
Multi-step Generation of Bayesian Networks Models for Software Projects
Estimations

Raquel Fuentetaja 1 Daniel Borrajo 2 Carlos Linares López 3 Jorge Ocón 4

1 Universidad Carlos III de Madrid, Spain,
Email: rfuentet@inf.uc3m.es

2 Universidad Carlos III de Madrid, Spain,
Email: daniel.borrajo@uc3m.es

3 Universidad Carlos III de Madrid, Spain,
Email: clinares@inf.uc3m.es

4 GMV, S.A., Spain
Email: jocon@gmv.com

Abstract

Software projects estimations are a crucial component of successful software development. There have
been many approaches that deal with this problem by using different kinds of techniques. Most of the
successful techniques rely on one shot prediction of some variables, as cost, quality or risk, taking into
account some metrics. However, these techniques usually are not able to deal with uncertainty on the
data, the relationships among metrics or the temporal aspect of projects. During the last decade, some
researchers have proposed the use of Bayesian Belief Networks (BBNs) to perform better estimations, by
explicitly taking into account the previous shortcomings. But, these approaches were based on manually
defining those BBNs and handling only one of the estimation variables (cost, quality or risk). In this paper,
we present an approach for semi-automatically building BBNs by using machine learning techniques. We
describe two algorithms to generate such BBNs. The first one generates one-shot BBNs, while the second
one generates BBNs that take into account the temporal aspect of project development. We performed
experiments on real data coming from two software companies, obtaining a 63% of accuracy on multi-
class classification. Our main interest was to find a semantically correct model that can be trained with
future projects to increase its accuracy. In this sense, we introduce a well-balanced approach to make
good predictions with strong explanatory power.

Keywords: Software estimation, Bayesian Belief Networks

1. Introduction

Project estimations have always been a major chal-
lenge in software development. 18,7 Current estima-
tion methods are mainly based on models for project
characterization. External attributes of interest (cost,

schedule, effort, budgeting, quality) are related with
a variety of models to internal system metrics (struc-
ture, behaviour, data management). The most used
external attributes, that lead to different types of
models for estimation, have been quality, cost, and
risk. These models are based on quantifiable metrics

International Journal of Computational Intelligence Systems, Vol. 6, No. 5 (September, 2013), 796-821

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 796

willieb
Typewritten Text
Received 22 February 2012

willieb
Typewritten Text
Accepted 21 March 2013

R. Fuentetaja et al.

of the project, and their corresponding relationships
and dependencies. Among others, the most impor-
tant difficulties when generating estimations from
the start of the project are:

• Software development processes are crowded of
various forms of uncertainty. For example, the
same action (such as a design decision) can pro-
duce different outcomes and, equivalently, the
same sets of observations can lead to different
states. Uncertainty also comes from the consid-
eration of human factors such as the ability and
expertise of both the development team and the
managers, among others.

• On the other hand, most previous approaches only
focus on one of the main variables (cost, quality
and/or risk). 7,3,5 Some works consider the diver-
sity of methods, 25 but it is also interesting to con-
sider the diversity of factors and their quantitative
contribution.

• Besides, many of the most used variables to es-
timate projects are only known at the end of the
project. Thus, there is a need of estimation mod-
els that are able to predict values with the high-
est possible accuracy for cost, quality and/or risk
from the beginning of the project, in the presence
of uncertainty.

Bayesian Belief Networks (BBN) represent
a new method for generating software estima-
tions. 3,17,42 BBNs are well defined and provide ad-
vanced analysis techniques based on probability cal-
culus. The main advantage of using BBNs for mak-
ing predictions is that they allow users to obtain the
estimation in presence of uncertainty and incom-
pleteness of the input parameters. In addition, BBNs
allow users to declaratively represent the causal re-
lationships among the attributes. Also, in software
development, the time component is known to be
critical. 17,42 While some of the variables are known
at the beginning of the software development cycle,
others are only known at intermediate steps. BBNs
provide a simple way to qualitatively model time,
since software engineers can refine the predictions
further when more variables are known, simply by
introducing their values.

In this paper we propose an approach to semi-
automatically generate estimation models based on
BBNs for project metrics taking into account the un-
certainty aspects of software development. Specifi-
cally, we will focus on the estimation of parameters
such as effort, quality, or risk, to mention the most
prominent ones. By effort estimation we understand
those methods and techniques oriented towards the
a priori determination of cost and schedule parame-
ters for a given project. Quality estimations are in-
tended to predict the number of failures that will be
produced in the development. And risk estimations
tend to predict the probability that a given parame-
ter of the project (mainly costs or schedule) could be
underestimated.

The main contribution of the paper is the def-
inition of a multi-step process for semi-automatic
generation of BBNs for software estimations, us-
ing an off-the-shelf data mining tool. This pro-
cess considers that different variables are known at
different time steps of the life-cycle of a software
project. To the best of our knowledge there is no
other work using this method for generating BBNs
neither for software estimations nor for other pro-
cesses in which variables are known at different mo-
ments. One of the direct advantages for software
engineers is that as project phases conclude, more
variable values are known. Thus, estimations can be
refined.

A second contribution of the paper is a case study
on the use of the previous process to obtain esti-
mation models for two software companies. Those
models can later be used as input models for project
estimation tools. In order to test the effectiveness of
the proposed approach, we have gathered data from
30 software projects of two medium-sized compa-
nies, GMV and Skysoft, and generated BBN mod-
els for estimating cost, quality and risk. We present
experimental results that show the advantages and
disadvantages of this approach.

The rest of the paper presents the task of software
project estimation in Section 2. A brief introduction
on BBNs is discussed in Section 3. The proposed
methods for generating BBNs are presented in Sec-
tion 4. The paper ends with some experiments and
results in Section 5, a review of related work in Sec-

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 797

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

tion 6. and some conclusions in Section 7.

2. Software Project Estimations

Making software project estimations is a difficult
task. There have already been some reviews that
defined this process. For instance, Molokken and
Jorgesen reviewed different surveys on project soft-
ware estimation. 32 The review covers 10 different
surveys, which span through the years 1984 to 2002.
The conclusions of the study for project overruns are
clear: although the surveys analyzed in this paper
provide different results, all of them identify devia-
tions in projects in the majority of the cases. To sum-
marize the main results in the literature on software
engineering, it seems as if most projects (60-80%)
are completed over budget and/or schedule. Most
results also indicate that the percentage and magni-
tude of overruns increase as projects grow in size,
and the magnitude of average effort and cost over-
run is between 30% and 40%.

Thus, it is crucial for software engineering ef-
forts to correctly estimate from the start of software
projects several aspects, such as cost, quality or risk.
Since the start of the formal analysis of software
development, there have been many approaches to
estimate several of these parameters taking into ac-
count data coming from different sources (project
attributes, software metrics, etc.) and phases (analy-
sis, design, coding and testing) of software engineer-
ing. 18,7 In fact, software metrics is a collective term
used to describe the very wide range of activities
concerned with measurement in software engineer-
ing. These activities range from producing numbers
that characterize properties of software code (these
are the classic software metrics such as the ones used
in COCOMO) to models that help predict software
resource requirements and software quality. 7,17,40

Formally, a simplified description of the problem
of prediction in Software Engineering consists of:
given the results of a set of projects, each described
by a set of input, intermediate, and output attributes
(metrics), obtain a model that can predict the values
of the output attributes as a function of the values
of the input and intermediate attributes. This model
will be used in future project estimation processes,

by providing the values of the input (and possibly
intermediate) attributes, to obtain the values of the
output attributes. So, usual questions to use a model
like this are:

• What are the relevant metrics - attributes?
• What is the complexity of projects and where does

it come from?
• How do the values of some attributes affect oth-

ers?
• What is the impact of changes of values on some

attributes?
• How do we represent those attributes?

We will now discuss several approaches that ad-
dress some of these questions. We have used the
term attributes, though there have been other names
given to the same concept. Examples are: deci-
sions (usually represented by input or intermediate
features), variables, features, factors, or parameters.
Also, some of these attributes come from project
measures and are usually referred to as metrics. In
some papers, those metrics are used as the desired
output. However, they are usually considered to in-
fer the values of the project measurement estimates
as intermediate or even input attributes. On the other
hand, numerical metrics provide a classification of
the software metrics that is commonly accepted. 34 It
divides relevant variables into what are traditionally
considered “internal” (input variables for the project
estimation task) and “external” —output variables
for the project estimation task.

The first known metric, and most commonly
used, is the Lines of Code (LOC or KLOC for thou-
sands of lines of code) or size metric. Though it is a
weak metric to be used in isolation, it was and still is
the basis for the measurement of programming pro-
ductivity (LOC per programmer/month). 36,7 How-
ever, this metric provides a posteriori estimations,
given that its actual value is only known at the
end of the project. And, using an estimation of
LOC for estimating software cost makes estimat-
ing a metric (cost) depend on the estimation of an-
other one (LOC), which is not the best way to pro-
ceed. Further studies proposed regression-based
models for module defect density (number of de-
fects per KLOC) in terms of module size measured

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 798

R. Fuentetaja et al.

in KLOC. Other classical metrics and related fea-
tures were effort, schedule (milestones, achieved
goals, slacks, percentage of schedule overdue, etc.),
quality (total number of errors opened/closed, num-
ber of errors opened/closed since last report, type
of errors, etc.), documentation, or rework (number
of open/closed Software Change Orders). The need
for more discriminating measures was evident dur-
ing the 70s with the increasing diversity of differ-
ent programming languages. At this time, measure-
ments for software complexity and measurements of
functional size were developed. Thus, usual metrics
refer to functional complexity, such as number of
functions, McCabe cyclomatic complexity, 30 func-
tion points, 2 or information flow complexity. 22

Other metrics have been defined for the Object-
Oriented (OO) paradigm. 12 The authors propose
metrics such as: weighted methods per class, depth
of inheritance tree, number of children, coupling be-
tween object classes (classes interdependence), re-
sponse for a class, and lack of cohesion in methods.
Simpler metrics in OO are number of classes, num-
ber of methods, number of properties, or similarity
between classes —also known as cohesion.

Most of the early work on project estimation
went into cost estimation, mainly using complexity
as the main driver. Boehm et al. survey the main ap-
proaches for project estimations and define six kinds
of techniques 6:

• Model-based: they are parametric techniques, as
SLIM, 36 or COCOMO. 7 They rely on models
represented in a variety of formalisms (as func-
tions, distributions, or knowledge bases) that de-
pend on some parameters and are able to produce
project estimations.

• Expertise-based: they are based on experts judge-
ments. Examples are the Delphi approach or the
hierarchical decomposition of Work Breakdown
Structure (WBS). 38,7 They have the advantage of
incorporating the knowledge of experts, and the
disadvantages that they are biased by the experts
that defined them (thus, sometimes, they are do-
main dependent), and also the estimation models
are usually hard to obtain.

• Learning-Oriented Techniques: the creation of the
estimation model is posed as an inductive task,

and machine-learning techniques are used to auto-
matically generate the models from data. Exam-
ples of these techniques are analogy (Case-Based
Reasoning), 21 or neural networks. 19 The advan-
tage of these techniques is that they alleviate the
knowledge acquisition task, and the main disad-
vantage is that many instances of correct (little
noise, no missing data, etc.) pairs 〈project, out-
put features values〉 are needed while usually very
few examples are available.

• Dynamics-Based Techniques: they assume that
software project estimations change over the soft-
ware development cycle. Thus, estimations can
be defined in terms of formal models such as dif-
ferential equations. They are good for planning
and control, but particularly difficult to define and
calibrate.

• Regression-Based Techniques: they have been the
most widely used ones and pose the task as the
learning-oriented ones (in fact, one could merge
them together): starting from data of 〈project, out-
put attributes values〉 they generate a regression
model (usually as a linear function of the known
variables). They obtain good results when there
are lots of data or not much data is missing, there
are no outliers, and variables are uncorrelated.
However, these conditions are seldom met. When
the understandability of the model is important,
these techniques are a good option.

• Composite Techniques: they combine two or more
of the previous techniques. For instance, the BBN
approach uses a causal model defined by the ex-
perts that can be initially injected with estimations
on conditional probabilities generated from previ-
ous projects.

There are many surveys that compare differ-
ent project estimation methods and techniques. 19,24

Berlin et al. revise regression methods with neu-
ral networks 4; and Mair et al. review methods that
belong to only one kind, 28 machine learning tech-
niques. Even if most papers focus on cost estima-
tion, the same techniques can be (or have been) used
for other kinds of metrics, such as quality and risk.
The main metrics used to compute cost have been
software complexity (measured, in turn, by differ-

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 799

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

ent metrics as explained before), experience of the
design and development team, or even cultural as-
pects. 21 In that paper, the authors defined an on-
tology to represent different aspects affecting cost
estimation.

Another potential classification criteria could
have been the kind of software estimation a given
approach focuses on. Thus, there are approaches for
cost estimation, quality estimation, or risk estima-
tion. For instance, there is a book that reviews a col-
lection of papers on software quality and presents
a survey of quality models in Software Engineer-
ing, 16 including quality estimation. Many of the ap-
proaches for estimating quality are based on a hier-
archy of features. Cho et al. redefine some OO met-
rics applied to quality estimation, 13 in the context of
component-based software development. They de-
fine up to four different metrics for complexity, and
others for customizability, and reusability. The case
of risk measurement and management, 5 is usually
connected to quality.

In summary, software estimation is an error
prone and difficult problem to address. Among oth-
ers, one of the most important difficulties is related
to its intrinsic uncertainty and, indeed, software de-
velopment processes are crowded of various forms
of uncertainty. For example, the same action (such
as a design decision) can generate different out-
comes and, equivalently, the same sets of observa-
tions can lead to different states. Uncertainty also
comes from the consideration of human factors such
as the ability and expertise of both the development
team and the managers. Thus, there have been sev-
eral approaches to software estimation that use mod-
els of uncertainty, such as Bayesian Belief Networks
(BBNs), 40 a direct use of Bayes theorem, 14 or fuzzy
logic. 1 In this paper we also propose the use of
BBNs. Specifically, we introduce an approach for
building BBN models semi-automatically using ma-
chine learning techniques. Section 6 discusses fur-
ther related work on the application of BBNs for
making software estimations and the main differ-
ences with our work.

3. Bayesian Belief Networks

Bayesian Belief Networks (BBNs) are acyclic di-
rected graphs with nodes Xi that stand for different
variables which can take one among several values
from a domain Di. Each node can be connected to
an arbitrary number of neighbours. This relation is
characterized with a conditional probability distribu-
tion and can be used to define causal dependencies.
For example, if node X is connected to node Y , then
X can be interpreted as a cause of Y (see Fig. 1).
Moreover, if Y is also connected to Z, X affects Y
and the ultimate values of Y do also propagate to
Z. However, Z and X are conditionally independent,
which means that:∗

P(Z/Y,X) = P(Z/Y)

In fact, in BBNs, the joint probability distribu-
tion P for the net variables satisfies the Markov con-
dition: each variable Xi is conditionally independent
of the set of all its non-descendents given its par-
ents. 33 Thus, this distribution can be factorized as:

P(X1, . . .Xn) = ∏P(Xi|Pa(Xi))

Hence, BBNs are efficient models for taking into ac-
count a large number of causes simultaneously and
measuring the probability of effects to take place. In
short, BBNs consist of:

• A number of direct links represented as arcs be-
tween nodes which stand for concepts, metrics in
the case of projects estimations.

• A number of Conditional Probability Tables
(CPTs) which state its likelihood for every pair
〈causes, effect〉

For example, Fig. 2 shows a small BBN, where
nodes are the number of old and new use cases, the
number of new classes, and the cost of the project.
All variables can take values high and low. Each
variable has an associated probability distribution.
For root variables (as Old and New use cases), this
distribution reflects the a priori probability of each
value. In the case of non-root variables (New classes
and Cost), it reflects the conditional probability of
having each value depending on the values of the
parent variables.

∗The general notion of conditional independence in BBNs leads to the graphical criterium of d-separation. 35

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 800

R. Fuentetaja et al.

Y

X

Z

Fig. 1. Example for illustrating BBN causes and
conditional independence.

Designing a BBN (which is expressed as a causal
probabilistic Directed Acyclic Graph, DAG) for a
particular application domain requires considering a
number of issues:

• Identification of the relevant variables, which will
conform the nodes of the graph. In the case of
software estimations, the variables will include all
elements that affect the estimation of costs accord-
ing to the selected metrics. This step also incor-
porates the definition of the variables values. Vari-
ables can have discrete or continuous values. If it
is a discrete variable, the specific values have to
be defined. For continuous variables the Gaussian
distribution is the most common one. However,
managing continuous variables is more difficult in
general and the most often used alternative is to
discretize them.

• Identification of the causal dependencies among
variables. If a variable X might affect the value of
another variable Y , an edge is defined in the graph
between the corresponding nodes, taking special
care of not creating a cycle, and considering the
notion of conditionally independence (condition-
ally independent variables do not have a direct
connection).

• Parameterization of the probabilistic information
of the graph. This step requires defining:

• The prior probabilities for each root node in the
graph, and

• The conditional probability tables (CPTs) asso-
ciated with each non-root node, that quantify

the relationships between nodes.

BBNs present a number of advantages, with a
significant impact in the context of this paper:

• If an event is known to happen (the value of a node
is known), the BBN can be fed with probability
1.0 for that value. However, any probability dis-
tribution can be used. This is, BBNs fairly gen-
eralize the behaviour of many other decision sys-
tems, which are often deterministic. For example,
in the likely case of not knowing the probability
of some input variables (also referred as decision
variables), it is usually assumed that they are all
equally likely though other scenarios can be de-
fined as well.

• Although the most typical reasoning approach is a
straight application of the definition of conditional
probabilities, which are updated according to the
Bayes Theorem, there are different ways of apply-
ing inference. Some of them are, but not necessar-
ily limited to: variable elimination, mini-bucket
elimination or clique propagation. In general, it is
possible to run different inference algorithms over
the same model.

• Explanations can be easily generated. They result
from the causal links that affected (up to a given
probability which does not exceed a given thresh-
old) the node under consideration. The usage of
probabilities allows designers to carefully review
the behaviour of the BBN.

• Since BBNs are fully probabilistic methods, other

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 801

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

New classes (V3)

New use cases (V1) Old use cases (V2)

Cost (V4)

V1 P(V1)
low 0.7
high 0.3

V2 P(V2)
low 0.3
high 0.7

P(V3/V1,V2)
V1 V2 V3=low V3=high
low low 0.9 0.1
low high 0.8 0.2
high low 0.1 0.9
high high 0.05 0.95

P(V4/V3)
V3 V4=low V4=medium V4=high
low 0.7 0.2 0.1
high 0.1 0.2 0.7

Fig. 2. Small fragment of a BBN that estimates the cost of
a software project based on number of new and old classes.

methods for estimating the a priori probabilities
(such as max-likelihood estimation) or learning
the structure of the BBN are possible. In this re-
gard, top-down inference (also known as predic-
tive inference) can be seen as a generalization of
Markov stochastic models.

4. Proposed Approach to Generate BBNs for
Making Project Estimations

A first method to generate BBNs for making project
estimations is to design the topology of each BBN
manually and then fill the corresponding CPTs also
manually. This approach has important drawbacks
when there are many variables to consider, as in the
present case:

• It is not trivial to generate the net structure. Some
apparent causal relationships do not work, or do
not yield the expected results, while others can be
hidden.

• Filling CPTs by hand can be a very time consum-
ing and error-prone task.

These reasons motivate applying a semi-
automatic approach, where an initial model is gener-
ated automatically and then it is supervised/modified

by human experts. To carry out the automatic
part we have selected one off-the-shelf data min-
ing tool, Weka. 20 Weka provides a collection of
machine learning algorithms for tasks as data pre-
processing, classification, regression, clustering, as-
sociation rules, and visualization. Particularly, Weka
can be used to automatically design BBNs from
data. In this sense, Weka offers a rich variety of al-
gorithms and it can be very useful for the phase of
model building and evaluation. Once the BBN mod-
els have been generated, revised and evaluated, they
can be introduced in the APES tool to be used. The
first approach we followed for learning BBNs using
Weka was related to previous approaches that used
machine learning for generating project estimations.
The approach can be defined as:

• Given a set of examples (projects data) in terms of
the values of some attributes (project metrics) and
a class value (cost, quality, or risk),

• obtain a classifier (program) that takes as input a
new project and returns the class value for that
project (its cost, quality o risk, depending on the
selected class)

So, we have to learn three classifiers. Thus, for
each project estimator (cost, quality and risk) we

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 802

R. Fuentetaja et al.

used Weka to generate them. Weka incorporates not
only techniques for learning BBNs, but also many
classification and regression techniques, as well as
many techniques for preprocessing the data. There-
fore, we experimented with many different combi-
nations of machine learning and filtering techniques.
The following is a summary of some of the results
we obtained with the data provided by GMV and
Skysoft.

4.1. A First Approach: BBN for the whole
Project (one-step BBN)

One-step BBNs generation is the simplest way of
producing BBNs using Weka. With this approach,
the final BBN for predicting the value of the cor-
responding estimation variable is generated directly,
using variables of all project stages. The process we
follow for building BBNs consists of the following
steps:

1. Generation of data of previous projects. We
describe in the Experimental set-up section
some of the features we used.

2. Preprocessing the data, which can be divided
in:

(a) Remove attributes considered irrelevant
for predicting the class.

(b) Replace missing values and remove use-
less values.

(c) Discretize numeric variables.

3. Select the more relevant attributes for the
class.

4. Generation of the model, which implies se-
lecting an algorithm provided by Weka and
giving appropriate values to its parameters.

5. Evaluation of the model, computing some
score useful to determine the utility of the re-
sulting BBN.

From these steps, 2.b), 2.c), 3 and 4 can be per-
formed automatically using Weka. However, some
of them require selecting an algorithm from a pool

and then to select the parameters values of that algo-
rithm. Thus, the main parameters for step 2.c) are,
in our case:

• Number of bins: for building BBNs, the recom-
mended number of bins is a small value (between
3 and 5). On one hand, because it is desirable to be
able of semantically interpreting the meaning of
each bin, and on the other hand for efficiency rea-
sons. The size of the CPTs learned for the BBNs
grows exponentially with the number of values of
the BBN nodes; that is, the number of intervals of
the corresponding attributes.

• A parameter that indicates whether bins should be
of equal length or of equal frequency. We tend
to prefer equal frequency since equal length can
lead to unbalanced intervals. However, equal fre-
quency usually means preventing the occurrence
of outliers. Besides, with equal frequency, many
occurrences of a continuous value can cause the
occurrences to be assigned to different bins. 27,26

Discretization can also be done by hand. When
possible, we believe this is the best option given that
it solves the described problems about the seman-
tic meaning of bins, and it does not assume neither
equal frequency nor equal length bins. For the eval-
uation of the model, Weka offers some measures
related with the model performance when it learns
classifiers. The most frequently used measure is the
percentage of correctly classified instances (accu-
racy) and the confusion matrix, which specifies the
number of instances of each class that are correctly
and incorrectly classified. The standard way of es-
timating such measures is by performing a cross-
validation process. In such case, Weka provides an
estimate of both measures for new data, i.e., data not
used during the generation of the BBN.

As explained before, the general process should
be instantiated for each particular case, defining
clearly each step, including the algorithms and the
parameters to be used for the automatic tasks. Thus,
for generating the first cost model we performed the
following specific steps at each phase of the men-
tioned process:

1. Generation of data: provided by GMV and
Skysoft

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 803

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

2. In the preprocessing phase:

• Attributes considered not relevant were re-
moved, as for example the project name
and the project dates. We maintain all data
about delays on the schedule so that relative
time can be considered by the model. Then,
we also removed attributes that are highly
related with the class, as all the cost estima-
tions and other attributes known at the end
of the project that can be used also to mea-
sure the cost.

• Then, two Weka filters were applied: Re-
moveUseless, and ReplaceMissingValues.
The former removes useless attributes i.e.
those that do not vary at all or that vary too
much. The latter generates probable val-
ues given the rest of the training data for
the missing values of attributes of some in-
stances.

• Discretization was performed in three bins
of equal frequency.

• The AttributeSelection method was the de-
fault one (BestFirst with CfsSubsetEval)
that resulted in a selection of 15 attributes.
The BestFirst method searches the space
of attribute subsets using a Hill-Climbing
search algorithm augmented with back-
tracking. The evaluation function, CfsSub-
setEval, considers the individual predictive
ability of each attribute and the degree of
redundancy between them.

3. In the BBN generation phase we applied two
of the algorithms defined in Weka for learn-
ing BBNs: K2 and TabuSearch. They build a
classifier performing a search process (adding
or deleting arcs) in order to generate the
net structure that maximizes some score (as,
for example, the log likelihood of the data).
Specifically, the K2 algorithm performs Hill-
Climbing search restricted by a particular or-
der of the variables. 15,9 The TabuSearch al-
gorithm uses tabu search, 8 which is similar to
Hill Climbing with additional constraints.

The resulting BBN for estimating cost, measured
as total man power hours, is shown in Fig. 3. We
generated also BBNs for estimating quality and risk
following the explained process, though we do not
include the resulting models in the paper. After an-
alyzing the resulting BBNs and the results on ac-
curacy (shown on the Experiments section), we de-
tected important problems with the approach, sum-
marized below. This led us to define an alternative
approach which is described in the next section.

The main problems of the approach are:

• The learned BBNs were in the opposite direction
with respect to the ones that users are expecting,
where the estimation variable is on top, the ex-
planatory variables are in the bottom and the es-
timation variable points to the rest. This effect
occurs because we are generating automatically
a BBN classifier for predicting the class. How-
ever, this BBN is not necessarily a correct causal
model. In correct causal models arcs follow the
direction of a causal process, observing causality
relations occurring in real world. The obtained
BBNs were generated automatically with no more
information other than the data set, and the learn-
ing algorithm is not aware of the real causal rela-
tions among nodes. In other words, statistical cor-
relation does not always imply causality. For gen-
erating causal BBNs it is usually necessary some
kind of human supervision. Also, it is impor-
tant to observe the temporal order of events given
that causes always occur before their effects. In
most projects, the life cycle can be defined lin-
early from a temporal point of view. For exam-
ple with the following phases: proposal, require-
ments specification, design, construction, installa-
tion and end of project. In the next section we take
advantage of this observation to come up with bet-
ter models.

• Most of the generated BBNs included variables
whose value is only known at the middle/end of
the project. This effect occurs because the clas-
sifier takes as class the main variable to predict,
and therefore Weka does not generate classifiers
for predicting others. When using the BBN, this
means assigning a posteriori uniform distribu-
tions for unknown variables at a given project

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 804

R. Fuentetaja et al.

Total man
power hours

Number
requirements

Effort
Design, Impl.

Test

Modified
requirements

Versions Bid
Autoriz.

Requirements
management
tool used

Manual
tests

Delay
design

Number
subsystems

Defects recorded
during design Testing effort Estimated

testing duration

Pages
installation

guide

Estimated
warranty duration

Number
new classes

Fig. 3. Resulting BBN from the one-step learning process.

phase, which is a source of inaccuracy for predic-
tions. However, we wanted to generate estima-
tions during all phases. The alternative approach
described in the following section allows the user
to estimate other variables than the main class.

4.2. Second Approach: BBN Based on Project
Phases (multi-step BBN)

The second approach we followed tried to solve the
problems generated by the one-step BBN approach.
This approach considers the projects phases and has
a step of human intervention for revising and re-
pairing BBNs learned automatically, specifically the
causal relations they contain. For each core variable
to be predicted (as for example the project cost) the
approach builds several BBNs (partial BBNs) that
are then merged into a global BBN for the core vari-
able.

The new process has three main phases:

• Phase I: Preparation of the data files for each
project phase. This phase (illustrated in Fig. 4) is
composed of two steps:

• (I.1) Preprocessing the data, which can be di-
vided in:

1. Remove attributes considered irrelevant for
predicting the class.

2. Remove missing values and remove use-
less values.

3. Discretize numeric variables.
• (I.2) Generation of the data files for each

project phase. At the end of (I.1) we have
a preprocessed data file with all projects at-
tributes. This steps takes this file and gener-
ates a data file for each project phase. First of
all, the set of project phases has to be defined.
Then, each input variable (metric) is assigned
to one of the phases in the set. The data file
for each phase contains the variables that are
known at the end of the phase, so they can be

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 805

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

Fig. 4. Multi-step BBN building process. Phase I.

Fig. 5. Multi-step BBN building process. Phase II.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 806

R. Fuentetaja et al.

Fig. 6. Multi-step BBN building process. Phase III.

used to predict the values of variables on the
next phase. Thus, we limit the number of causal
relations for the learning algorithm, given that
all causes occur often before their effect. The
data file for a project phase contains all the vari-
ables in the phase and all variables in previous
phases. Thus, if the overall project has N tem-
poral phases P1, . . . ,PN , we obtain N − 1 data
files, such that the data file for phase Pi contains
all attributes of all phases Pj with j 6 i.

• Phase II: Generation of partial BBNs. This step
takes as input a class variable, and the phase data
file corresponding to the project phase of this vari-
able. Initially, this variable is the corresponding
main estimation variable (cost quality or risk). It
outputs a set of partial BBNs for predicting this
core variable. The process, illustrated in Fig. 5, is
recursive and works backwards. It comprises the
following steps:

• (II.1) Preprocessing the data. This preprocess
consists of:

1. Remove the variables from the data file
which are in the same project phase than
the class. These variables can not be used
for estimating the class given that they are
known at the same time.

2. Select the more relevant attributes for the

class.
• (II.2) BBN generation: generation of the model,

selecting first one of the algorithms provided by
Weka.

• (II.3) BBN revision: model refinement by a hu-
man expert, which needs two tasks performed
manually:
• To remove all relations not involving the

class, as we want to identify direct causes of
the class and these relations involve variables
that are conditionally independent of it.

• To analyze arcs (if any) issued from the class
in order to determine whether to delete or re-
verse the arc.

• (II.4) Recusive step. Now we have a partial
BBN in which the class variable has only par-
ents of previous phases, and these parents have
no causes. Then, for each of these parents if the
parent does not belong to the first project phase,
a new BBN is generated in a recursive call. In
this call, the class variable is the corresponding
parent and the data file is the data file for its
project phase. Each call to the recursive step
generates a new partial BBN for predicting the
class variable. The recursive step is performed
recursively backwards until all root variables in
the main BBN belong to the first phase.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 807

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

• Phase III: Generation of the global BBN. In this
phase, illustrated in Fig. 6, all partial BBNs are
integrated into a global one. The integration is
simple: join the shared nodes (variables) of the
partial nets. When joining a shared node, the set
of links starting at it in the global net is the union
of the links starting at the variable in all partial
nets. The procedure for building the partial BBNs
guarantees the same variable has always the same
parents in all partial nets. Therefore, the merging
procees does not affect d-separation. After gener-
ating the global BBN, it is manually revised.

Currently, we maintain three separate BBN mod-
els for the three relevant variables to be predicted:
cost, quality and risk. However, these three models
can also be integrated into a larger BBN using the
method described above for integrating the partial
nets, given that the parents of every variable remain
the same in the different models.

The described process allows experts to use all
available information for building the net. The BBN
estimates the corresponding class variable. The at-
tribute selection step selects the relevant variables
for predicting the class. Thus, only these variables
can appear in the resulting BBN. However, the rel-
evant variables for predicting each of its causes can
be different than those selected for the class. For this
reason, we need the recursive step, in which the at-
tribute selection step is applied again and recursively
for each cause, using all variables susceptible of be-
ing used for estimating it.

The resulting BBNs can be used from the start
of the project, by propagating the knowledge about
variables whose values are known since the very be-
ginning of the project. Then, after new intermediate
variable values are known, their values are fixed and
propagated forward throughout the BBN. Also, even
if they are sometimes large, they can be easily under-
stood by humans, as was done within the project by
people from GMV and Skysoft.

The defined process is general in the sense it
could be applied in any domain with temporal
phases and using any machine learning tool provid-
ing the adequate algorithms. However, we have an
specific domain (SE prediction) and an specific ma-
chine learning tool (Weka). Now, we explain how

the steps involving the use of Weka have been in-
stantiated for our domain. These steps are those
marked with the Weka symbol in Figs. 4, 5 and 6.

• Discretization (step I.1.3): some variables have
been discretized manually (by GMV and Skysoft).
The maximum number of bins allowed for the
manual discretization was five, though finally
most of them have four bins. Seventy-four of 126
variables were discretized manually. The remain-
ing variables are automatically discretized using
Weka. We chose an automatic discretization in
three bins, in order to generate BBNs of a reason-
able complexity and with bins of equal frequency,
in order to obtain balanced intervals.

• For the attribute selection method in step II.1.2 we
used a evaluator based on the information gain (in-
foGainAttributeEval) with a Ranker search. With
these parameters we can limit the number of se-
lected attributes to six. This value limits the num-
ber of parents for each node in the BBNs.

• For the generation of the model in step II.2 we
chose an algorithm that performs conditional in-
dependence tests (ICS). 41 This algorithm iden-
tifies variables that are conditionally independent
and builds a DAG that is consistent with these re-
lations. Usually, this algorithm selects the class
as final effect, instead of as initial cause, as the
algorithm described in the previous section.

5. Experiments and Results

In this section we first describe the experimental
setup, and then the results we have obtained us-
ing the two processes described above: the one-step
BBN generation and the multi-step BBN generation
methods. Then, we compare these results with the
application of other machine learning techniques.

5.1. Experimental Setup

In order to train and test our approaches, we selected
data from projects developed by GMV and Skysoft
over the last years. In relation to GMV projects:

• The projects were developed during the last two
years. That means that some of the projects were

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 808

R. Fuentetaja et al.

still in final phases of the development, and ul-
timate data (like data from the warranty period)
could not be accessed.

• We expected to find some kind of clustering be-
tween those projects related to a particular soft-
ware asset, but we did not prejudge that.

• The amount of projects initially selected, almost
thirty, were considered enough, because the BBN
model does not need very large volumes of data in
order to converge.

• All the projects use, at least, one of these GMV
Software Assets. Moreover, some of them use
even two GMV Software Assets. A pre-selected
set of 28 projects was considered, each of these
using one of the software assets. This general rule
was finally discarded, in order to add new projects
to the list. That is, new projects were added that
were not built using a previous software asset.

• All the software products were used as operational
software systems.

• The projects belonged to Aerospace Sector, exclu-
sively.

• Different Divisions of GMV Aerospace Direc-
torate of Operations developed the projects.

• The products were deployed in Europe, Asia and
USA, covering a wide range of customers.

• Data was gathered from various sources: eco-
nomic internal tool, knowledge manager of the
company, projects documentation, and interviews
with project managers.

• For a preselected set of 34 projects, finally only 15
projects from GMV Spain were considered, due
to lack of data or lack of representativity. Some
of the projects were just studies, and did not have
enough relevance.

In the case of Skysoft, projects were too recent
(less than five years old), whose output included a
software product in the category of tools, prototypes
or operational software. Fourteen projects were se-
lected to be used in the project out of an initial set of
20.

A very important attribute of a metric is the mo-
ment of the project life cycle at which it is known.
For instance, the data about the team in a project.
This is a fact usually known at the beginning of the

project, and remains stable unless there are changes
during the project. This was a very important char-
acteristic, since we wanted to generate BBNs that
were based initially on metrics are available as soon
as possible. Phases are possibly the most critical at-
tributes for a metric, since they define the moments
at which every parameter can be known. We have
defined six different phases:

• Phase I: Proposal’s time.
• Phase II: Specification of requirements.
• Phase III: Design.
• Phase IV: Coding & Construction.
• Phase V: Installation.
• Phase VI: End of project: considering the War-

ranty period. (The end of project is at end of War-
ranty, not when the software is delivered for its
use).

Fig. 7 shows the temporal constraints between
phases for building the BBNs using the multi-step
approach. Thus, the model for variables at a phase
are constrained to use only variables in previous
phases. This is denoted by the arrows in the figure.

Some projects did not have all these phases; in
particular, some projects did not have the Specifica-
tions phase. For these projects, the Specifications
phase was assumed to have no duration. Apart from
that, all the projects fit very well into this categoriza-
tion of phases.

We were given 126 different features of projects,
which were categorized in different types:

• Economic data, with a difference between fea-
tures whose value was known at the start and
the ones that were known at the end. Examples
are: Gross invoicing (start and end figures), Man
power cost, Planned man power hours, Contract
duration, Costs per hour of the project, Percent-
age of extra costs w. r. t. Gross income, etc.

• Planning and scheduling data. Examples are:
Number of project milestones, Duration of each
phase, or Delay of each phase.

• Phase II features: Number of pages in documents,
Number of modified requirements, etc.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 809

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

Fig. 7. Temporal causal constraints over the project phases.

• Phase III features: Number of classes (new and
old), subsystems (new and old), interfaces (new
and old), etc.

• Phase IV features: LOC, Percentage of the project
devoted to code production or unit testing, etc.

• Team: Size, Studies, Experience (team and
leader), Dedication, etc.

• Testing: Number of defects detected per phase,
Testing effort, etc.

• Phase V: Number of pages of the User’s Manual,
Number of pages of Design Justification’s file,
Number of releases delivered, etc.

• Phase VI: Hours spent during the warranty period,
Number of releases that provided new function-
ality, Total number of risks being contemplated
during the project’s life-cycle, Percentage of ef-
fort devoted by the Project Management, etc.

Regarding the classes of the estimation models,
we selected:

• Cost: the number of total man power hours, or to-
tal effort. The reason for using it instead of the
real cost was that different rates per hour were ap-
plied between both companies.

• Quality: the number of defects (Software Problem
Reports, SPR) raised during the warranty phase.

• Risk: we used two metrics; the total number of
risks in the project and the sum of all delays with
respect the initial schedule, as a way to predict the
deviation in time.

Fig. 8 shows the BBN for estimating costs ob-
tained by applying the phase-dependent process.
Root nodes correspond to metrics known at the be-
ginning of the project (in the proposal or specifica-
tion phase). Then, metrics belonging to a specific
phase (as for example the number of subsystems in
the design phase) have as causes only variables be-
longing to previous phases, and effects belonging to
later phases.

The BBN for estimating quality is shown in
Fig. 9. The variable to be predicted is Number of
SPRs Ph4, that represents the number of Software
Problem Reports raised during the warranty period,
at the end of the project.

Finally, Fig. 10 shows the BBN for estimating
risk using as metric the total number of risks con-
templated during the project’s life-cycle.

To measure the performance of the obtained
models we use the accuracy (ACC) defined by Eq.
(1), and the Matthews correlation coefficient (MCC)
for multiple classes, 29,23 defined in Eq. (2). This
coefficient overcomes the weaknesses of the accu-
racy when the classes are not well balanced. These

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 810

R. Fuentetaja et al.

(I)
Estimated
coding
duration

(I)
Contract
duration

(I)
Estimated
specification
duration

(I)
Project

milestones

(I)
Project
manager
experience

(III)
Number of
SPRs Ph1

(III)
Number of
new classes

(I)
Test team
experience

(III)
Number of
subsystems

(I)
Programming

language

(IV)
Number of
SPRs Ph2

(I)
Estimated man

power cost

(II)
Number of
requirements

(I)
Planned man
power hours

(V)
Manual
tests

(VI)
Total man
power hours

Fig. 8. Multi-step BBN for estimating cost. Project phases:
(I) Proposal, (II) Requirements, (III) Design, (IV) Coding,

(V): Instalation, (VI): End.

measures are defined in terms of the sample size, S,
the number of classes, N, and the entries of the con-
fusion matrix, denoted as C. Each Ci j is the number
of instances with true class i that have been assigned
to class j by the classifier.

ACC =

N
∑

k=1
Ckk

S
. (1)

MCC =

N
∑

k,l,m=1
CkkCml −ClkCkm√√√√√√ N

∑
k=1

(
N
∑

l=1
Clk

) N
∑

f ,g=1
f 6=k

Cg f


√√√√√√ N

∑
k=1

(
N
∑

l=1
Ckl

) N
∑

f ,g=1
f 6=k

C f g


.

(2)

MCC provides a value in the range [-1,1], where
the perfect classification has value 1.

5.2. Results of the One-Step BBN Training

In the evaluation phase, we analyzed the measures
provided by Weka, selecting an evaluation by means
of cross-validation. The total number of projects in
the data set is 30 and we selected 3 folds: 20 projects
for training and 10 for testing. The accuracy of the
obtained cost model, measured as the number of cor-
rectly classified instances, was 86,6%, which is quite
high. The MCC is 0.80. The accuracy (number
of correctly classified instances) provided by Weka
with cross-validation (3 folds) for the quality model
was accuracy 100% and MCC 1; and for the risk
model the accuracy is 79.3% and the MCC is 0.69.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 811

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

(I)
Experience
specification

team

(I)
Estimated
Project
duration

(I)
Number

project milestones

(I)
Estimated
delivery&
installation
duration

(I)
Estimated
coding
duration

(I)
Estimated
duration

requirements Ph.

(III)
Number

new classes

(I)
Testing
team

experience

(III)
Number of
subsystems

(III)
SPRs
phase 1

(I)
Design
team

experience

(IV)
Number of
SPRs Ph2

(I)
Project
manager
experience

(V)
Number of
SPRs Ph3

(VI)
Number of
SPRs Ph4

(V)
Number pages
VCP/defect list

(IV)
Deviation
in SPRs

(I)
Pages

requirements
doc.

(IV)
Lines of
code

(I)
Size

design
team

(I)
Estimated
testing
duration

(II)
Number

requirements

(I)
Estimated
design

duration

(III)
Number
classes
ADD

(III)
Regression

tests

(I)
Estimated
warranty
duration

Fig. 9. Multi-step BBN for estimating quality. Project
phases: (I) Proposal, (II) Requirements, (III) Design, (IV)

Coding, (V): Instalation, (VI): End.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 812

R. Fuentetaja et al.

(I)
Experience
specification

team

(I)
Estimated
duration
delivery&
installation

(I)
Estimated
project
duration

(I)
Number

project milestones

(I)
Estimated

requirements
duration

(I)
Estimated
coding
duration

(III)
Number

new classes

(III)
Number of
SPRs Ph1

(III)
Number of
subsystems

(I)
Design
team

experience

(IV)
Number of
SPRs Ph2

(III)
Delay
design

(II)
Number
pages

requirements
doc

(V)
Number of
SPRs Ph3

(I)
Test team

experimence

(I)
Project
manager
experience

(II)
Delay

requirements

(VI)
Number of

risks

(IV)
Delay
coding

(IV)
LOC

(I)
Estimated
design

duration

(I)
Number of

risk in
proposal

(II)
Number of

requirements

(I)
Programming

language

(I)
Size

design
team

Fig. 10. Multi-step BBN for estimating risk. Project
phases: (I) Proposal, (II) Requirements, (III) Design, (IV)

Coding, (V): Instalation, (VI): End.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 813

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

5.3. Results of Multi-Step BBN Training

To evaluate the multi-step BBNs we perform also 3-
fold cross validation. Now, the structure of the net is
fixed over the cross validation process. Since we are
using all data to build the initial structure of this net,
it could be considered that we are testing with train-
ing data. However, the initial structure is modified
by humans to obtain the final one, and this makes
the bias smaller. The solution to this issue would be
to ask the humans to build 10 different BBNs, pro-
viding them 10 initial models built with the train-
ing data in the corresponding cross-validation fold.
However, this overload for humans is not viable in
most real-world projects.

For the phase-dependent cost BBN, the accuracy
is 63.3% and the MCC is 0.45. This accuracy is
lower than the accuracy obtained by the one-step
process. Also there is a decrease in the MCC. How-
ever, the BBN we have now can be seen as a correct
causal model, given that it was revised and modified
by human experts. Also, the causal relations are con-
sistent with the temporal development of projects.
Thus, initial causes (nodes without parents) are vari-
ables that are known in the first or second phase
(proposal and requirements definition phases), and
every cause of an effect is known before the effect,
since it belongs to a previous phase.

While the phase-dependent model is semanti-
cally correct, the one-step model is adjusted to the
data only syntactically and it surely suffers from
over-fitting. This is because the specific ML algo-
rithm used tries to adjust the BBN model to the data.
Though many ML algorithms do not guarantee the
best adjustment, they, if possible, achieve a good
one. So, other models (including the human cor-
rected one) can have less accuracy. We assume we
have to pay this prize to obtain a semantically cor-
rect model that can provide good explanations and
thus is understandable and usable by humans.

Another cause of the magnitude of the decrement
in accuracy is that CPTs in the phase-dependent
BBN are bigger than CPTs in the one-step BBN.
In the former, we have nodes with up to four par-
ents, while, in the latter, nodes only have one parent.
CPTs with more nodes also imply the dataset to train
the CPTs should be larger. At least, it should con-

tain all combinations of possible values of causes-
effect for all causal relations. Of course, this is
also dependent on the number and type of bins in
which variables have been discretized. In the multi-
step approach many variables have been discretized
manually. Thus, each bin has an adequate seman-
tic defined by the expert. However, with manual
discretizations many variables (including the class)
are not well balanced. In spite of these problems,
we consider the BBN structure we obtained to be
correct, and it can be easily trained again to obtain
larger accuracy with more projects data when avail-
able.

The accuracy for the phase-dependent quality
BBN is 63.3%, and the MCC is 0. The MCC has
a value of zero when the confusion matrix is all ze-
ros but for one single column. This means that the
performance of the classifier is similar to always re-
turning the majority class. This bad perfomance is
due to the same problems we descibed for the cost
model. However, the same BBN structure can be
trained with future data. We have made an experi-
ment training the quality net with synthetic data gen-
erated using SMOTE (Synthetic Minority Oversam-
pling TEchnique). 11 We fixed the parameter defin-
ing the nearest neighbours to three. The other pa-
rameters take the default values. Then, we applied
the procedure twenty times. Thus, we obtained a
training set of 720 instances. With this set, the 3-
fold cross-validation provides an accuracy of 98.6%
and a MCC of 0.98.

For the phase-dependent risk BBN the accuracy
is 44.8% and the MCC is 0.2. As before, this values
have been obtained from a cross-validation process
with 3 folds. The reasons for this decrease in ac-
curacy (when compared to the one-step BBNs) are
similar to the ones explained for the cost model. Par-
ticularly, note that in the risk phase-dependent BBN
the class variable has four parents (more than the
class variables for the other two models).

5.4. Comparison with other Machine Learning
Techniques

Weka offers many other techniques for performing
machine learning tasks. In this section we include a
summary of some experiments we have performed

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 814

R. Fuentetaja et al.

for predicting cost using some of them. This ex-
periment is merely informative, given that the mod-
els we compare with do not have the features of the
BBN generated by the multi-step approach. Specifi-
cally, they do not allow us to incorporate new infor-
mation as the project advances, and many of them
do not provide explanations.

In a first experiment (E1) we apply the same
discretization we used for generating the multi-step
BBN to estimate cost. Then, we select only those
attributes appearing in this BBN. Table 1 shows the
accuracy, second column, the RRSE (Root Rela-
tive Squared Error), third column, and the MCC
(Matthews Correlation Coefficient), fourth column,
for the estimations obtained with the technique in
the first column. The parameters of the correspond-
ing technique have the default values provided by
Weka except for the parameter k for IBk, for which
we have chosen a value of 3. The accuracy and
the RRSE are computed by using a 3-fold cross-
validation process. The one-step BBN approach
here is different than the one used previously, given
that now the attributes are selected in a different way
and the discretization has been done manually for
some attributes (as it was described for the multi-
step method).

Also, we have performed the same experiment,
but not using only the attributes in the multi-step
BBN (E2). For this case, the atribute selection
was done using the algorithm that was chosen for
the multi-step approach, but without restricting the
number of selected attributes. The results are shown
in Table 1, third and four columns.

As can be observed in this table, there are other
machine learning techniques apart from BBNs that
can be useful for the kind of project estimations
we are dealing with. These techniques obtain sim-
ilar, or in some cases better, accuracy than multi-
step BBNs. However, none of these models has
the power of expressing causal relations as BBNs
have. In fact, some of these techniques, as Logis-
tic, Multilayer Perceptron, SMO, IBk and Bagging,
generate models that are very difficult to be inter-
preted/understood by humans. Decision trees could
be more adequate in relation to understandability.
Also, we encountered the same problem we had with

one-step BBNs (i.e. not all variables are known at
the same time and we wanted to perform estima-
tions at different instants of the project, starting from
the beginning of the project). To solve this problem,
a process similar to the one we defined for phase-
dependent BBNs could be defined.

Another experiment consisted on using directly
the numerical data (without discretization) and ap-
plying the attribute selection default algorithm. Re-
sults are shown in Table 2. Here, the accuracy is
computed as the Pearson correlation coefficient. As
before, we used 3-fold cross-validation. For the cost
model, apart from the Multilayer perceptron and
Support Vector Machines, the accuracy of most of
the techniques is very low. Also, the use of Mul-
tilayer perceptrons or Support Vector Machines has
the same problems we identified previously: the lack
of explanatory power and that they can not man-
age variables that are not known at the same time.
However, for the quality model, M5P obtains a good
performance and the lowest RRSE. As our multi-
step BBN, this technique provides a good explana-
tory level. Finally, for the risk model, all techniques
present a bad performance.

6. Related Work

Some other works have proposed the use of BBNs
for making software project estimations. A recent
survey was carried out by Radlinski. 37 In this pa-
per, BBNs are classified following their topology in
four groups:

• Converging star: the topology resembles a star
with links from each predictor variable to a sin-
gle dependent variable.

• Naive bayes: diverging star with links from a sin-
gle dependent variable to several predictors.

• Causal BBN: general BBN.
• Dynamic BBN: set of sequentially linked BBNs,

where each instance reflects the state of the sys-
tem at a specific point in time.

While the single-step approach we present here
is similar to a Naive Bayes structure, the multi-step
approach we propose results in a more general BBN.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 815

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

Table 1. Accuracy of different learning techniques using
discrete data.

E1 E2
Model Learning Technique ACC RRSE MCC ACC RRSE MCC

Cost

Multinomial Logistic Regression 63.3% 120.2% 0.28 60% 119.4% 0.35
Multilayer Perceptron 70% 103.4% 0.34 76.6% 84.1% 0.47
Support Vector Machine (SMO) 70% 103.4% 0.34 76.6% 105.6% 0.45
Naive Bayes 76.6% 92.4% 0.50 80% 88.8% 0.55
k-Nearest Neighbours (IBk, k=3) 60% 101.2% 0.09 56.7% 102.3% 0.09
Bagging 70% 95.1% 0.17 66.6% 92.7% -0.06
Decision trees (J48) 70% 102.4% 0.15 66.6% 106.2% 0.12
One-step BBN 70% 97.9% 0.39 80% 91.8% 0.56
Multi-Step BBN 63.3% 106.3% 0.45 - - -

Quality

Multinomial Logistic Regression 63.3% 100.4% 0 40% 133.7% 0.04
Multilayer Perceptron 56.6% 107.2% 0.24 63.3% 104% 0.16
Support Vector Machine (SMO) 56.6% 104.7% 0.16 63.3% 109.4% 0
Naive Bayes 50% 114.1% 0.15 50% 116.3% 0.09
k-Nearest Neighbours (IBk, k=3) 63.3% 99.6% 0.20 60% 101.1% -0.08
Bagging 56.6% 101.4% -0.11 63.3% 101% 0
Decision trees (J48) 66.6% 94.9% 0.28 56.6% 114.4% 0.07
One-step BBN 46.6% 119.4% 0.12 53.3% 104% 0.15
Multi-Step BBN 63.3% 100.4% 0 - - -

Risk

Multinomial Logistic Regression 51.7% 119% 0.27 55.1% 109.7% 0.33
Multilayer Perceptron 51.7% 110.4% 0.27 62% 89.4% 0.44
Support Vector Machine (SMO) 44.8% 113.6% 0.17 65.5% 93.8% 0.48
Naive Bayes 48.2% 113.7% 0.22 58.6% 107.5% 0.40
k-Nearest Neighbours (IBk, k=3) 37.9% 108.9% 0.06 34.5% 104.9% 0.02
Bagging 55.17% 966.7% 0.32 48.2% 97.6% 0.22
Decision trees (J48) 37.9% 116.5% 0.07 41.4% 125.5% 0.12
One-step BBN 48.2% 115.9% 0.22 55.1% 108.8% 0.34
Multi-Step BBN 44.8% 97.5% 0.20 - - -

The main difference between our solution and Dy-
namic Bayesian Networks (DBNs) is that in DBNs,
the structure of the network is fixed over all time
intervals (phases in our case), while we allow differ-
ent network structures to represent different phases.
Training DBNs for this task would require knowing
the values of the same variables over different time
points. In our case, we have a different set of vari-
ables to consider at each time point. So, we believe
we are a bit more general in the sense of allowing
different variables sets for each phase.

General BBNs have been used also in other
works. Fenton et al. automatically define the fol-

lowing factors for predicting the size of the result-
ing software, 17 its quality and the necessary ef-
fort for developing it: factors influencing prior rates,
prior error and productivity rates, constants describ-
ing process and project attributes which adjust prior
error and productivity error, process and people fac-
tors which also adjust error and productivity rates,
adjusted error and productivity rates, trade-off com-
ponent between the quality, functionality and effort.
Another example of the use of general BBNs for
software engineering is AREL (Architecture Ratio-
nale and Element Linkage) that exploits the idea of
BBNs to propagate probabilities of tracing change

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 816

R. Fuentetaja et al.

Table 2. Accuracy of different learning techniques using
numeric data.

Model Learning Technique Correlation RRSE

Cost

Linear Regression 0.09 101%
Multilayer Perceptron 0.74 80%
Support Vector Machine (SMOreg) 0.62 92%
k-nearest neighbours (IBk, k=3) 0.40 95%
Bagging -0.08 97%
Regression Trees (M5P) -0.02 104%

Quality

Linear Regression 0.96 131%
Multilayer Perceptron 0.56 82%
Support Vector Machine (SMOreg) 0.98 39%
k-nearest neighbours (IBk, k=3) 0.53 89%
Bagging 0.40 92%
Regression Trees (M5P) 0.92 64%

Risk

Linear Regression 0.45 97%
Multilayer Perceptron 0.57 94%
Support Vector Machine (SMOreg) 0.57 94%
k-nearest neighbours (IBk, k=3) 0.57 75%
Bagging 0.16 91%
Regression Trees (M5P) 0.43 88%

impact decisions back from the architectural design
of software. 40 The authors claim that it is highly de-
sirable to automatically derive the design of BBNs
to be used in the project estimation reasoning.

These approaches, though, do not automatically
derive the conditional probability tables (CPTs) that
are used in the non-root nodes of the BBN or the
a priori probability distributions that are fed at the
root nodes. Thus, CPTs and a priori probability
distributions are specified manually. Also, decision
variables are all discrete with a rather narrow do-
main (usually bi-valued such as “yes/no” or “sta-
ble/volatile”, yet more restricted than the aforemen-
tioned cases). While the models shown here are
rather small, the idea can be further generalized to
nets arbitrarily large, though it shall be stressed that
this model consists of building blocks of single nets.

Another interesting example in making predic-
tions with a single BBN is the work of Amasaki
et al. 3 The authors estimate risk defined as gener-
ating software products with poor final quality us-
ing BBNs in the development of computer control
systems with embedded software. They estimate

project quality as the amount of residual faults in
the software product. Another way of using BBNs in
model estimation consists of relating different BBNs
making different predictions among them. Wang et
al. start by observing that most works use BBNs to
make separate predictions and only a few consider
the integration of different factors in the form of
BBNs. 42 This work makes a novel proposal by mod-
eling the development process as a Directed Acyclic
Graph (DAG) of BBNs, which represents the dif-
ferent input and outputs to take place at different
stages of the whole life cycle. This approach has
two significant advantages: it provides the project
managers with a trade-off analysis of all the param-
eters involved in the software development process;
and BBNs can be fed again at the end of every stage
so that, first, beliefs are updated and predictions are
subsequently refined; secondly, it is possible to au-
tomatically compute deviations from the initial plan.
This approach is similar to the one we propose here.
The main differences are that they focus on quality,
effort, schedule and scope, while we focus on cost,
quality and risk. Also, they have defined the BBN

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 817

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

models manually, while we use machine learning to
derive them. Wang et al. generate BBNs using a
mixed-initiave process and learn the BBN parame-
ters from data, 43 though their BBNs do not reflect
time. Other recent examples use DBNs to predict the
effort derived of software defects and also to predict
effort, 39,31 but in the context of Web-based projects.

So, BBNs provide a reasonable solution for most
of the problems that classical techniques have for
project estimations. They solve part of those prob-
lems, being able to: naturally cope with uncertainty
in the values of variables or the relationships among
them; easily integrate previous data from projects
estimations, and experts knowledge on relevant at-
tributes, or important causal relationships; gradu-
ally adapting to changes in the values of the vari-
ables; providing three kinds of belief propagation
models (predictive, diagnostic, or mixed) that can
be used for performing advanced what-if analysis,
simulate changes and evaluate their impact, or per-
form complex mixed project estimation analysis by
mixing top-down and bottom-up approaches; gen-
erating better explanations of the results in terms
of higher level variables, so this allows users for
argumentation-based design and providing design
rationale; or reasoning about a mixture of discrete
and numeric variables, though reasoning with nu-
meric variables can be more complex. These advan-
tages can be easily inferred from BBN characteris-
tics as explained in Section 3.

However, using BBNs for software estimation
still presents some challenges, such as: defining
the right estimation metrics and variables; defining
the right causal relationships among the variables in
the model; and defining the a priori probabilities
for the input nodes and the CPTs for the non-root
nodes. We propose here the use of machine learn-
ing to overcome part of these problems. Regarding
the net structure, we propose a semi-automatic ap-
proach to generate it. The justification is that is is
difficult to generate automatically structures that are
semantically correct with respect to causal relations.
There are recent works that propose algorithms that
consider structural constraints provided by the user
for expressing where arcs may or may not be in-
cluded. 10 Compared with our approach, the main

advantage of these techniques is efficiency, since
constraints are used to prune the space of structures.
However, in our context it is not viable for experts
to a priori define such constraints as the number of
variables is high. Instead, we believe our multi-step
method is more expert-friendly, since it provides ini-
tial structures that are then modified.

Another drawback of current methods based on
BBNs is that they are not accompanied by a software
tool that helps users to design and use those models.
We have developed also such tool, which is inte-
grated in Eclipse. The tool already has some base
models that have been created using post-mortem
data from GMV and Skysoft companies, but they
can be easily adapted to different companies.

7. Conclusions

In this paper we have described an approach to gen-
erate BBN-based models semi-automatically, from
data about past projects but supervised by humans.
The obtained BBN models can be used to estimate
project metrics for new projects of the same type as
those used for generating and training the BBNs.

For all steps of the proposed process, except
for the human supervision part, a machine learn-
ing tool providing the adequate algorithms can be
used. Specifically we used Weka, an off-the-shelf
tool. The main positive conclusions of the genera-
tion of BBNs using the multi-step method are:

• The generated BBNs using the multi-step ap-
proach include a reasonable set of variables and
their causal relationships. The resulting BBNs
can be used to estimate the values of variables
throughout the project. Whenever new metrics
values are known, they replace their predicted val-
ues from previous metrics, and are propagated
throughout the BBN. That is, the approach avoids
the user trying to find causal relationships manu-
ally.

• The multi-step approach allowed building the
BBNs in an ordered fashion, so that variables that
are known in the later stages of the project are lo-
cated at the deepest depths of the DAG, whereas
variables that are known at the beginning of the
project become the roots of the DAG tree.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 818

R. Fuentetaja et al.

• Weka can be used to generate BBNs. Currently,
the approach we have followed includes some
manual refinements, but most of these steps could
be easily automated. Thus, given a file with data
from various projects, the corresponding BBNs
can be automatically generated by embedding
Weka in a recursive algorithm. Obviously, the
steps related to semantically revising the BBNs by
humans cannot be automated.

• Generated BBNs can be automatically translated
to the input format of the APES tool, so that they
can be loaded into APES for further use.

The main drawbacks of the approach for build-
ing BBNs using the multi-step method can be sum-
marized as:

• Finding the right parameters to generate the BBNs
can be a tedious process. The main parameters
that we have tuned are: number of bins for dis-
cretizing the variables, B; and maximum number
of parents for any given BBN node, P. The com-
bination of these two parameters defines the size
of the CPTs in the BBN nodes. In general, their
size will be BP+1. So, the size of CPTs grows ex-
ponentially with the number of the parents, P.

• Different discretizations give rise to different
BBNs both in the BBN structure, given that the
attribute selection process depends on the dis-
cretization, and in the CPTs. A potentially good
solution consists of manually discretizing as many
variables as possible. In this case the meaning of
the bins would be closer to the correct one, since
the user assigns those bins, independently of their
length and frequency.

• The quality of the learned knowledge by any
machine learning technique (either BBN or any
other) strongly depends on the data. In the case
of projects estimations, usually there is a lack
of data. This is especially true in relation to
number of projects and values of variables for
some projects (unknown values for some vari-
ables). Also, when there is little data, most entries
in the CPTs matrices will not correspond to real
data, since in general only N cells in those ma-
trices will have a corresponding entry, where N is
the number of projects. In those cases the learning

techniques will fill the CPTs with uniform distri-
butions of values. This implies that the resulting
BBNs will only be good for describing causal re-
lations among variables, rather than being good
estimators. Thus, BBNs are good solutions in re-
lation to pure machine learning (or regression) ap-
proaches, or pure manual definition: they allow
users to provide knowledge at the beginning (by
defining a structure of the DBNs) or during the
generation process (by redefining the structure, or
controlling the machine learning task); and as a
complement, they use machine learning for the
more tedious and difficult tasks of assigning the
probabilities.

We have performed several experiments us-
ing data of past projects from GMV and Skysoft.
Specifically, following the proposed approach we
have built models for estimating cost, quality and
risk of new projects. The resulting BBNs allow
also users to estimate all other variables implied in
the models. Regarding the quality of the obtained
BBNs, the main positive conclusions are:

• The generated BBNs using the last scheme in-
clude a reasonable set of variables and their causal
relations. The resulting BBNs can be used to
estimate the values of variables throughout the
project. Whenever new metrics values are known,
they replace their predicted values from previous
metrics, and are propagated throughout the BBN.

• Although the accuracy that we have reached is
not very high in some cases, the method proposed
has shown its validity to obtain estimation models.
Higher accuracy can be found by gathering more
data from existing and future projects. These data
will contribute to refine the existing BBNs, adapt-
ing its CPTs, and finding new causal relationships.

Acknowledgements

This work was developed under a collaborative re-
search project with the European Space Agency
(ESA). We would like to thank the great help pro-
vided by Yuri Yushtein during the whole develop-
ment of the project.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 819

Multi-step Generation of Bayesian Networks Models for Software Projects Estimations

References

1. Moataz A. Ahmed, Moshood Omolade Saliu, Jaral-
lah AlGhamdi, Ken Currie, and Austin Tate. Adap-
tive fuzzy logic-based framework for software devel-
opment effort prediction. Information and Software
Technology, 47(1):31–48, 2005.

2. Allan Albrecht. Measuring application development
productivity. In Proceedings of the IBM Applications
Development Symposium, pages 83–92, 1979.

3. Sousuke Amasaki, Yasunari Takagi, Osamu Mizuno,
and Tohru Kikuno. Constructing a bayesian belief net-
work for predicting final quality in embedded system
development. IEICE - Transactions on Information
and Systems, E88-D(6):1134–1141, 2005.

4. Stanislav Berlin, Tzvi Raz, Chanan Glezer, and Moshe
Zviran. Comparison of estimation methods of cost
and duration in IT projects. Information and Software
Technology, 51(4):738–748, 2009.

5. Barry Boehm. Software Risk Management. IEEE
Computer Society Press, CA, 1989.

6. Barry Boehm, Chris Abts, and Sunita Chulani. Soft-
ware development cost estimation approaches: A sur-
vey. Annals of Software Engineering, 10:177–205,
2000.

7. Barry W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

8. Remco R. Bouckaert. Bayesian Belief Networks:
from Construction to Inference. PhD thesis, Utrecht,
Netherlands, 1995.

9. Remco R. Bouckaert. Bayesian network classifiers in
Weka for version 3-5-7. Technical report, Waikato
University, 2008.

10. Qiang Ji Cassio P. de Campos. Efficient struc-
ture learning of bayesian networks using constraints.
Journal of Machine Learning Research, 12:663–689,
2011.

11. Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O.
Hall, and W. Philip Kegelmeyer. Smote: Synthetic mi-
nority over-sampling technique. Journal of Artificial
Intelligence Research, 16:321–357, 2002.

12. Shyam R. Chidamber and Chris F. Kemerer. A metrics
suite for object oriented design. IEEE Transactions in
Software Engineering, 20:476–493, 1994.

13. Eun Sook Cho, Min Sun Kim, and Soo Dong Kim.
Component metrics to measure component quality. In
Proceedings of the Software Engineering Conference
(APSEC 2001), pages 419–426, 2001.

14. Sunita Chulani. Bayesian analysis of software cost
and quality models and software maintenance. In
Proceedings of the IEEE International Conference
on Software Maintenance (ICSM’01), pages 565–568,
2001.

15. Gregory F. Cooper and Tom Dietterich. A bayesian
method for the induction of probabilistic networks

from data. pages 309–347, 1992.
16. Taz Daughtrey. Fundamental Concepts for the Soft-

ware Quality Engineer. American Society for Quality,
2001.

17. Norman Fenton, Lukasz Radlinski, and Martin Neil.
Improved bayesian networks for software project risk
assessment using dynamic discretisation. In Proceed-
ings of the IFIP Conference Software Engineering
Techniques, pages 139–148, 2006.

18. Tom Gilb. Software Metrics. Chartwell-Bratt, 1976.
19. Andrew R. Gray and Stephen G. MacDonell. A com-

parison of techniques for developing predictive mod-
els of software metrics. Information and Software
Technology, 39(6):425–437, 1997.

20. Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. The
Weka data mining software: an update. SIGKDD Ex-
plorations, 11(1), 2009.

21. Khaled Hamdan, Hazem El Khatib, John Moses, and
Peter Smith. A software cost ontology system for as-
sisting estimation of software project effort for use
with case-based reasoning. In Proceedings of Inno-
vations in Information Technology, pages 1–5, 2006.

22. Sallie Henry and Dennins Kafura. Software struc-
ture measurements based on information flow. IEEE
Transactions in Software Engineering, SE-7:510–518,
1976.

23. Giuseppe Jurman and Cesare Furlanello. A compar-
ison of MCC and CEN error measures in multi-class
prediction. PLoS ONE 7(8): e41882, 2012.

24. Chris F. Kemerer. An empirical validation of software
cost estimation models. Communications of the ACM,
30(5):416–429, 1987.

25. Ekrem Kocaguneli, Tim Menzies, and Jacky M. Ke-
ung. On the value of ensemble effort estima-
tion. IEEE Transactions on Software Engineering,
(6):1403–1416, 2011.

26. Sotiris Kotsiantis and Dimitris Kanellopoulos. Dis-
cretization techniques: A recent survey. GESTS Inter-
national Transactions on Computer Science and En-
gineering, 32(1):47–58, 2006.

27. Huan Liu, Farhad Hussain, Chew Lim Tan, and
Manoranjan Dash. Discretization: An enabling tech-
nique. Data Mining and Knowledge Discovery,
6(4):393–423, October 2002.

28. Carolyn Mair, Gada Kadoda, Martin Lefley, Keith
Phalp, Chris Schofield, Martin Shepperd, and Steve
Webster. An investigation of machine learning based
prediction systems. The Journal of Systems and Soft-
ware, 53:23–29, 2000.

29. B Matthews. Comparison of the predicted and ob-
served secondary structure of t4 phage lysozyme.
Biochimica et Biophysica Acta, 400:442–451, 1975.

30. Thomas J. McCabe. A complexity measure. IEEE
Transactions in Software Engineering, 2(4):308–320,

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 820

R. Fuentetaja et al.

1976.
31. Emilia Mendes and Nile Mosley. Bayesian net-

work models for web effort prediction: A comparative
study. IEEE Transactions on Software Engineering,
(34):723–737, 2008.

32. Kjetil Molokken and Magne Jorgensen. A review of
software surveys on software effort estimation. In
Proceedings of the International Symposium on Em-
pirical Software Engineering, pages 223–230, 2003.

33. Richard E. Neapolitan. Learning Bayesian Networks.
Prentice Hall, 2004.

34. Martin Neil Norman E Fenton. Software metrics:
Roadmap. In Proceedings of the Conference on
The Future of Software Engineering, pages 357–370.
ACM Press, 2002.

35. Judea Pearl. Probabilistic Reasoning in Intelligence
Systems. Morgan Kaufmann, 1988.

36. Lawrence H. Putnam. A general empirical solution
to the macro software sizing and estimating prob-
lem. IEEE Transactions on Software Engineering,
4(4):345–361, 1978.

37. Lukasz Radlinski. A survey of bayesian net models
for software development effort prediction. Interna-
tional Journal of Software Engineering and Comput-
ing, 2(2):95–109, 2010.

38. Roy Schmidt, Kalle Lyytinen, Mark Keil, and Paul
Cule. Identifying software project risks: An interna-

tional delphi study. Journal of Management Informa-
tion Systems, 17:5–36, March 2001.

39. Thomas Schulz, Lucas Radlinski, Thomas Gorges,
and Wolfgang Rosenstiel. Defect cost flow model - a
bayesian network for predicting defect correction ef-
fort. In Proceedings of the International Conference
on Predictive Models in Software Engineering, page
Article No. 16, 2010.

40. Antony Tang, Ann Nicholson, Yan Jin, and Jun Han.
Using bayesian belief networks for change impact
analysis in architecture design. The Journal of Sys-
tems and Software, 80:127–148, 2007.

41. Thomas Verma and Judea Pearl. An algorithm for de-
ciding if a set of observed independencies has a causal
explanation. In Proc. of the Eighth Conference on
Uncertainty in Artificial Intelligence, pages 323–330,
1992.

42. Hao Wang, Fei Peng, Chao Zhang, and Andrej
Pietschker. Software project level estimation model
framework based on bayesian belief networks. In
Proceedings of the Sixth International Conference on
Quality Software (QSIC’06), pages 26–30, 2006.

43. Xiaoxu Wang, Chaoying Wu, and Lin Ma. Software
project schedule variance using bayesian network. In
Proceedings of the IEEE International Conference on
Advanced Management Science (ICAMS), pages 209–
218, 2010.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 821

