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Abstract 

The development of empirical classification models for fault diagnosis usually requires a process of training based 

on a set of examples. In practice, data collected during plant operation contain signals measured in faulty 

conditions, but they are ‘unlabeled’, i.e., the indication of the type of fault is usually not available. Then, the 

objective of the present work is to develop a methodology for the identification of transients of similar 

characteristics, under the conjecture that faults of the same type lead to similar behavior in the measured signals. 

The proposed methodology is based on the combined use of Haar wavelet transform, fuzzy similarity, spectral 

clustering and the Fuzzy C-Means algorithm. A procedure for interpreting the fault cause originating the similar 

transients is proposed, based on the identification of prototypical behaviors. Its performance is tested with respect 

to an artificial case study and then applied on transients originated by different faults in the pressurizer of a nuclear 

power reactor. 

Keywords: Fault diagnosis, unsupervised clustering, Haar wavelets, fuzzy similarity, spectral clustering, Fuzzy C-

Means. 

1. Introduction 

Fault diagnosis can be seen as a classification problem 

in which a class identifying the type of the fault needs to 

be associated to a vector of values of measured signals 

[Zio et al., 2006a]. Due to the complexity of the 

phenomena involved and the highly non-linear 

interrelationships between the causes that determine the 

equipment behavior and the signal evolutions, it is 

usually difficult to develop analytical models for fault 

diagnosis [Venkatasubramian et al., 2003]. 

An attractive alternative is to resort to empirical 

classification models (classifiers) whose parameters are 

tuned through an iterative process, called training, based 

on a set of examples constituted by signals labelled with 

the corresponding class of fault under which conditions 

they have been measured [D’Antone, 1992; Reifman, 

1997; Sheng et al., 2004; Zio, 2007; Zio et al., 2008]. 

Methodological approaches have been proposed for 

fault diagnosis in components of Nuclear Power Plants 

(NPPs) [Cheon et al., 1993; Kim et al., 1996; Reifman, 

1997; Zio et al., 2006a; Zio et al., 2006b; Baraldi et al., 

2010; Di Maio et al., 2011]. However, application in 

practice is limited because of lack of examples for 

classifier training. Indeed, although data collected 

during plant operation contain also signals measured in 
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faulty conditions, the information on the fault class is 

usually not available. 

The objective of this work is to develop a methodology 

for the identification of transients originated by faults of 

the same class, on the conjecture that they lead to 

similar behaviors of the measured signals. To this aim, 

the problem is formulated as one of clustering, in which 

the vectors of measured signal values are partitioned 

into a small number of homogeneous clusters so that 

those belonging to the same cluster are as similar as 

possible, and as dissimilar as possible to those 

belonging to the other clusters. In this work, the task of 

clustering of measured signals is addressed by means of 

a modified spectral clustering algorithm. The similarity 

between measured signals is computed by using a fuzzy 

similarity measure [Joentgen et al., 1999; Na et al., 

2004; Zio et al., 2010; Zio et al., 2012] in the space of 

wavelet transforms [Strang et al., 1996; Ikonomopoulos 

et al., 1998] in order to account for the signals evolution 

in time (in the following also referred to as 

“trajectories”). A similarity graph is built, in which each 

vertex represents a trajectory and the weight associated 

to the edge connecting two vertices is the value of 

(fuzzy) similarity between the two corresponding 

trajectories. Spectral analysis techniques are finally 

applied in order to find an optimal partition of the graph 

[von Luxburg, 2007].  

The proposed methodology has been tested on an 

artificial case and then applied to a case study 

concerning simulated faults in a pressurizer of a 

Pressurized Water Reactor (PWR) NPP. 

The remaining of the paper is organized as follows: 

Section 2 states the problem; Sections 3.1 and 3.2 

sketch the methodology proposed for unsupervised 

clustering of transients; Section 4 presents the artificial 

case study used to verify the performance of the 

proposed methodology; Section 5 presents the case 

study concerning the pressurizer of the PWR; finally, in 

Section 6 some conclusions and remarks are drawn. 

2. Problem statement 

Let us assume that the values of Z signals at different 

times have been measured during N plant transients 

originated by faults of different classes. In practice, the 

generic i-th transient can be seen as a trajectory into the 

Z dimensional signal space and represented by the 

matrix of values iX  whose component i
lkx  represents 

the value of signal k taken at time lt , 1,...,k Z  and 

0,..., 1,il T   where Ti is the number of available 

measurements for the i-th trajectory. For the sake of 

simplicity, in this work we assume that: 

 transients begin at time 0t ; 

 signal measurements are taken at fixed time steps, 

t ; thus, lt l t  ; 

 all transients have the same duration  1T t  , i.e., 

,iT T  for any i=1,…,N. 

The objective of the present work is to partition the N 

trajectories iX  into an unknown number of clusters, C, 

each one containing transients characterized by similar 

behavior. 

3. Methodology 

The methodology here proposed is based on spectral 

clustering [Strang et al., 1996]. The main characteristic 

of spectral clustering is that it allows partitioning 

objects (in our case, vectors of measured signals) into 

clusters by using only a measure of similarity between 

them. A similarity graph G = (V, E) is introduced, in 

which each vertex vi in this graph represents an object 

and a weight is associated to each edge eij connecting 

vertices i and j, to measure the similarity between 

objects i and j [von Luxburg, 2007]. Clustering then 

aims at finding a partition of the graph such that the 

edges between elements belonging to different groups 

of the partition have small weights (which means that 

objects in different clusters are dissimilar from each 

other) and the edges connecting elements within the 

same group have large weights (which means that 

objects within the same cluster are similar to each other) 

[Alpert et al., 1999]. Section 3.1 illustrates the method 

proposed to measure similarity between the trajectories, 

whereas Section 3.2 illustrates the details of the spectral 

clustering algorithm. 

3.1. Similarity measure between trajectories 

The notion of similarity is strongly related to the 

objective of the application: in our case, we want a 

similarity measure that takes large values for trajectories 

of the same class (transients caused by the same type of 

fault) and small values for trajectories of different 

classes. 

When looking at the similarity between trajectories, the 

functional behaviour of the signals is the focus of the 

analysis irrespective of the numerical values which may 

be quite dissimilar due to the presence of outliers, noise 

or different scaling and translating factors 

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                     765



 Unsupervised Clustering for Fault Diagnosis in Nuclear Power Plant Components 

 

[Angstenberger, 2001]. Possible causes of difference in 

the signal numerical values from transients of the same 

class are the magnitude of intensity of the faults, the 

plant operational state, the measurement noise. For this 

reason, the definition of the similarity measure between 

two transients should not be based on the magnitude of 

the signal values, but rather it should consider the 

functional characteristics of the signal trajectories, e.g., 

form, slope, curvature [Joentgen et al., 1999]. To catch 

these characteristics pre-processing of the transient data 

can be performed. Section 3.1.1 illustrates the data pre-

processing technique applied in this work, whereas 

Section 3.1.2 defines the similarity measure adopted. 

3.1.1.  Wavelet transform pre-processing 

Wavelet transforms have been chosen due to their 

effectiveness in catching the functional behaviour of the 

signals in problems of transient classification. [Roverso, 

2000], [Roverso, 2003] and [Baraldi et al., 2012a] have 

shown the improved performance of transient 

classification algorithms when they are fed by wavelet 

features instead of the direct signal values. In the 

present work, the Haar wavelet transform [Ogden, 

1997] is applied on a sliding window of the signal time-

series. For each signal k=1,...,Z, the retained wavelet 

features are: the mean value, w1, the maximum wavelet 

coefficient, w2, and the minimum wavelet coefficient, 

w3. The first feature is proportional to the average value 

in the time window and captures the general trend of the 

signal in the windows in a compact way. The features 

w2 and w3 capture variations in the signal within the 

window (e.g., downward or upward trends, step 

changes, spikes, etc.). The window size Ts is selected so 

as to correspond to wavelet dyadic decomposition 

values (i.e., powers of 2), and consecutive windows are 

chosen with an overlap of Ts-1 to avoid missing features 

that might be present at the window borders.  

Since three different wavelet features are obtained from 

each signal and given that the first transformation can 

be performed only when the first Ts measurements are 

available, the matrix iX  of size [T-1, Z] is transformed 

into a matrix iY  of size [T-Ts, 3Z] which constitutes the 

new representation of trajectory i. 

3.1.2.  Fuzzy similarity measure 

After the data pre-processing, the similarity between 

transient i and transient j can be computed by 

considering matrixes iY  and jY . A fuzzy similarity 

measure is considered, which determines the degree of 

closeness of the two trajectories with reference to the 

pointwise difference between the corresponding feature 

values [Zio et al., 2010]. In particular, the pointwise 

difference 
ij  between the 3·Z (T-Ts ) values of 

trajectories iY  and jY  is defined by: 

  
23

1 1

Z T
i j

ij kl kl

k l

y y
 

   (1) 

The similarity measure should allow for a gradual 

transition [Joentgen et al., 1999]. This is here achieved 

by evaluating the pointwise difference of two 

trajectories with reference to an “approximately zero” 

fuzzy set (FS) specified by a function which maps 
ij  

into a value ij  of membership to the condition of 

“approximately zero”: values of ij  close to 0 indicate 

that the signal evolutions in the two transients i and j are 

very different, whereas values close to 1 indicate high 

similarity. 

Common membership functions can be used for the 

definition of the FS, e.g. triangular, trapezoidal, and 

bell-shaped [Dubois et al., 1988]. In the applications 

illustrated in this work, the following bell-shaped 

function is used: 

 

 
2

ln
ij

ij e






 
  
   (2) 

The arbitrary parameters   and   can be set by the 

analyst to shape the desired interpretation of similarity 

into the fuzzy set: the larger the value of the ratio 

  2ln   , the narrower the fuzzy set and the stronger 

the definition of similarity [Zio et al., 2010]. 

3.2. Spectral clustering 

The computation of the fuzzy similarity between all 

possible pairs of trajectories originates the similarity 

matrix W  of size [N, N], whose generic element ij  

represents the fuzzy similarity between trajectories i and 

j. The diagonal components ii  are set to 1 and the 

matrix is symmetric  ij ji  . 

From the matrix W  a similarity graph G = (V,E) is 

constructed, where each vertex vi represents the i-th 

trajectory and the weight associated to the edge eij 

connecting the two vertices i and j is the similarity value 

ij  [von Luxburg, 2007]. The original problem of 

identifying groups of similar trajectories can be 
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reformulated in that of finding a partition of the 

similarity graph such that the edges connecting elements 

of different groups have small weights and the edges 

connecting elements within a group have large weights 

[Alpert et al., 1999]. The spectral clustering algorithm is 

based on the following steps: 

Step 1: normalized Graph Laplacian Matrix 

Compute: 

- the degree matrix D  which is a diagonal matrix with 

diagonal entries d1, d2,…, dN defined by 

 
1

N

i ij

j

d 


 , 1,2,...,i N  (3) 

- the normalized graph Laplacian matrix: 

1/2 1/2 1/2 1/2

symL D LD I D W D
   

    (4) 

where L D W   and I  is the identity matrix of size 

[N, N]. 

Step 2: eigenvalues and eigenvectors of Lsym 

The information on the structure of a graph can be 

obtained from its spectrum [Zhao et al., 2007]. Given 

symL , compute the first C eigenvalues 1 2, ,..., C    and 

corresponding eigenvectors 1 2, ,..., Cu u u . The first C 

eigenvalues are such that they are very small whereas 

λC+1 is relatively large [von Luxburg, 2007]. 

Step 3: Number of clusters 

The number of clusters is set equal to C, according to 

the eigengap heuristic theory [Mohar, 1997]. 

Step 4: Feature extraction 

The relevant information on the structure of the matrix 

W  is obtained by considering the eigenvectors 

1 2, ,..., Cu u u  associated to the C smallest eigenvalues of 

its laplacian matrix symL . The square matrix W  is 

transformed into a reduced matrix U  of size [N, C], in 

which the C columns of U  are the eigenvectors 

1 2, ,..., Cu u u . Thus, the i-th trajectory similarity with other 

trajectories is captured in the C-dimensional vector iu
 

corresponding to the i-th row of the matrix U . A matrix 

T  is formed from U  by normalizing its rows [von 

Luxburg, 2007]: 

0.5

2

1

ic

ic
C

ic

c

u
t

u



 
 
 


, 1,2,...,i N , 1,2,...,c C  (5) 

It has been shown that this change of representation 

enhances the cluster properties in the data, so that 

clusters can be more easily identified [von Luxburg, 

2007]. 

Step 5: Unsupervised clustering 

In this work, we resort to the Fuzzy C-Means (FCM) 

algorithm to partition the data into C clusters [Bezdek, 

1981; Leguizamon et al., 1996; Alata et al., 2008]. FCM 

originates from hard C-Means clustering: the difference 

is that it allows elements (trajectories, in our case) to 

belong to two or more clusters [Klir and Yuan, 1995]. 

For each i-th element, the algorithms provides its 

membership mic to all clusters, 1,2,...,c C . If needed, 

crisp assignment can be obtained, e.g., by considering 

the cluster to whom the element belongs with the largest 

membership value. A prototypical trajectory can be 

identified for each cluster by considering the trajectory 

with the largest membership value to the cluster. The 

analysis of such trajectories can guide understanding, 

identification and interpretation of the fault types. 

4. The artificial case study 

The performance of the methodology has been firstly 

verified with respect to an artificial case study built by 

simulating N=150 trajectories of C=5 different classes 

in a Z=4 dimensional signal space (Figures 1-4). 

Transient length T is 100 time steps. Each of the 5 

classes of transients is formed by 30 trajectories 

characterized by a priori established functional 

behaviours of the 4 signals (e.g., linear, parabolic and 

exponential). All the transients of the same class differ 

only for different values of the parameters governing the 

functional behaviour (e.g., the slope value of a linear 

functional behaviour) whereas two transients of 

different classes have at least one signal with a different 

functional behaviour [Baraldi et al., 2012b]. Since the 

information on the class of each trajectory and on the 

total number of classes is not expected to be known in 

real industrial applications, it is not used to drive the 

partitioning of the transients into clusters but only to 

verify the performance of the proposed methodology. 

The similarity matrix W  of size 150·150 obtained by 

computing the similarity measure between all possible 

pairs of trajectories is shown in Figure 5: the larger the 

similarity ij , the brighter the shade of the ij-element of 

the matrix. 
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Fig. 1.  Projection on the signal 1 axis of the 150 simulated 

transients. 
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Fig. 2.  Projection on the signal 2 axis of the 150 simulated 

transients. 
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Fig. 3.  Projection on the signal 3 axis of the 150 simulated 

transients. 
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Fig. 4.  Projection on the signal 4 axis of the 150 simulated 

transients. 

 

A large number of edges have large weights ij  (i.e., 

the vertices are strongly connected, which means that 

the corresponding trajectories are similar), but it is not 

easy to distinguish a partition of the graph in groups of 

trajectories. If the trajectories were sorted in such a way 

that similar trajectories were in consecutive rows of the 

matrix, e.g., all trajectories of class 1 in rows and 

columns from 1 to 30, all trajectories of class 2 in rows 

and columns from 31 to 60 and so on, the representation 

of the matrix would lead to a checkboard-like structure 

[Kluger et al., 2003]. This is due to the fact that if two 

trajectories are similar between them they tend to have 

large similarity with the other trajectories and, thus, the 

corresponding rows and columns in the Figure would 

have the same sequences of shades. In this sense, from 

the graphical point of view, the problem of clustering 

the trajectories may be seen as the problem of finding a 

proper ordering of the trajectories that leads to the 

visualization of a checkboard-like structure. 

Figure 6 shows the 150 eigenvalues obtained by 

applying spectral analysis to matrix W , as described in 

Section 3.2. Since the first five eigenvalues are very 

close to zero and the sixth is remarkably larger, the 

number of clusters C is set equal to 5. 
The new representation of the 150 trajectories into the 

first five dimensions of the eigenvectors space is 

reported in Figure 7. 

In practice, the problem of clustering the 150 

trajectories iX  is now reduced to the problem of 

finding five clusters among the 150 5-dimensional 

vectors it , where each it  constitutes a reduced 

representation of iX . 
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The FCM partitioning of the obtained vectors it  

provides the memberships icm  of the i-th transient, 

1,2,...,150i  , to the C clusters, 1,2,...,5c  . Crisp 

assignment of the vectors to the clusters is then 

performed by largest membership value. 

The trajectories are reordered according to the clusters 

found: all trajectories assigned to cluster 1 are 

represented in the first 30 rows, all trajectories of cluster 

2 in rows from 31 to 60, etc... This indeed leads to a 

checkboard-like structure (Figure 8) where the blocks of 

highly and lowly similar trajectories are easily 

identifiable [Baraldi et al., 2012b]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  The similarity matrix W : the larger the similarity, the 

brighter the shade of the ij-th element. 

Fig. 6.  The 150 eigenvalues of symL . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Representation of matrix T . Columns correspond to 

the values of the first 5 eigenvectors of symL  of the raw data 

matrix of Figure 5. 

Fig. 8.  Shuffled matrix containing checkboard clusters of 

trajectories. 

5. Fault diagnosis in the pressurizer of a PWR 

A case study regarding a pressurizer of a PWR NPP has 

been considered. Figure 9 is a schematic representation 

of the pressurizer system for which a Matlab 

SIMULINK model has been developed, based on the 

application of the mass and energy conservation 

equations to the two regions of vapor and liquid; 

exchanges between the two regions, due to evaporation 

of liquid and condensation of steam, are taken into 

account [Kuridan et al., 1998; Todreas et al., 1990]. The 

system of nonlinear differential equations describing the 

model is detailed in [Baraldi et al., 2010]. 

In order to represent a realistic situation, the simulations 

have been carried out based on the operational 

parameters of a standard PWR pressurizer (Table 1). 
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Furthermore, the total mass of water entering/exiting the 

pressurizer during a surge line mass flow transient has 

been related to the temperature variations of the coolant 

in the Primary Heat Transport (PHT) system. 

In order to test the method on pseudo-realistic data, 

white noise has been added to each signal according to 

engineering considerations on the sensors accuracy 

[Hashemian, 2004; Johnson, 2008]. Table 2 reports the 

standard deviations of the considered noises. 

Fig. 9.  Simplified model of a pressurizer. 

 

Table 1.  Initial conditions of the pressurizer 

 

 Initial condition 

Level 7.22 m 

Liquid temperature 342.1 °C 

Vapor temperature 342.3 °C 

Pressure 150 bar 

 

Table 2.  Standard deviation of sensors noise 

 

 Noise standard deviation 

Level sensor ±0.01 m 

Pressure sensor ±0.5 bar 

Flow sensor  ±0.2 kg/s 

Power sensor ±50 kW 

A block diagram of the model identifying the inputs, 

state of the system, outputs and controller variables is 

shown in Figure 10. The control of the level L and the 

pressure P in the pressurizer is achieved through a 

feedback control scheme which reproduces that used in 

a standard PWR pressurizer. According to the control 

scheme illustrated in [Baraldi et al., 2010], the pressure 

fP and level fL are the controlled signals as well as the 

controller input signals; the sprayers mass flow rate 

spm , and the heaters power Q  are the controller outputs. 

The present case study focuses on some faults which 

can occur to the pressurizer control system and can lead 

to undesired behaviors of the pressurizer. In particular, 

three different classes of faults are taken into account 

(Table 3): 

1) heaters fail stuck with a fixed power output value Q ; 

2) sprayers fail stuck with a fixed mass flow rate spm ; 

3) the communication between the controller and 

actuators fails: sprayers and heaters receive from the 

controller the command to provide a wrong quantity 

of water and heat, respectively. 

Notice that these fault states can be identified only 

during plant transients characterized by an in/out-surge 

mass flow which requires the operation of the control 

system components, whereas they are latent in case of 

stationary operations of the plant. 

To reproduce the pressurizer behavior in case of normal 

and faulty conditions, N = 80 transients have been 

simulated with a time horizon of 1200 s. In all the 

transients considered, the total out-surge flow, msurge, is 

of 1444 kg with a variable flow rate surgem  in the range 

of [-11;-5] kg/s. The initial state of the pressurizer is 

characterized by the parameter values reported in Table 

1. The simulated transients are 20 in normal conditions 

and 20 for each of the three classes of faults. The onset 

of the fault occurs at a random time tf sampled from a 

uniform distribution between 30 s and the time at which 

the out-surge mass flow stops. In case of a class 3 fault, 

the actuators receive from the controller the command 

of providing a quantity of water or heat proportional to 

the correct one multiplied by a random factor, b, 

sampled from a uniform distribution [0;2]. Notice that 

in the case here considered of out-surge transients 

during which sprayers are not called in operation, class 

2 faults are not distinguishable from normal condition 

transients. 

 
Table 3.  Standard deviation of sensors noise 

 

Class 1 Heaters fail stuck with a fixed power output value Q  

Class 2 Sprayers fail stuck with a fixed mass flow rate 
spm  

Class 3 Communication between the controller and actuators fails 

Normal 

conditions 

Heaters, sprayers and communication between controller 

and actuators work in normal conditions 
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Fig. 10.  Inputs, state, controller outputs (gray), controller inputs (black) and sensors outputs of the SIMULINK model of the 

pressurizer. 

As an example, Figures 11-17 show the consequences 

of a class 1 fault (i.e., heaters fail stuck with a fixed 

power output value Q ) on the behavior of the 

pressurizer. The considered fault consists in a blockage 

of the heaters at time t=78 s during the out-surge 

transient of Figure 11 characterized by a surge mass 

flow rate of -9.51 Kg/s. The out-surge flow produces a 

reduction in the pressure, P, and liquid and steam 

temperatures, LT  and VT , which induces the controller to 

turn on the heaters (Figure 13). In case of a nominal 

transient (black continuous line in Figure 15), the 

pressure promptly starts increasing and after 1000 s 

reaches the desired value, whereas in the case of faulty 

transient, due to the reduced power provided by the 

heaters, the pressure recovery is slower and after 1200 s 

its value is still 1 bar lower than the required (gray 

dotted line in Figure 15). 

The signals L , P , LT  and VT  measured during the 

transients are considered for the clustering. Thus, each 

transient is represented by a Z=4 dimensional trajectory. 

As in the previous case study, the information on the 

true class of the trajectory and on the total number of 

classes of faults causing the 80 transients is not used to 

drive the grouping of the transients, but only to verify 

the performance of the proposed methodology. 

 

 

Fig. 11.  Evolution of the surge line flow rate. 

Fig. 12.  Evolution of the liquid level for a nominal transient 

and the faulty transient. 

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                     771



Piero Baraldi, Francesco Di Maio, Enrico Zio 

 

Fig. 13.  Evolution of the heaters power for a nominal 

transient and the faulty transient. 

Fig. 14.  Evolution of the sprayers mass flow rate. 

Fig. 15.  Evolution of the pressure for a nominal transient and 

the faulty transient. 

 

Fig. 16.  Evolution of the liquid temperature for a nominal 

transient and the faulty transient. 

Fig. 17.  Evolution of the steam temperature for a nominal 

transient and the faulty transient. 

 

The application of the methodology described in 

Section 3 leads to the identification of C=4 groups of 

transients. Figures 18-21 show the evolution of the 

pressure in all the transients of clusters 1-4, 

respectively. Clusters 1, 2 and 4 appear to be very 

compact since the signal numerical values of the 

transients belonging to the same cluster are very similar 

and apparently show similar form, slope and curvature 

of the signal trajectories. On the other hand, cluster 3 is 

characterized by different numerical values of the 

signals in the different transients but all trajectories are 

characterized by a linear increase of the pressure which 

allows distinguishing them from the other clusters 

trajectories. This shows that, in this case, the 
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methodology has been able to identify a functional 

similarity between the trajectories. 

In practical industrial cases where the information on 

the true class of the transients is not available, 

understanding and interpretation of the physical cause 

originating the onset of the transients (fault class) can be 

sought by analyzing the signal evolutions in the 

trajectories of the cluster. To this aim, instead of 

analyzing all trajectories in a cluster, experts can focus 

on a most representative trajectory, i.e., the prototypical 

trajectory with largest membership value to the cluster. 

In this respect, Figure 22 shows the evolutions of the 4 

monitored signals for the prototypes of the 4 clusters 

identified. Experts may recognize that the behavior of 

the signals in the prototype trajectory of cluster 4 is very 

similar to that in case of normal conditions. 

Furthermore, the slow linear increase of the pressure 

and temperature signal in the prototypical transient of 

cluster 3 suggests that the heaters are providing an 

insufficient power, i.e., a class 1 fault as previously 

described (Table 3). Cluster 1 trajectory is characterized 

by a slightly faster increase of the pressure than in 

normal conditions: this should lead the expert to 

identifying a class 3 fault caused by the heaters 

providing higher power than required, i.e., a class 1 

fault with b>1. Finally, cluster 2 is characterized by a 

slightly slower increase of temperature and pressure 

than that in nominal case: a possible cause can be a 

lower power provided by the heaters, as in class 3 fault 

with b<1. 

Using the information on the true class of the simulated 

transients, we can verify the correspondence between 

clusters and fault classes. Table 4 reports the number of 

transients of each fault class contained in the 4 clusters 

obtained. Notice that both clusters 1 and 2 are formed 

by transients of class 3 (communication between the 

controller and actuators fails): the former consists in 

faulty transients caused by heaters providing more 

power than necessary (b>1, Figure 23), the latter by less 

power than necessary (b<1, Figure 24). All the 

transients of class 1 (heathers fail stuck at a fixed 

power) are contained in cluster 3, together with 3 

transients of class 3 characterized by a very large 

reduction of the power provided by the heaters (b«1, 

Figure 25). Finally cluster 4 contains all the transients in 

normal conditions, fault class 2 transients and 5 

transients of class 1 characterized by values of b≈1 

(Figure 26). The merging of the normal condition and 

class 2 transients into the same cluster depends on the 

fact that transients of class 2, i.e., due to a failure of the 

sprayers, are not distinguishable from the nominal 

condition transients in the case here considered of out-

surge transients. In fact, in this case, sprayers are never 

called in operation and, therefore, their failure cannot 

affect the transient functional behaviour. Furthermore, 

transients of class 1 characterized by values of b≈1 are 

those in which the actuators receive from the controller 

the command of providing a quantity of water or heat 

practically equal to the correct one and, therefore, show 

the same functional behaviour of the normal condition 

transients. These results show that the methodology is 

capable of distinguishing transients characterized by 

similar functional behaviour of the signals. 

Fig. 18. Pressure profiles of trajectories belonging to cluster 1. 

 

Fig. 19. Pressure profiles of trajectories belonging to cluster 2. 
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Fig. 20. Pressure profiles of trajectories belonging to cluster 3. 

 

Fig. 21. Pressure profiles of trajectories belonging to cluster 4. 

Fig. 22. Prototypical trajectories (noisy thin line) and filtered signals (smooth thick line). 
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Table 4.  Performance of the clustering approach 

 

 Class 1 Class 2 Class 3 
Normal 

condition 

Cluster 1 - - 5 - 

Cluster 2 - - 7 - 

Cluster 3 20 - 3 - 

Cluster 4 - 20 5 20 

 

Fig. 23. Heaters power profile of trajectories belonging to 

cluster 1. 

Fig. 24. Heaters power profile of trajectories belonging to 

cluster 2. 

 

Fig. 25. Heaters power profile of trajectories belonging to 

cluster 3. 

Fig. 26. Heaters power profile of trajectories belonging to 

cluster 4. 

6. Conclusions 

We have developed a methodology for the identification 

of groups of transients with similar behaviour because 

originated by faults of the same type. We have 

combined Haar wavelets transform, fuzzy similarity, 

spectral analysis and Fuzzy C-Means clustering. We 

have shown applications to an artificial case study and 

to the identification of transients in the pressurizer of a 

PWR. 

The main conclusions of the analysis are: 

1) Haar wavelets allow capturing the functional 

behavior, i.e., the shape of the transient; 
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2) spectral analysis allows identifying the number of 

clusters of similar trajectories and extracting their 

most relevant features; 

3) the FCM algorithm allows finding the clusters of 

similar transients and identifying a prototypical 

trajectory for each cluster, which can then be used 

for fault understanding and interpretation. 

A drawback of the methodology is that if new transients 

become available, it is not possible to dynamically 

update the clustering of the trajectories, but we have to 

repeat spectral analysis and FCM clustering on the new 

similarity matrix extended to contain the fuzzy 

similarity between all the new and old trajectories. To 

overcome this limitation, in the future we intend to look 

at an incremental learning framework. 

The continuation of this work will also consider the 

application to real datasets collected during NPP 

operation and the development of an empirical 

classification scheme based on a supervised technique 

which exploits the cluster results gained from the 

analysis here presented. 
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