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Abstract 

After analyzing the common attacks for some software systems, a dynamic software behavior verification model 
related with the unchecked input data based on software analysis and dynamic slicing technology is proposed. 
Regarding a statement as a basic analysis unit, and the information flow as the main behavior of the software, the 
direction of the information flow of each statement is defined as its behavior specification, the information flow 
verification problem is converted into the verification for assigning variable address’s validation. During the 
execution, behavior of the statements that use untrusted variable is monitored to verify whether the address 
modified by the statements belongs to the specification or not. If it is consistent with the specification, the 
execution of the statement is permitted. Based on the behavior model proposed, a method of extracting of the 
behavior specification was researched and a method of dynamic verification was designed. In order to prove for 
efficiency and performance of the model, the input data related behavior acquiring framework was implemented, 
and a set of tests were conducted. Preliminary results show the validity of the software’s behavior model. 

Keywords: program, dynamic, verification, information flow 

1. Introduction 

Software’s behavior may be violated when existence of 
the vulnerability is triggered by attackers. Much 
vulnerability in various applications is caused by 
permitting unchecked input to take control of the 
application, which an attacker will turn to unexpected 
purposes. If an attacker tampers with important data of 
the process using existing vulnerability when the 
software is running, such as modification of a function’s 
return address, a function pointer, etc., it can interfere 

with or change the behavior of the software’s flow 
control resulting in damage to the software’s normal 
execution. For example, improper input validation 
accounts for most security problems in database and 
web applications.  
We first describe three common types of software 
security attacks aiming to provide a basis for our 
presented model.  
(1)Buffer overflow is defined as the condition in which 
a program attempts to write data beyond the boundaries 
of pre-allocated fixed length buffers. This vulnerability 
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can be utilized by a malicious user to alter the flow 
control of the program, even execute arbitrary pieces of 
code. This vulnerability arises due to the mixing of the 
storage for data (e.g. buffers) and the storage for 
controls (e.g. return addresses): an overflow in the data 
part can affect the control flow of the program, because 
an overflow can change the return address.  
(2)The format string vulnerability in a program comes 
from incorrectly using the printf() series functions. The 
attacker can exploit this vulnerability and tamper with 
any data within its memory address. There are lots of 
ways to possibly exploit user-controlled format strings 
in printf(). These include buffer overruns by creating a 
long formatting string (this can result in the attacker 
having complete control over the program), conversion 
specifications that use unpassed parameters (causing 
unexpected data to be inserted), and creating formats 
which produce totally unanticipated result values. If an 
attacker controls the formatting information, an attacker 
can cause all sorts of mischief by carefully selecting the 
format.  
(3)Integer overflow is usually caused by unchecked 
input data in arithmetic calculation and the results of 
operations have been used for a number of important 
operations subsequently, such as memory allocation or 
cache index, etc., which could be exploited by attackers.  
Lack of necessary verification to the input data and 
protection to information flow in some library functions 
and pieces of program code is the main cause. When 
malicious users exploit the software security 
vulnerabilities to conduct an attack, an abnormal 
information flow might occur and lead to the variable or 
address-space information flow inconsistent with their 
expected use.  
The optimal approach to prevent attacks caused by 
unchecked input data would be to eliminate the 
vulnerabilities in the affected applications. To this end, 
an application must properly validate all input data. In 
order to reduce the code amount that needs to be 
examined when validating the insecure flow caused by 
input data, we focus on modifying the outcome of 
specific conditions by narrowing the search space to 
include only sensitive input data.  
We consider any data that comes from an untrusted 
source of input as untrusted, such as input from network 
sockets, since for most programs the network is the 
most likely vector of attack. We also consider inputs 

from other sources untrusted, e.g., input data from 
certain files or stdin. 
Since input data is usually stored in the form of 
variables in a program, and its value is gotten by the 
assignment operation which may cause the information 
flow. Firstly this paper cites the definition of the 
information flow in Ref.1, when data value stored in the 
variable x is spread to the variable y directly or 
indirectly, e.g. y = x + 1, it is considered that there is 
information flow from variable x to variable y. We 
regard legal information flow as those assignment 
operation only to the set of variables and addresses 
previously-determined by static analysis. Furthermore, 
we focus on this kind of information flow and regard it 
as expected behavior in this paper. We first make static 
analysis of the software source files to obtain expected 
information flow. Afterwards, during software runs, we 
track the information flow among statements and verify 
whether or not the information flow is consistent with 
expectations. If they are consistent with each other, the 
current process state can be considered trusted, 
otherwise, an alarm is triggered.  
For ensuring software’s behavior to act as its 
expectation, the goal of this paper is to constructs a 
software behavior model related with the unchecked 
input data for identifying and tracking the insecure 
information flows based on software analysis and 
dynamic slicing technology. Whenever an attempt to 
relay on such information is detected, the user is warned 
and given the possibility to stop the transfer.  
Dynamic slicing technology computes a conservative 
estimate of all statements in a program that are either 
affected by or affecting the value of a variable at a 
specific program point and for a given execution, which 
is the set of statements that propagated information 
along the illegal flow. 
To summarize, the contributions of this paper are as 
follows: 
(1) Constructing an software behavior model related 
with the unchecked input data by combining software 
dynamic slicing technology and a complementary static 
analysis that prevent attacks by monitoring the flow of 
sensitive information when program executes. Our 
model need only take into consideration those 
statements in a program that either directly or indirectly 
process untrusted input data, so the overhead incurred is 
reduced. 
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(2)The development of input data related behavior 
acquiring framework capable of performing validation 
of untrusted data during software executes. 
The rest of this paper is structured as follows. Section 2 
contains a brief review of some related research. In 
Section 3, we describe our model and its main 
components. Section 4 describes the dynamic 
verification and its implementation issues, respectively. 
In Section 5 we apply our approach to some executable 
programs and verify its performance by some common 
tools. We summarize our plan for future works in 
Section 6. 

2. Related works 

There has been some research on software expected-
behavior models. In 1996, Forrest et al. proposed a 
behavior model N-gram2 based on a short sequence of 
system calls. Inspired by that, other research based on 
system calls sprang up. Ref.3 proposed a model 
combining static analysis and dynamic binding, which 
had a more powerful capability of detection and lower 
rates of false alarm. Ref. [4] proposed a model utilizing 
FSA to construct a calling sequence model, which can 
describe the structure of loop and branch better. Ref.[5] 
abstracted system calling sequence and information of 
context from practicing software over and again, and 
defined the difference between two different running on 
information of context as behavior model. It 
significantly increased accuracy and lowered rates of 
false alarm compared to N-gram model. Ref.[6] 
proposed a Control Flow Integrity (CFI) model based on 
function call relations. CFI constructs function call 
graph by static analyzing function call relations, and 
abstracted normal relations as expected behavior model. 
By rewriting binary execution files, CFI added a piece 
of codes into function calls and returns jump 
respectively, then checked the real jump if matched the 
expected. If not, it recognized the jump as abnormal 
behavior. Ref.[7] proposed a software information flow 
expected model. It marks data coming from outside 
untrusted and traces the transition of that data. 
According to its defined security strategy, it monitors 
trust level assigned by the data to protect untrusted data 
used for address transition, format string, system calling 
parameters, etc. Ref.[8] also proposed an information 
flow behavior model which protects software control 

flow integrity from untrusted data contaminating control 
data. It ensures software control flow trusted by 
ensuring the integrity of control data. 
This paper considered that making a further analysis on 
statements or instructions and redefining expected 
information flow behavior could increase accuracy of 
description on information flow, and lower miss reports 
rates during dynamic verification. As our information 
flow behavior model treated information flow and 
transition as its behavior, so describing the process by 
data current state can reflect process’s real state 
accurately and implement dynamic verification, and are 
able to against a wide range of attacks. 

3. Description of expected behavior model 

Before further describing our expected behavior model, 
we give the following suppositions: (1)We suppose that 
only the verified application program includes an 
untrusted input and that the input is known beforehand. 
Other inputs are thought highly trusted. (2) We focus on 
a program written in C language. 

3.1. Some Definitions  

According to the above analysis, the existence of the 
vulnerability does not affect the normal function of the 
software unless triggered by the malicious user through 
the elaborately-designed input data. Therefore, it is not 
necessary to focus on each of the statements in a 
program. On the contrary, for reducing overhead we 
need only take into consideration those statements that 
either directly or indirectly process untrusted input data. 
To illustrate this, some definitions are described as 
follows:  
Definition 1 Supposing s1, s2 are statements in program 
p. If statement s1 uses the variable defined in the 
statement s2, and the variable in any path from s2 to s1 
has not been redefined, we define statement s1 as data 
dependent on statement s2, denoted for s1fs1, and f 
*will be defined as the transitive and reflexive closure 
of f . Among them, “defined” refers to the operation 
of variable assignment. Accordingly, for statement s in 
program p, set FS(s)={sj|sf*sj,sjS} denotes the 
statement set dependent on statement s directly or 
indirectly, where S is the set of all statements in 
program P. 
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Definition 2 Assuming the program P has uin which 
only contain untrusted input data. The statement set that 
read data from uin in the P is denoted as 
{s1,s2,..,si,..,sn}.According to the definition of FS(s), 
FS(uin) is the statement set in which the statements have 
referenced untrusted input data in P directly or 
indirectly. According to the related theory of 
information flow security, for any statements or 
instructions, if the reference data is untrusted, the 
defined and generated data by the reference data is also 
considered untrusted. Because of all the statements in 
FS(uin)  have referred untrusted data and they are likely 
to produce abnormal information flow, the set of FS(uin) 
is the statement set that is urgently in need of 
verification. For ease of description, the statement in the 
set of FS(uin) is referred to as the concerned statement in 
this paper. 
Definition 3 Assuming the assigned variables in any 
statement of program P is denoted by def(s) and 
program P reads data from untrusted input uin, then 
FS(uin)={s1,s2,..si,..,sn} is the set of statements that have 
used untrusted input uin directly or indirectly, the set 
{(s1,def(s1)), (s2,def(s2)),…,(si,def(si)),…,(sn,def(sn)) } is 
defined as software’s expected behavior set.  
Definition 4 For each statement si of 
FS(uin)={s1,s2,...,si,...,sn}, if and only if the variable si is 
assigned when the statement belongs to the set of def(si), 
the execution of the si in the current context is 
considered trusted and the current state of the process is 
considered trusted. 

3.2. Extraction model of the concerned statement 

By applying program static analysis techniques into the 
source files, we can construct the expected behavior 
defined above. This process includes two main parts. 
The first is to extract the concerned statement set, and 
the second is to analyze the variable set in which each 
variable may be assigned by one or more statements in 
the concerned statement set. 
As we know, the acquired program slice set by static 
analysis techniques is the program subset which is 
composed of the partial statements and the control 
predicate expressions in the program. Among them, the 
backward slice’s statements and the control predicate 
expressions affect the definition or the referrence of the 
value of variable v in a certain location p of the program 

directly or indirectly, namely the value of v at location p 
depends on the statements of the slice. By contrast, the 
statements acquired by forward slice techniques and the 
control predicate expressions rely on the definition the 
value of variable v in a certain location p of the program 
directly or indirectly, tuple <p,v> is called the slice 
criterion, the location p is generally expressed by the 
source filename and the line number. The dependences 
in the definition of program slicing include control 
dependence and data dependence.  
According to above definition, we use the forward 
slicing technology to extract our concerned statement 
set. The example of forward slicing is shown in Fig.1, 
Fig.1(a) is the source program, Fig.1(b) is its forward 
slicing set based on the slice criterion <statement 1, 
variable n>. 

1 scanf("%d",&n);

4 while (n>0){
5    s=s+n;
6    p=p*n;
7    n=n−1;

}
(b)

 
 Our model needs to remove the untrusted statements 
and predicate expressions dependent on the untrusted 
input data in the forward slicing set. We only extract 
statements possessing data dependence. From the point 
of view of the algorithm, the program slicing is a 
graphic accessibility algorithm. Beginning with the slice 
criterion statements, the algorithm traverses along 
dependence edges of the data flow between the 
statements, dependence edges of the control flow and 
other auxiliary edges of the software system dependence 
graph (taking statement as node and taking dependence 
as edge constitute oriented graph)  to search statements 
in the slice. Therefore, by shielding dependence edges 
of control flow during traverse, we can filter out the 
control dependence on untrusted input statements and 
control predicate expressions.  
In general, the process is described as follows: 
Assume that the program P reads data from untrusted 
input uin, the statement set which reads data from uin in 
P is denoted by {s1,s2,..si..sn}. For any statement si 
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among them, and variable set which reads data from si 
denotes as Vari={v1,v2,..vi,...vm}.  
The steps of the extraction the concerned statement set 
are as follows: 
(1) Calculating program slicing. For any vVari taking 
<si,v> as the slice criterion, obtaining the statement set 
slicing(si,v) through forward slice analysis to the source 
file. 
(2) Calculate FS(si) : 
 FS(si)=slicing(si,v1)slicing(si,v2)…slicing(si,vm). 
(3) Calculate FS(uin):  
FS(uin)=FS(s1) FS(s2)  …FS(sn).  
FS(uin)  is what we want. 

3.3 Extraction Assigned Variables 

After we get the concerned statements, we need to 
analyze and obtain the variable set in which each 
variable may be assigned by one or more statements. 
As we know, variables can be divided into global 
variables and local variables, and variable identifiers 
cannot be the same within the local scope. Therefore, 
we describe a variable in the form of <scope, variable 
identifier>, and the scope of local variables is expressed 
by its function name. On the other hand, statements 
assign the value of variables in two ways: one is the 
direct assignment, the other is assignment by indirect 
pointer dereference. For the first way, traversing the 
source file can determine variable identifiers as well as 
the scope of a variable. For the second way, variable 
assignment is in an indirect way through pointer 
dereference. It is possible that the same pointer in the 
software code may be used in many places and may 
point to a number of different variables successively. 
Therefore, we need analyzing the pointer and calculate 
the set of variables to which can point and to determine 
the variables that are assigned through the pointer 
dereference. 
Traversal of the source file can be achieved by 
traversing its Abstract Syntax Tree(AST). An abstract 
syntax tree is one kind of middle expression of the 
program, and can express grammar structure quite 
intuitively and contain all static information in the 
source program. It is easy to carry out the traversal and 
the inquiry to AST. 
The analysis process of assigning variables is 
summarized as follows:  

(1) Extract variable identifier of assignment statement 
from the AST  including a pointer variable.  
(2) Determine the scope of the variable identifier by 
traversing AST. 
(3) Use points-to analysis to compute the variable set to 
which pointer variables may point, and translate the 
pointer dereference into the corresponding variables set. 
Next we mainly discuss the model related with indirect 
pointer dereference. 

3.3.1 Extract the assigned variable identifier 

Variables can be divided into basic type variables, 
pointer variables, arrays, structures and other 
aggregated-type variables. For basic type variables, we 
extract the variable identifier; for pointer variables we 
extract the variable identifier and the number of the 
reference of the pointer’s solution; for arrays, structure-
type variables, we uniformly extract the variable 
identifier without distinguishing between the array’s 
elements and structure’s member variables. 
Program’s statements can be divided into three 
categories. According to the different the types of 
statement, the correspondent method of the extracting 
variable identifier is described as follows. 
(1)Expression statement. Expression statement is 
composed of expression and semicolon, the usual form 
is “expression;”. Expression statements are like a = b 
+1; i ++; etc.. After statements are found in AST, 
assignment variable identifier can be extracted by the 
structure of AST directly.  
(2)Control statement. Control statements are used to 
control the execution order of the program and can be 
divided into following three categories: 

 ① branch statement. It includes if statement and switch 
statement. Because if statements and switch statements 
are used for judging conditional execution, the assigned 
variable set is empty. 
② loop statement. It includes for statement, do while 
statement and while statement. Do while statement and 
while statement are conditional judgment statements, so 
the set of the assigned variable is empty. The form of 
for statement is like (init,cond,increment). init and 
increment may be any expression statement, but 
generally only be used to initialize variable of loop 
control and calculate increment. We suppose init and 
increment only contain the related initialization of the 
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variable of the loop control and the increment 
calculation, therefore variable set assigned by for 
statement is loop control variable.  
③ jump statement. It includes break statement, continue 
statement, goto statement and return statement. The 
assigned variables by break, continue, goto statement is 
empty set. Accordingly, the assigned variable by return 
statement is an empty set or a temporary variable 
assigned by the compiler. 
(3) Library Function Calling Statement. Calling a 
library function needs special treatment. Library 
functions usually transfer pointers as parameters or 
assign variables by the address of variables, such as 
output parameters dest of the function strcpy (char* 
dest,char* src). AST can only offer variable identifier 
information which acts as parameters, and it cannot 
provide information of output parameters and input 
parameters from parameter list of the library function. 
Therefore, we introduce the explanatory document for a 
standard library function, in which the output 
parameters of the library function are marked out. 
Combining with the variable identifier that AST 
provides and making use of the statement of the 
parameter list, we can obtain the assigned variable 
identifier of the call library information. The parameter 
list of a library function is described in Table 1. One 
represents output parameters, and Zero represents input 
parameters. 

Table 1. express of some output parameters 

 Library Function Statements 

1 char* fgets(char* str,int length, 
FILE* fp) 

fgets 100 

2 void* memcpy(void* dest,void* 
source,unsigned count) 

memcpy 100

3 int read(int fd,void* buf,int count) read 010 
4 char* strcpy(char* str1,char* str2) strcpy 10 
5 char* strtok(char* str1,char* str2) strtok 10 

3.3.2 Determine the scope of a variable 

The scope of a variable is divided into global scope and 
local scope. For the local scope, local variables mask 
any global variables of the same name. Therefore, from 
the scope of a function where the statement begins and 
according to the identifier variable, we will traverse in 
turn from inside to outside until global scope to search 

the definition of the variable to determine the scope of 
the variable. Within this set, the formal parameters of a 
function and its locally-defined variables are considered 
to have function scope. 

3.3.3 Pointer analysis 

Pointer analysis9,10 is a kind of static analysis 
technologies. It can calculate the set of storage locations 
for each pointer variable of source file, including global 
variables, local variables and the space’s dynamic 
allocation. Andersen algorithm is one of representative 
pointer analysis algorithms. It is more balanced in terms 
of accuracy and efficiency and suitable for analyzing 
large-scale software. Therefore, we chose it to analyze 
pointer variables. For the fragment of program in Fig.2, 
in statement 8, the Andersen algorithm calculates 
pointer p, q. For pointer variable p, its pointed variable 
set is {x,y,malloc_6}; For pointer variable q, its pointed 
variable set is {y};  
We assume that the value returned by the function 
malloc() is a dynamically allocated heap address. 
Because some applications use pointers that can have 
multiple targets, we need to analyze these multiple-
target pointers. Our analysis method is described as 
follows: assuming that program has a pointer variable p, 
p points to the set of variable pts(p) = {p1,p2…pi…pn}，
among them, p1,p2…pi…pn are all  pointer variables. 
When the statement s assigns to **p, then the variable 
set that s can assign is pts(p1)pts(p2)…pts(pn).The 
assignment of double pointer variable is shown in the 
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fragment of program in Fig.3. After the analysis of 
Andersen algorithm, pointers m, p, q points to a set of 
variables. For variable m, its pointed variable set is 
{z,y}; For variable q, its pointed variable set is 
{x,malloc_2,y}; For variable p, its pointed variable set is 
{m,q}. In statement 6, pointer p points to a set {m,q}, 
therefore, when assigned to **p,we can use the set  
pts(m)pts(q),namely,{x,malloc_2,y,z}. 
 

3.3.4 Model optimization 

We should try to minimize the time and space overhead 
in the phase of dynamic verification. The results of 
existing static analysis show that we can acquire the 
safety statements (statements not vulnerable to 
malicious intrusion) in the program through static 
analysis. If a statement assigning a variable meets (1) 
and (2) of the following requirements simultaneously, or 
meet only (3) we believe that the statement is safe: 
(1) It only writes into a fixed address. Address written 
by statement is fixed rather than calculated dynamically. 
There are two types of fixed addresses, one is fixed 
logical address, such as global variables of basic types; 
another is fixed offset address, such as local variables of 
basic types. 
(2) It only writes a fixed number of bytes. The statement 
may write only a finite number of bytes of data. For 
example, the assignment of variable type belongs to 
integer, long integer and so on. 
(3)Temporary variable. The assigned variable is a 
temporary variable that the compiler allocates. 

Based on the above three conditions, our optimized 
strategy is to remove the following two types of 
statements from the concerned set of statements: 
(1) Control statements. According to the above analysis, 
the set of variable which a control statement can assign 
is an empty set or only contains the loop control 
variable or temporary variable, and the loop control 
variable is assumed to be of a basic type, either global 
or local variable, so we can think of these as safe 
statements. 
(2) Expression statements which assign variables of 
basic types directly, such as a=b+1,i++. They accord 
with the above safety conditions and don’t produce 
abnormal information flow, so we can consider they are 
safe statements. 

3.3.5 Variable address convention 

The variable extracted in the previous section is 
expressed as the form of <scope,variable 
identifier>.However, it is based on source-level 
representation, and cannot be directly used for dynamic 
verification. In order to achieve dynamic verification 
easily, source-level representation needs to be converted 
into actual memory addresses. Global and local 
variables have been allocated addresses at compile time, 
so the address can be obtained from the debugging 
information directly. Heap space isn’t allocated address 
at compile time, but is assigned addresses dynamically 
by address of functions call such as malloc(). The 
detailed information is described as follows. 
 (1)Global variable. Expressed as <address,count>, 
address is the logical address of a variable and count is 
the length in bytes. 
(2)Local variable. Expressed as <fun,offset,count>. fun 
is the scope of a variable expressed as the function's 
name;offset is the offset of variable related to the stack 
pointer (ebp) of function fun (),count is the length in 
bytes. 
(3)Heap space. Expressed as <fun,call_offset>. fun is a 
function which includes the call statement of malloc(); 
call_offset is the offset of malloc()’s call instruction 
relative to the first address of function fun (). 

3.3.6 Writing statement and its convention 

As described above, the statement is on source-level 
representation and cannot be directly used for dynamic 

int x,y,z;
int* q;
int* m;
int ** p;

1. q = &x;
2. q = malloc( );
3. p = &m;
4. m = &z;
5. *p = &y;
6. p = &q;
7.  **p = ; 
8.  *q =  ;

Fig.3. Multi-pointer analysis
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verification. Source-level representation needs to be 
converted into corresponding statements and expressed 
by its address. What we are concerned with in this paper 
is the variable assignment behavior, so we are 
concerned only with those statements which write data 
into memory. These statements are called writing 
instructions here. Therefore, we need to analyze writing 
statements and their corresponding addresses taken from 
debugging information. First, we locate a group of 
instructions corresponding to concerned statements after 
compilation, then filter out other types of instructions 
and retain the writing instructions and call to the 
standard library. Finally, we extract their address. 
Writing instructions and call instructions to library 
functions are expressed as <fun,offset>, fun is a function 
which contains the instruction, offset is the offset 
address of the instruction relative to the first address of 
function fun()’s code. 

4. The dynamic verification   

After obtaining the model of the software’s expected 
behavior, it is necessary to conduct verification 
dynamically during runtime. Monitoring the actual 
behavior of software through obtaining the assignment 
behavior of concerned statements and extracting its 
assignment memory address, then comparing them with 
the corresponding expected statements’ behavior are 
main tasks. If observed behavior is consistent with 
expected one, we believe that the current state of the 
process is trusted, otherwise it’s untrusted. However, 
there are two difficulties in realizing measurement. 
(1) Determining verification point. Verification point is 
the location or opportunity to verify the behavior of 
software during runtime. We focus on writing 
instructions and call instructions of library functions in 
this paper. 
(2) Determining maintenance points. The address of 
local variables changes constantly with the execution of 
call and exit function. The address may be dynamically 
allocated and released continually. Therefore, along 
with the running of software, we must update the 
expected set of address in a timely manner and ensure 
the correctness of expected data. The location or time of 
updating and maintaining a variable’s address is 
referred to as expected data maintenance point in this 
paper. 

4.1 Maintenance for expected data 

Initially, we set required expected data maintenance 
points according to the information of variables which 
can be assigned in the expected behavior. If the software 
encounters an expected data maintenance point when 
running, it will update the address information 
accordingly. 
Maintenance points for expected data include the 
following categories. 
(1) call and exit of function. During software runtime, 
the expected address of a local variable needs to be 
updated when function is invoked or exits. 
As mentioned above, expected assigned local variables 
can be expressed as the form of <fun,offset,count>, fun 
is a function that defines variables. For any local 
variable v<fun,offset,count> in the expectation set, the 
address of variable v in the expected set needs to be 
reset when function fun() is called. When fun() exits, the 
address range of variable v needs to be removed from 
the expected set. 
(2) Allocation and release of heap space.  During 
software runtime, heap space is allocated and released 
through calling malloc() and free(). Similarly, malloc() 
is expressed in the form of address<fun,call_offset>, so 
the expected address set needs to be updated after 
malloc()  located in address <fun,call_offset> executes. 
The release of address space needs to be removed from 
expected address set on return from function free (). 
(3) The loading of dynamic link library. The software 
cannot do without the support of libraries. In addition to 
visiting its own local variables, it also visits the dynamic 
distribution of heap space; part of the link library also 
defines global variables. They are stored in the .bss 
section or .data section of link library.  As we cannot 
analyze the source code of library functions in the static 
analysis phase, we do not know whether global 
variables are assigned by library functions. According to 
the read-write right of the .bss segment and .data 
segment, our model considers the updated address range 
belonging to segment as the address that can be 
assigned of library functions. When the libraries are 
loaded and linked into the process space, their address 
range of sections is added to address set that can be 
assigned by library functions. This paper assumes that 
the program only links the runtime library glibc of C 
language. 
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4.2 Address Verification 

When the monitored software is executed to a 
verification point, it will extract the writing memory 
address of program and verify whether or not the 
address belongs to an expected address set. As 
mentioned above, verification points of information 
flow’s behavior include two types of instructions. 
(1) For writing instructions.  When a writing instruction 
is executed, it dynamically obtains the actual memory 
address and byte count written by the instruction, and 
finds the entry in the memory address set that the 
instruction can be assigned. If the actual writing address 
does not belong to any address range of set, we believe 
that it is inconsistent with expectations. 
(2)For the function call instructions. Because we are 
unable to analyze internal assignment behavior of 
library functions, we consider library functions as a 
whole. We do not check their assignment behavior for 
internal variables and only ensure that other variables 
aren’t written into the process illegally. During the 
running process of library functions, all written 
addresses during recording are verified after returning 
from library functions. The addresses written by the 
library functions can be divided into the following 
categories: 
(1)The local variable address of library functions. If 
writing address is the local variable address of library 
functions or belongs to the local variable address of 
function call in its internal implementation, we will 
believe that the assignment is legal and doesn’t verify 
any more. 
 (2) The address of the heap area. If the writing address 
belongs to an allocated address in the heap, we will first 
check whether the address belongs to the allocated heap 
space of application-defined functions. If not, it 
indicates that it is the internal heap space of library 
function, and we believe that the assignment is legal. 
Otherwise, we will find in the address set that can be 
assigned in the measurement points and verify whether 
the writing to heap space belongs to the expected 
address set. 
(3) Other Address. If the writing address doesn’t belong 
to the address of above (1)(2), for example, the global 
variables of process, the local variables of application-
defined functions and so on, we will scan the address set 

that can be assigned in the verification points and verify 
whether the address belongs to the expected address set.  

5. Analysis and Tests 

This paper performed the test and evaluated on several 
software implemented in the C programming language 
under the Linux operating system, kernel version 2.6.18. 
For the sake of simplicity, accuracy as well as 
effectiveness, this paper utilized the tool ROSE10 to 
construct the expected behavior model. Meanwhile, we 
used dynamic instrumentation tool Dyninst11 to achieve 
dynamic verification of software behavior during 
runtime. Fig.4 shows the main modules of our test 
framework. There are two main parts including static 
analysis and dynamic measurement. The related 
modules of static analysis analyze source files and 
construct expected behavior based on feedback from 
ROSE which outputs software’s expected behavior and 
stores it into files. In the meantime, we developed 
dynamic instrumentation tools by combining the 
Dyninst which injects codes into target codes to monitor 
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the execution of process. The function of each module is 
described as follows. 
(1) Extract measurement statements module. It reads 
untrusted input statements from configuration files and 
utilizes the program slicing techniques to extract 
statements that directly or indirectly rely on the 
untrusted statement set. 
(2) Analyze assignment operation module. It reads the 
variable identifier of assignment operation from the 
abstract syntax tree, and then analyzes the scope of the 
identifier to identify the variable. By pointer analysis, it 
calculates each possible variable set that can be 
referenced by the pointer, and then converts pointer 
dereference to actual variables. 
 (3) Optimization module. It traverses statements 
associated with abstract syntax trees and determines the 
secure statement, and its assignable variables set. Only 
control statements and expressions that make 
assignment to basic types are removed by this process. 
 (4) Analyze address module. It converts statements and 
variables of source codes into statements and address 
respectively through reading DWARF12(Debugging 
With Attributed Record Formats) by use of  ROSE. 
(5) Information flow behavior instrumentation module. 
It loads process by means of tool Dyninst and analyzes 
expected behavior of software information flow, then 
locates verification points and data maintenance points 
of executable files by calling Dyninst. Then, it injects 
address authentication functions into verification points 
and maintains expected data functions on maintenance 
points, respectively. After configuration, it calls the 
Dyninst interface to start the process and monitors 
software runtime. 

(6) LibChkWrOp: LibChkWrOp is a dynamic link 
library of C programming language. A series of 
functions in the library implement expected data 
management, address authentication, initialization, etc. 
We tested the expected behavior model by using some 
test programs with artificial security vulnerabilities 
including stack buffer overflow, heap buffer overflow 
and format string attack. Fig.5 shows our test program. 
It treated inputs from stdin as untrusted data. 
(1) Stack buffer overflow. In the code fragment shown 
in Fig.5 (a), statement 3 had a vulnerability of stack 
buffer overflow. If it inputs 18 bytes into buf and covers 
the return address of foo() with the entrance address of 
fun(), the function foo() would be unable to return to its 
correct address after execution. 
(2) Heap buffer overflow. In the code fragment shown 
in Fig.5 (b), statement 7 had a vulnerability of 
heapbuffer overflow. If it inputs 64 bytes into statement 
7, and writes address of fun() into the four bytes 
between (p+60) and (p+63), writing the value of ((&f)-
12) into the four bytes between (p+56) and (p+59), 
respectively when program executes to statement  8, the 
buffer “p” would be released. As addresses “p+56” and 
“p+60” happened to be the pointer address of heap free 
fields doubly linked list, so when free field merged after 
“p” released, “*(((&f)-12)+12)=(fun)” equals “f=fun”, 
pointer “f” has been tampered. When execution reaches  
statement 9, the program’s executing flow of process 
has been violated. 
(3) Format string attacks. In the code segment shown in 
Fig.5 (c), statement 6 had a vulnerability of format 
strings. The address of global variable i is “0x8049604”. 
If we input string “\x04\x96\x04\08%d%d%d%d%n” 

Stack buffer overflow
1. void fun(){return;}    
    void foo(){
2.      char buf[10];
3.      scanf("%s",buf);
4.      return;
     }

     int main(){
5.      foo();
6.      return;         
7.   }

(a)

Heap buffer overflow
1.  void foo(){  return;   }
2.  void fun(){ return;  }
3.  void (*f)();
    int main(){
4.    char* p;
5.    f = foo;
6.    p = malloc(40);
7.    gets(p);
8.    free(p);
9.    f();
10.  return;
     }

(b)

Format String Attack
1.  int i;
2. void foo(){return;}
     int main(){
3.     char  buf[100]
4.     i= 0;
5.     scanf("%s",buf);
6.     printf(buf);
7.     if(i==0)
8.        foo();
9.     return;
     }

(c)

Fig.5.  Some Test 
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into buf via function scanf() at statement 5, then while 
performing function printf() at instruction 6, the value 
of i would be tampered as call statement 8, and branch 
statement 7 would be tampered subsequently. 
Test results showed that our model could detect 
abnormal information flow in functions scanf(), gets() 
and printf(). Furthermore, we tested model effectiveness  
with two practical examples, which treated remote input 
as untrusted: 
 (1) wu-ftpd format string vulnerability. wu-ftpd is a 
commonly used server on Linux, and offers basic and 
simple ftp service. In version 2.6.0 or earlier of wu-ftpd 
server, it had the format vulnerabilities on calling 
function “vsnprintf()”. Attackers could use the 
vulnerability to get super-user permissions by rewriting 
user login ID, or to tamper with function return 
addresses to change program control flow. Our test 
tampered function return address. 
(2) Openssh integer overflow vulnerability. Openssh is a 
set of connection tools for safe access to remote 
computers. Before version of 2.9, Openssh has an 
integer vulnerability in the process of authenticating 
remote accesses. We used a 32-bit integer to assign a 
16-bit integer variable which is the parameter of 
function malloc().After the variable overflowing by 
malicious input, attackers can tamper data in any 
address. Our test used this vulnerability to tamper the 
value of decision variables of branch statements in 
authentication function, and that would allow users 
attempting a connection to avoid the security 
authentication mechanism.  
Test results showed that our expected behavior model 
did detect the two security attacks above. 

6. Conclusion and future works 

We propose a model to verify whether the program 
follows its expected behavior during execution. Aiming 
at its limitation, we plan to investigate the following 
aspects   in the future: 
(1)This paper treats aggregate-type variables as a single 
unit during assignable-variables collection and 
statement analysis and does not distinguish members of 
aggregated types. This strategy is far easier to 
implement, but leads to inaccuracy, which could cause 
miss-reports. How to increase accuracy and lower miss-
reports is a topic for future study. 

(2)During the analysis period, we fail to analyze 
assignment behavior of library functions effectively for 
lack of source files for library functions. Therefore, the 
default assumptions of assignment to internal variables 
of library functions are correct, which could also cause 
miss-reports. At the same time, this paper relies on 
pointer analysis techniques to construct information 
flow expected behavior. For the sake of execution 
effectiveness, the pointer analysis techniques might 
cause some loss of accuracy, the reported results are 
generally larger than actual one because it enlarges the 
range of assignable addresses. That could also cause 
miss-reports. We will give further research on these 
issues a high priority. 
(3)Follow-up research will conduct validation 
experiments on larger data sets. 
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