of the generational distance metric for 
ZDT1. 

GD KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 2.60E-04 8.95E-05 4.70E-03 1.59E-02 

Worst 5.85E-04 2.96E-04 2.36E-02 2.23E-02 
Average 3.82E-04 2.31E-04 1.16E-02 1.79E-02 
Median 3.64E-04 2.48E-04 1.05E-02 1.76E-02 

Std. Dev. 8.69E-05 4.95E-05 4.50E-03 1.50E-03 
 

Table 12 . Results of the spacing metric for ZDT1. 
S KMOPSO NSGA-II MOPSO MOPSO-CD 

Best 0.0023 0.0063 0.0057 0.0051 
Worst 0.0036 0.0090 0.0095 0.0064 

Average 0.0029 0.0076 0.0074 0.0057 
Median 0.0028 0.0076 0.0074 0.0057 

Std. Dev. 3.59E-04 6.02E-04 9.02E-04 3.67E-04 
 

Table 13 . Results of the maximum spread metric for ZDT1. 
MS KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 1.0000 1.0000 0.9599 0.8652 

Worst 0.9964 0.9990 0.8132 0.8192 
Average 0.9988 0.9997 0.9018 0.8509 
Median 0.9990 0.9998 0.9089 0.8529 

Std. Dev. 0.0009 0.0003 0.0352 0.0108 

 
Unfortunately, MOPSO and MOPSO-CD are unable 

to find the true Pareto front on ZDT1. KMOPSO and 
NSGA-II can capture the true Pareto front. Although the 
average performance of NSGA-II on generational 
distance is slightly better than KMOPSO, it fails to 
generate a diverse and well-distributed solution set, as 
illustrated by a relatively large value of S. KMOPSO 
has much smaller value of S than NSGA-II. In terms of 
MS, KMOPSO and NSGA-II can both cover the full 
extent of the Pareto front. 
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Fig. 11. Pareto fronts produced by KMOPSO for ZDT3. 
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Fig. 12. Box plots for the metrics of generational distance (a), 
spacing (b), maximum spread(c), KMOPSO (1), NSGA-II (2), 
MOPSO (3), MOPSO-CD (4). 

 
Table 14 . Results of the generational distance metric for 

ZDT3. 
GD KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 6.03E-04 5.53E-04 7.59E-04 6.40E-03 

Worst 8.09E-04 7.01E-04 2.00E-03 4.37E-02 
Average 6.67E-04 6.11E-04 1.30E-03 2.04E-02 
Median 6.47E-04 6.10E-04 1.20E-03 1.79E-02 

Std. Dev. 5.66E-05 3.69E-05 3.20E-04 8.90E-03 
 

Table 15 . Results of the spacing metric for ZDT3. 
S KMOPSO NSGA-II MOPSO MOPSO-CD 

Best 3.50E-03 5.90E-03 7.60E-03 4.30E-03 
Worst 1.11E-02 9.40E-03 1.15E-02 1.17E-01 

Average 5.90E-03 7.70E-03 8.80E-03 3.92E-02 
Median 5.30E-03 7.50E-03 8.60E-03 3.46E-02 

Std. Dev. 1.90E-03 9.83E-04 9.44E-04 3.49E-02 
 

Table 16 . Results of the maximum spread metric for ZDT3. 
MS KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 1.0000 1.0000 0.9948 0.9245 

Worst 0.9569 0.7942 0.9729 0.8007 
Average 0.9923 0.9724 0.9855 0.8451 
Median 0.9967 0.9998 0.9860 0.8335 

Std. Dev. 0.0097 0.0709 0.0059 0.0328 
 

Except MOPSO-CD, other algorithms can explore 
the Pareto front within 20,000 function evaluations on 
ZDT3. With respect to the GD, KMOPSO plays second, 
slightly below NSGA-II. In terms of spacing, KMOPSO 
is much better than NSGA-II and MOPSO. Besides, 
KMOPSO covers the whole Pareto front in all 30 runs. 
NSGA-II failed to cover the whole Pareto front in 
several test runs, as shown in Fig. 12(c) and Table 16. 
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Fig. 13. Pareto fronts produced by KMOPSO for ZDT4. 
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Fig. 14. Box plots for the metrics of generational distance (a), 
spacing (b), maximum spread(c), KMOPSO (1), NSGA-II (2), 
MOPSO (3), MOPSO-CD (4). 
 

Table 17 . Results of the generational distance metric for 
ZDT4. 

GD KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 4.66E-04 7.37E-04 1.05E-02 4.16E-02 

Worst 3.30E-03 5.90E-03 2.97E-02 3.13E-01 
Average 7.08E-04 2.00E-03 2.28E-02 1.08E-01 
Median 5.11E-04 1.40E-03 2.38E-02 7.20E-02 

Std. Dev. 6.54E-04 1.40E-03 5.00E-03 7.32E-02 
 

Table 18 . Results of the spacing metric for ZDT4. 
S KMOPSO NSGA-II MOPSO MOPSO-CD 

Best 2.40E-03 4.50E-03 5.80E-03 2.70E-03 
Worst 1.54E-02 2.36E-02 3.10E-02 8.23E-02 

Average 4.20E-03 9.60E-03 8.10E-03 3.58E-02 
Median 3.20E-03 8.10E-03 7.00E-03 3.58E-02 

Std. Dev. 3.10E-03 4.60E-03 4.70E-03 2.02E-02 
 

Table 19 . Results of the maximum spread metric for ZDT4. 
MS KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 1.0000 0.9203 0.9137 0.8088 

Worst 0.5097 0.4476 0.4155 0.7283 
Average 0.9690 0.6891 0.8022 0.7523 
Median 1.0000 0.6742 0.8129 0.7496 

Std. Dev. 0.1137 0.1157 0.0844 0.0177 
 

It can be shown from Table 17 that NSGA-II, 
MOPSO, and MOPSO-CD have relatively large GD at 
the end of 40,000 evaluations. KMOPSO can jump out 
of the local optimal of ZDT4, resulting in a low value of 
GD. Table 18 indicates that KMOPSO also have good 
diversity with lower value of S than other algorithms. 
KMOPSO can cover the full extent of the Pareto front in 
28 of the 30 runs.  
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Fig. 15. Pareto fronts produced by KMOPSO for ZDT6. 
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Fig. 16. Box plots for the metrics of generational distance (a), 
spacing (b), maximum spread(c), KMOPSO (1), NSGA-II (2), 
MOPSO (3), MOPSO-CD (4). 
 

Table 20 . Results of the generational distance metric for 
ZDT6. 

GD KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 1.19E-04 1.40E-03 1.23E-02 2.48E-02 

Worst 7.90E-04 2.40E-03 2.96E-02 6.92E-02 
Average 2.82E-04 1.90E-03 2.08E-02 3.74E-02 
Median 2.00E-04 1.90E-03 2.08E-02 3.16E-02 

Std. Dev. 2.11E-04 2.86E-04 4.80E-03 1.22E-02 
 

Table 21 . Results of the spacing metric for ZDT6. 
S KMOPSO NSGA-II MOPSO MOPSO-CD 

Best 0.0022 0.0043 0.0033 0.0023 
Worst 0.0068 0.0067 0.0533 0.0566 

Average 0.0034 0.0055 0.0096 0.0106 
Median 0.0028 0.0055 0.0066 0.0038 

Std. Dev. 0.0013 0.0006 0.0106 0.0136 
 

Table 22 . Results of the maximum spread metric for ZDT6. 
MS KMOPSO NSGA-II MOPSO MOPSO-CD 
Best 1.0000 0.9844 0.9714 1.0000 

Worst 1.0000 0.9633 0.5663 0.6526 
Average 1.0000 0.9735 0.7243 0.7199 
Median 1.0000 0.9737 0.7177 0.7077 

Std. Dev. 0.0000 0.0045 0.0627 0.0651 
 

From Table 20, it can be seen that NSGA-II, 
MOPSO, and MOPSO-CD fail to capture the true 
Pareto front. KMOPSO is the only algorithm which can 
converge to the true Pareto front. KMOPSO also shows 
good diversity and spread, as illustrated by Table 21 and 
Table 22.  

In general, we can see that KMOPSO shows 
competitive results with respect to three other 
algorithms. For all test problems, KMOPSO can 
approximate the true Pareto front. The solutions 
generated by KMOPSO show the best diversity as 
KMOPSO takes the first place in all test problems in 
terms of the spacing metric. KMOPSO can cover the 
full Pareto front in all test problems. It places first in 
five problems and second in the rest two problems. 
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5.6. Computational time 

In this section, the computational time of the four multi-
objective optimization algorithms are compared. The 
results are shown in Table 23. 
 

Table 23 . Computational time (in seconds) of three 
algorithms 

  KMOPSO NSGA-
II MOPSO MOPSO-

CD 

S
C
H 

Best 1.734 0.256 0.639 0.098 
Worst 1.921 0.534 0.672 0.436 

Average 1.8453 0.3913 0.656 0.1843 

Median 1.859 0.387 0.654 0.14 
Std. Dev. 0.0614 0.006 0.0118 0.1083 

F
O
N 

Best 2.79 0.998 
 

1.06 0.133 
Worst 3.728 1.509 2.388 0.378 

Average 3.2286 1.2519 1.5011 0.322 

Median 3.2395 1.2215 1.465 0.338 
Std. Dev. 0.2782 0.1753 0.3836 0.0693 

P
O
L 

Best 2.328 0.329 
 

1.017 0.093 
Worst 3.562 0.765 2.385 0.265 

Average 2.7931 0.5447 1.5378 0.206 

Median 2.755 0.548 1.1095 0.218 
Std. Dev. 0.3945 0.1435 0.5868 0.0501 

Z
D
T
1 

Best 10.793 6.445 5.081 25.073 
Worst 16.462 8.984 7.716 29.12 

Average 14.635 7.4795 6.2548 27.4398 
Median 15.377 7.4755 6.391 27.569 

Std. Dev. 1.9065 0.7453 0.917 1.3203 

Z
D
T
3 

Best 4.139 1.109 2.073 1.437 
Worst 7.841 1.876 4.446 1.921 

Average 6.1336 1.4465 2.5854 1.7361 
Median 6.279 1.345 2.2385 1.75 

Std. Dev. 1.1407 0.235 0.7712 0.1356 

Z
D
T
4 

Best 4.718 2.468 2.509 0.296 
Worst 18.619 3.451 5.003 0.92 

Average 12.081 2.8898 3.3959 0.4464 

Median 11.8535 2.84 3.3435 0.358 
Std. Dev. 5.0865 0.3327 0.6831 0.1924 

Z
D
T
6 

Best 4.998 1.11 
 

1.374 0.109 
Worst 8.888 1.865 3.922 1.809 

Average 7.0211 1.4718 2.3535 0.3726 

Median 7.1775 1.5095 2.1635 0.234 
Std. Dev. 1.479 0.2474 0.986 0.4836 

 
In the first three test functions, all four algorithms can 

find the Pareto front. MOPSO-CD is the fastest among 
them. It takes much less time than other three 
algorithms. In ZDT1, KMOPSO and NSGA-II are the 
only two algorithms can converge to the Pareto front 
while NSGA-II is much faster. In ZDT3, all four 

algorithms except MOPSO-CD can converge to the 
Pareto front. NSGA-II is the fastest one among them. In 
ZDT4 and ZDT6, KMOPSO is the only algorithm can 
achieve the Pareto front. MOPSO-CD converges very 
fast in these two test functions. However, it is unable to 
find the true Pareto front and its GD value is very high.  

The reasons of the relatively low computation speed 
of KMOPSO is that it adopts the K-means guide 
selection strategy and nearest neighbor based pruning 
method which are a little more complex than the 
crowding distance in MOPSO-CD and NSGA-II and the 
adaptive grid in MOPSO.  

6. Conclusions 

This paper proposes a KMOPSO to solve multi-
objective optimization problems which employs a novel 
gbest selection strategy based on K-means algorithm 
and proportional distribution. This gbest selection 
method can encourage particles converge fast towards 
the Pareto front while maintaining diversity. A 
symmetric mutation operator is employed to improve 
the exploratory abilities and prevent particles from 
falling into local optima. A new pbest is defined in 
order to help particles search more regions in the search 
space. Seven test functions were adopted to test the 
effectiveness of our method. The experimental results 
show the approach has several advantages comparing 
with some other MO evolutionary algorithms: 
(i) KMOPSO has a good search capability, and is able 

to converge to the true Pareto front of all seven test 
functions.  

(ii) KMOPSO is able to find non-dominated solutions 
distributed uniformly along the Pareto front and 
has the best diversity among the comparative 
algorithms. 

(iii) KMOPSO is the only one that can cover the entire 
Pareto fronts of all test functions among the 
comparative algorithms.  

  Although KMOPSO shows good performance in the 
quality of the solutions, it still has some drawbacks. The 
most important drawback of the KMOPSO is its 
computational complexity. The computational time of 
KMOPSO is the longest compared with other 
comparative algorithms. Despite of this, the algorithm is 
highly competitive in terms of its convergence, diversity 
and spread of the generated solutions. 
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Appendix 

Table 24 gives the list of symbols used in this paper. 
 

Table 24. List of symbols 
M Population size 

x Position of particle 

v Speed of particle 

  Inertial weight 

c1/ c2 Cognitive/social weight 
gbest Global best 
pbest Personal best 

N Archive size 

t Iteration counter 

K Number of clusters 

p Probability of being chosen as gbest 

inum  Number of particles in cluster i 
Ci Cluster i 

im  Mean of cluster Ci 
lb Lower bounder 
ub Upper bounder 
mp Middle point 
GD Generational distance 
S Spacing 

MS Maximum spread 
distolb distance to the lower bound 
distomp distance to the middle point 

di 
Euclidean distance between solution i 
and its nearest Pareto optimal solution 

d  Mean value of all di 
max

if / min
if  Maximum/minimum of the ith objective 

in the found solutions 
max

iF / min
iF  Maximum/minimum of the ith objective 

in the Pareto solutions 
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