

A Dynamic Verification Model based on Information Flow Constraint

Dan Wang
College of Computer Science,Beijing University of Technology

Beijing 100124,China

Yan Lu, Lihua Fu, Wenbing Zhao
College of Computer Science,Beijing University of Technology

Beijing 100124,China

E-mail:wangdan@bjut.edu.cn

www.bjut.edu.cn

Abstract

After analyzing the common attacks for some software systems, a dynamic software behavior verification model
related with the unchecked input data based on software analysis and dynamic slicing technology is proposed.
Regarding a statement as a basic analysis unit, and the information flow as the main behavior of the software, the
direction of the information flow of each statement is defined as its behavior specification, the information flow
verification problem is converted into the verification for assigning variable address’s validation. During the
execution, behavior of the statements that use untrusted variable is monitored to verify whether the address
modified by the statements belongs to the specification or not. If it is consistent with the specification, the
execution of the statement is permitted. Based on the behavior model proposed, a method of extracting of the
behavior specification was researched and a method of dynamic verification was designed. In order to prove for
efficiency and performance of the model, the input data related behavior acquiring framework was implemented,
and a set of tests were conducted. Preliminary results show the validity of the software’s behavior model.

Keywords: program, dynamic, verification, information flow

1. Introduction

Software’s behavior may be violated when existence of
the vulnerability is triggered by attackers. Much
vulnerability in various applications is caused by
permitting unchecked input to take control of the
application, which an attacker will turn to unexpected
purposes. If an attacker tampers with important data of
the process using existing vulnerability when the
software is running, such as modification of a function’s
return address, a function pointer, etc., it can interfere

with or change the behavior of the software’s flow
control resulting in damage to the software’s normal
execution. For example, improper input validation
accounts for most security problems in database and
web applications.
We first describe three common types of software
security attacks aiming to provide a basis for our
presented model.
(1)Buffer overflow is defined as the condition in which
a program attempts to write data beyond the boundaries
of pre-allocated fixed length buffers. This vulnerability

International Journal of Computational Intelligence Systems, Vol. 6, No. 4 (July, 2013), 712-723

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 712

willieb
Typewritten Text
Received 7 January 2012

willieb
Typewritten Text
Accepted 14 February 2013

Dan Wang,Yan Lu,Lihua Fu,Wenbing Zhao

can be utilized by a malicious user to alter the flow
control of the program, even execute arbitrary pieces of
code. This vulnerability arises due to the mixing of the
storage for data (e.g. buffers) and the storage for
controls (e.g. return addresses): an overflow in the data
part can affect the control flow of the program, because
an overflow can change the return address.
(2)The format string vulnerability in a program comes
from incorrectly using the printf() series functions. The
attacker can exploit this vulnerability and tamper with
any data within its memory address. There are lots of
ways to possibly exploit user-controlled format strings
in printf(). These include buffer overruns by creating a
long formatting string (this can result in the attacker
having complete control over the program), conversion
specifications that use unpassed parameters (causing
unexpected data to be inserted), and creating formats
which produce totally unanticipated result values. If an
attacker controls the formatting information, an attacker
can cause all sorts of mischief by carefully selecting the
format.
(3)Integer overflow is usually caused by unchecked
input data in arithmetic calculation and the results of
operations have been used for a number of important
operations subsequently, such as memory allocation or
cache index, etc., which could be exploited by attackers.
Lack of necessary verification to the input data and
protection to information flow in some library functions
and pieces of program code is the main cause. When
malicious users exploit the software security
vulnerabilities to conduct an attack, an abnormal
information flow might occur and lead to the variable or
address-space information flow inconsistent with their
expected use.
The optimal approach to prevent attacks caused by
unchecked input data would be to eliminate the
vulnerabilities in the affected applications. To this end,
an application must properly validate all input data. In
order to reduce the code amount that needs to be
examined when validating the insecure flow caused by
input data, we focus on modifying the outcome of
specific conditions by narrowing the search space to
include only sensitive input data.
We consider any data that comes from an untrusted
source of input as untrusted, such as input from network
sockets, since for most programs the network is the
most likely vector of attack. We also consider inputs

from other sources untrusted, e.g., input data from
certain files or stdin.
Since input data is usually stored in the form of
variables in a program, and its value is gotten by the
assignment operation which may cause the information
flow. Firstly this paper cites the definition of the
information flow in Ref.1, when data value stored in the
variable x is spread to the variable y directly or
indirectly, e.g. y = x + 1, it is considered that there is
information flow from variable x to variable y. We
regard legal information flow as those assignment
operation only to the set of variables and addresses
previously-determined by static analysis. Furthermore,
we focus on this kind of information flow and regard it
as expected behavior in this paper. We first make static
analysis of the software source files to obtain expected
information flow. Afterwards, during software runs, we
track the information flow among statements and verify
whether or not the information flow is consistent with
expectations. If they are consistent with each other, the
current process state can be considered trusted,
otherwise, an alarm is triggered.
For ensuring software’s behavior to act as its
expectation, the goal of this paper is to constructs a
software behavior model related with the unchecked
input data for identifying and tracking the insecure
information flows based on software analysis and
dynamic slicing technology. Whenever an attempt to
relay on such information is detected, the user is warned
and given the possibility to stop the transfer.
Dynamic slicing technology computes a conservative
estimate of all statements in a program that are either
affected by or affecting the value of a variable at a
specific program point and for a given execution, which
is the set of statements that propagated information
along the illegal flow.
To summarize, the contributions of this paper are as
follows:
(1) Constructing an software behavior model related
with the unchecked input data by combining software
dynamic slicing technology and a complementary static
analysis that prevent attacks by monitoring the flow of
sensitive information when program executes. Our
model need only take into consideration those
statements in a program that either directly or indirectly
process untrusted input data, so the overhead incurred is
reduced.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 713

 A Dynamic Verification Model

(2)The development of input data related behavior
acquiring framework capable of performing validation
of untrusted data during software executes.
The rest of this paper is structured as follows. Section 2
contains a brief review of some related research. In
Section 3, we describe our model and its main
components. Section 4 describes the dynamic
verification and its implementation issues, respectively.
In Section 5 we apply our approach to some executable
programs and verify its performance by some common
tools. We summarize our plan for future works in
Section 6.

2. Related works

There has been some research on software expected-
behavior models. In 1996, Forrest et al. proposed a
behavior model N-gram2 based on a short sequence of
system calls. Inspired by that, other research based on
system calls sprang up. Ref.3 proposed a model
combining static analysis and dynamic binding, which
had a more powerful capability of detection and lower
rates of false alarm. Ref. [4] proposed a model utilizing
FSA to construct a calling sequence model, which can
describe the structure of loop and branch better. Ref.[5]
abstracted system calling sequence and information of
context from practicing software over and again, and
defined the difference between two different running on
information of context as behavior model. It
significantly increased accuracy and lowered rates of
false alarm compared to N-gram model. Ref.[6]
proposed a Control Flow Integrity (CFI) model based on
function call relations. CFI constructs function call
graph by static analyzing function call relations, and
abstracted normal relations as expected behavior model.
By rewriting binary execution files, CFI added a piece
of codes into function calls and returns jump
respectively, then checked the real jump if matched the
expected. If not, it recognized the jump as abnormal
behavior. Ref.[7] proposed a software information flow
expected model. It marks data coming from outside
untrusted and traces the transition of that data.
According to its defined security strategy, it monitors
trust level assigned by the data to protect untrusted data
used for address transition, format string, system calling
parameters, etc. Ref.[8] also proposed an information
flow behavior model which protects software control

flow integrity from untrusted data contaminating control
data. It ensures software control flow trusted by
ensuring the integrity of control data.
This paper considered that making a further analysis on
statements or instructions and redefining expected
information flow behavior could increase accuracy of
description on information flow, and lower miss reports
rates during dynamic verification. As our information
flow behavior model treated information flow and
transition as its behavior, so describing the process by
data current state can reflect process’s real state
accurately and implement dynamic verification, and are
able to against a wide range of attacks.

3. Description of expected behavior model

Before further describing our expected behavior model,
we give the following suppositions: (1)We suppose that
only the verified application program includes an
untrusted input and that the input is known beforehand.
Other inputs are thought highly trusted. (2) We focus on
a program written in C language.

3.1. Some Definitions

According to the above analysis, the existence of the
vulnerability does not affect the normal function of the
software unless triggered by the malicious user through
the elaborately-designed input data. Therefore, it is not
necessary to focus on each of the statements in a
program. On the contrary, for reducing overhead we
need only take into consideration those statements that
either directly or indirectly process untrusted input data.
To illustrate this, some definitions are described as
follows:
Definition 1 Supposing s1, s2 are statements in program
p. If statement s1 uses the variable defined in the
statement s2, and the variable in any path from s2 to s1
has not been redefined, we define statement s1 as data
dependent on statement s2, denoted for s1fs1, and f
*will be defined as the transitive and reflexive closure
of f . Among them, “defined” refers to the operation
of variable assignment. Accordingly, for statement s in
program p, set FS(s)={sj|sf*sj,sjS} denotes the
statement set dependent on statement s directly or
indirectly, where S is the set of all statements in
program P.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 714

Dan Wang,Yan Lu,Lihua Fu,Wenbing Zhao

Definition 2 Assuming the program P has uin which
only contain untrusted input data. The statement set that
read data from uin in the P is denoted as
{s1,s2,..,si,..,sn}.According to the definition of FS(s),
FS(uin) is the statement set in which the statements have
referenced untrusted input data in P directly or
indirectly. According to the related theory of
information flow security, for any statements or
instructions, if the reference data is untrusted, the
defined and generated data by the reference data is also
considered untrusted. Because of all the statements in
FS(uin) have referred untrusted data and they are likely
to produce abnormal information flow, the set of FS(uin)
is the statement set that is urgently in need of
verification. For ease of description, the statement in the
set of FS(uin) is referred to as the concerned statement in
this paper.
Definition 3 Assuming the assigned variables in any
statement of program P is denoted by def(s) and
program P reads data from untrusted input uin, then
FS(uin)={s1,s2,..si,..,sn} is the set of statements that have
used untrusted input uin directly or indirectly, the set
{(s1,def(s1)), (s2,def(s2)),…,(si,def(si)),…,(sn,def(sn)) } is
defined as software’s expected behavior set.
Definition 4 For each statement si of
FS(uin)={s1,s2,...,si,...,sn}, if and only if the variable si is
assigned when the statement belongs to the set of def(si),
the execution of the si in the current context is
considered trusted and the current state of the process is
considered trusted.

3.2. Extraction model of the concerned statement

By applying program static analysis techniques into the
source files, we can construct the expected behavior
defined above. This process includes two main parts.
The first is to extract the concerned statement set, and
the second is to analyze the variable set in which each
variable may be assigned by one or more statements in
the concerned statement set.
As we know, the acquired program slice set by static
analysis techniques is the program subset which is
composed of the partial statements and the control
predicate expressions in the program. Among them, the
backward slice’s statements and the control predicate
expressions affect the definition or the referrence of the
value of variable v in a certain location p of the program

directly or indirectly, namely the value of v at location p
depends on the statements of the slice. By contrast, the
statements acquired by forward slice techniques and the
control predicate expressions rely on the definition the
value of variable v in a certain location p of the program
directly or indirectly, tuple <p,v> is called the slice
criterion, the location p is generally expressed by the
source filename and the line number. The dependences
in the definition of program slicing include control
dependence and data dependence.
According to above definition, we use the forward
slicing technology to extract our concerned statement
set. The example of forward slicing is shown in Fig.1,
Fig.1(a) is the source program, Fig.1(b) is its forward
slicing set based on the slice criterion <statement 1,
variable n>.

1 scanf("%d",&n);

4 while (n>0){
5 s=s+n;
6 p=p*n;
7 n=n−1;

}
(b)

 Our model needs to remove the untrusted statements
and predicate expressions dependent on the untrusted
input data in the forward slicing set. We only extract
statements possessing data dependence. From the point
of view of the algorithm, the program slicing is a
graphic accessibility algorithm. Beginning with the slice
criterion statements, the algorithm traverses along
dependence edges of the data flow between the
statements, dependence edges of the control flow and
other auxiliary edges of the software system dependence
graph (taking statement as node and taking dependence
as edge constitute oriented graph) to search statements
in the slice. Therefore, by shielding dependence edges
of control flow during traverse, we can filter out the
control dependence on untrusted input statements and
control predicate expressions.
In general, the process is described as follows:
Assume that the program P reads data from untrusted
input uin, the statement set which reads data from uin in
P is denoted by {s1,s2,..si..sn}. For any statement si

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 715

 A Dynamic Verification Model

among them, and variable set which reads data from si
denotes as Vari={v1,v2,..vi,...vm}.
The steps of the extraction the concerned statement set
are as follows:
(1) Calculating program slicing. For any vVari taking
<si,v> as the slice criterion, obtaining the statement set
slicing(si,v) through forward slice analysis to the source
file.
(2) Calculate FS(si) :
 FS(si)=slicing(si,v1)slicing(si,v2)…slicing(si,vm).
(3) Calculate FS(uin):
FS(uin)=FS(s1) FS(s2)  …FS(sn).
FS(uin) is what we want.

3.3 Extraction Assigned Variables

After we get the concerned statements, we need to
analyze and obtain the variable set in which each
variable may be assigned by one or more statements.
As we know, variables can be divided into global
variables and local variables, and variable identifiers
cannot be the same within the local scope. Therefore,
we describe a variable in the form of <scope, variable
identifier>, and the scope of local variables is expressed
by its function name. On the other hand, statements
assign the value of variables in two ways: one is the
direct assignment, the other is assignment by indirect
pointer dereference. For the first way, traversing the
source file can determine variable identifiers as well as
the scope of a variable. For the second way, variable
assignment is in an indirect way through pointer
dereference. It is possible that the same pointer in the
software code may be used in many places and may
point to a number of different variables successively.
Therefore, we need analyzing the pointer and calculate
the set of variables to which can point and to determine
the variables that are assigned through the pointer
dereference.
Traversal of the source file can be achieved by
traversing its Abstract Syntax Tree(AST). An abstract
syntax tree is one kind of middle expression of the
program, and can express grammar structure quite
intuitively and contain all static information in the
source program. It is easy to carry out the traversal and
the inquiry to AST.
The analysis process of assigning variables is
summarized as follows:

(1) Extract variable identifier of assignment statement
from the AST including a pointer variable.
(2) Determine the scope of the variable identifier by
traversing AST.
(3) Use points-to analysis to compute the variable set to
which pointer variables may point, and translate the
pointer dereference into the corresponding variables set.
Next we mainly discuss the model related with indirect
pointer dereference.

3.3.1 Extract the assigned variable identifier

Variables can be divided into basic type variables,
pointer variables, arrays, structures and other
aggregated-type variables. For basic type variables, we
extract the variable identifier; for pointer variables we
extract the variable identifier and the number of the
reference of the pointer’s solution; for arrays, structure-
type variables, we uniformly extract the variable
identifier without distinguishing between the array’s
elements and structure’s member variables.
Program’s statements can be divided into three
categories. According to the different the types of
statement, the correspondent method of the extracting
variable identifier is described as follows.
(1)Expression statement. Expression statement is
composed of expression and semicolon, the usual form
is “expression;”. Expression statements are like a = b
+1; i ++; etc.. After statements are found in AST,
assignment variable identifier can be extracted by the
structure of AST directly.
(2)Control statement. Control statements are used to
control the execution order of the program and can be
divided into following three categories:

 ① branch statement. It includes if statement and switch
statement. Because if statements and switch statements
are used for judging conditional execution, the assigned
variable set is empty.
② loop statement. It includes for statement, do while
statement and while statement. Do while statement and
while statement are conditional judgment statements, so
the set of the assigned variable is empty. The form of
for statement is like (init,cond,increment). init and
increment may be any expression statement, but
generally only be used to initialize variable of loop
control and calculate increment. We suppose init and
increment only contain the related initialization of the

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 716

Dan Wang,Yan Lu,Lihua Fu,Wenbing Zhao

variable of the loop control and the increment
calculation, therefore variable set assigned by for
statement is loop control variable.
③ jump statement. It includes break statement, continue
statement, goto statement and return statement. The
assigned variables by break, continue, goto statement is
empty set. Accordingly, the assigned variable by return
statement is an empty set or a temporary variable
assigned by the compiler.
(3) Library Function Calling Statement. Calling a
library function needs special treatment. Library
functions usually transfer pointers as parameters or
assign variables by the address of variables, such as
output parameters dest of the function strcpy (char*
dest,char* src). AST can only offer variable identifier
information which acts as parameters, and it cannot
provide information of output parameters and input
parameters from parameter list of the library function.
Therefore, we introduce the explanatory document for a
standard library function, in which the output
parameters of the library function are marked out.
Combining with the variable identifier that AST
provides and making use of the statement of the
parameter list, we can obtain the assigned variable
identifier of the call library information. The parameter
list of a library function is described in Table 1. One
represents output parameters, and Zero represents input
parameters.

Table 1. express of some output parameters

 Library Function Statements

1 char* fgets(char* str,int length,
FILE* fp)

fgets 100

2 void* memcpy(void* dest,void*
source,unsigned count)

memcpy 100

3 int read(int fd,void* buf,int count) read 010
4 char* strcpy(char* str1,char* str2) strcpy 10
5 char* strtok(char* str1,char* str2) strtok 10

3.3.2 Determine the scope of a variable

The scope of a variable is divided into global scope and
local scope. For the local scope, local variables mask
any global variables of the same name. Therefore, from
the scope of a function where the statement begins and
according to the identifier variable, we will traverse in
turn from inside to outside until global scope to search

the definition of the variable to determine the scope of
the variable. Within this set, the formal parameters of a
function and its locally-defined variables are considered
to have function scope.

3.3.3 Pointer analysis

Pointer analysis9,10 is a kind of static analysis
technologies. It can calculate the set of storage locations
for each pointer variable of source file, including global
variables, local variables and the space’s dynamic
allocation. Andersen algorithm is one of representative
pointer analysis algorithms. It is more balanced in terms
of accuracy and efficiency and suitable for analyzing
large-scale software. Therefore, we chose it to analyze
pointer variables. For the fragment of program in Fig.2,
in statement 8, the Andersen algorithm calculates
pointer p, q. For pointer variable p, its pointed variable
set is {x,y,malloc_6}; For pointer variable q, its pointed
variable set is {y};
We assume that the value returned by the function
malloc() is a dynamically allocated heap address.
Because some applications use pointers that can have
multiple targets, we need to analyze these multiple-
target pointers. Our analysis method is described as
follows: assuming that program has a pointer variable p,
p points to the set of variable pts(p) = {p1,p2…pi…pn}，
among them, p1,p2…pi…pn are all pointer variables.
When the statement s assigns to **p, then the variable
set that s can assign is pts(p1)pts(p2)…pts(pn).The
assignment of double pointer variable is shown in the

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 717

 A Dynamic Verification Model

fragment of program in Fig.3. After the analysis of
Andersen algorithm, pointers m, p, q points to a set of
variables. For variable m, its pointed variable set is
{z,y}; For variable q, its pointed variable set is
{x,malloc_2,y}; For variable p, its pointed variable set is
{m,q}. In statement 6, pointer p points to a set {m,q},
therefore, when assigned to **p,we can use the set
pts(m)pts(q),namely,{x,malloc_2,y,z}.

3.3.4 Model optimization

We should try to minimize the time and space overhead
in the phase of dynamic verification. The results of
existing static analysis show that we can acquire the
safety statements (statements not vulnerable to
malicious intrusion) in the program through static
analysis. If a statement assigning a variable meets (1)
and (2) of the following requirements simultaneously, or
meet only (3) we believe that the statement is safe:
(1) It only writes into a fixed address. Address written
by statement is fixed rather than calculated dynamically.
There are two types of fixed addresses, one is fixed
logical address, such as global variables of basic types;
another is fixed offset address, such as local variables of
basic types.
(2) It only writes a fixed number of bytes. The statement
may write only a finite number of bytes of data. For
example, the assignment of variable type belongs to
integer, long integer and so on.
(3)Temporary variable. The assigned variable is a
temporary variable that the compiler allocates.

Based on the above three conditions, our optimized
strategy is to remove the following two types of
statements from the concerned set of statements:
(1) Control statements. According to the above analysis,
the set of variable which a control statement can assign
is an empty set or only contains the loop control
variable or temporary variable, and the loop control
variable is assumed to be of a basic type, either global
or local variable, so we can think of these as safe
statements.
(2) Expression statements which assign variables of
basic types directly, such as a=b+1,i++. They accord
with the above safety conditions and don’t produce
abnormal information flow, so we can consider they are
safe statements.

3.3.5 Variable address convention

The variable extracted in the previous section is
expressed as the form of <scope,variable
identifier>.However, it is based on source-level
representation, and cannot be directly used for dynamic
verification. In order to achieve dynamic verification
easily, source-level representation needs to be converted
into actual memory addresses. Global and local
variables have been allocated addresses at compile time,
so the address can be obtained from the debugging
information directly. Heap space isn’t allocated address
at compile time, but is assigned addresses dynamically
by address of functions call such as malloc(). The
detailed information is described as follows.
 (1)Global variable. Expressed as <address,count>,
address is the logical address of a variable and count is
the length in bytes.
(2)Local variable. Expressed as <fun,offset,count>. fun
is the scope of a variable expressed as the function's
name;offset is the offset of variable related to the stack
pointer (ebp) of function fun (),count is the length in
bytes.
(3)Heap space. Expressed as <fun,call_offset>. fun is a
function which includes the call statement of malloc();
call_offset is the offset of malloc()’s call instruction
relative to the first address of function fun ().

3.3.6 Writing statement and its convention

As described above, the statement is on source-level
representation and cannot be directly used for dynamic

int x,y,z;
int* q;
int* m;
int ** p;

1. q = &x;
2. q = malloc();
3. p = &m;
4. m = &z;
5. *p = &y;
6. p = &q;
7. **p = ;
8. *q = ;

Fig.3. Multi-pointer analysis

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 718

Dan Wang,Yan Lu,Lihua Fu,Wenbing Zhao

verification. Source-level representation needs to be
converted into corresponding statements and expressed
by its address. What we are concerned with in this paper
is the variable assignment behavior, so we are
concerned only with those statements which write data
into memory. These statements are called writing
instructions here. Therefore, we need to analyze writing
statements and their corresponding addresses taken from
debugging information. First, we locate a group of
instructions corresponding to concerned statements after
compilation, then filter out other types of instructions
and retain the writing instructions and call to the
standard library. Finally, we extract their address.
Writing instructions and call instructions to library
functions are expressed as <fun,offset>, fun is a function
which contains the instruction, offset is the offset
address of the instruction relative to the first address of
function fun()’s code.

4. The dynamic verification

After obtaining the model of the software’s expected
behavior, it is necessary to conduct verification
dynamically during runtime. Monitoring the actual
behavior of software through obtaining the assignment
behavior of concerned statements and extracting its
assignment memory address, then comparing them with
the corresponding expected statements’ behavior are
main tasks. If observed behavior is consistent with
expected one, we believe that the current state of the
process is trusted, otherwise it’s untrusted. However,
there are two difficulties in realizing measurement.
(1) Determining verification point. Verification point is
the location or opportunity to verify the behavior of
software during runtime. We focus on writing
instructions and call instructions of library functions in
this paper.
(2) Determining maintenance points. The address of
local variables changes constantly with the execution of
call and exit function. The address may be dynamically
allocated and released continually. Therefore, along
with the running of software, we must update the
expected set of address in a timely manner and ensure
the correctness of expected data. The location or time of
updating and maintaining a variable’s address is
referred to as expected data maintenance point in this
paper.

4.1 Maintenance for expected data

Initially, we set required expected data maintenance
points according to the information of variables which
can be assigned in the expected behavior. If the software
encounters an expected data maintenance point when
running, it will update the address information
accordingly.
Maintenance points for expected data include the
following categories.
(1) call and exit of function. During software runtime,
the expected address of a local variable needs to be
updated when function is invoked or exits.
As mentioned above, expected assigned local variables
can be expressed as the form of <fun,offset,count>, fun
is a function that defines variables. For any local
variable v<fun,offset,count> in the expectation set, the
address of variable v in the expected set needs to be
reset when function fun() is called. When fun() exits, the
address range of variable v needs to be removed from
the expected set.
(2) Allocation and release of heap space. During
software runtime, heap space is allocated and released
through calling malloc() and free(). Similarly, malloc()
is expressed in the form of address<fun,call_offset>, so
the expected address set needs to be updated after
malloc() located in address <fun,call_offset> executes.
The release of address space needs to be removed from
expected address set on return from function free ().
(3) The loading of dynamic link library. The software
cannot do without the support of libraries. In addition to
visiting its own local variables, it also visits the dynamic
distribution of heap space; part of the link library also
defines global variables. They are stored in the .bss
section or .data section of link library. As we cannot
analyze the source code of library functions in the static
analysis phase, we do not know whether global
variables are assigned by library functions. According to
the read-write right of the .bss segment and .data
segment, our model considers the updated address range
belonging to segment as the address that can be
assigned of library functions. When the libraries are
loaded and linked into the process space, their address
range of sections is added to address set that can be
assigned by library functions. This paper assumes that
the program only links the runtime library glibc of C
language.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 719

 A Dynamic Verification Model

4.2 Address Verification

When the monitored software is executed to a
verification point, it will extract the writing memory
address of program and verify whether or not the
address belongs to an expected address set. As
mentioned above, verification points of information
flow’s behavior include two types of instructions.
(1) For writing instructions. When a writing instruction
is executed, it dynamically obtains the actual memory
address and byte count written by the instruction, and
finds the entry in the memory address set that the
instruction can be assigned. If the actual writing address
does not belong to any address range of set, we believe
that it is inconsistent with expectations.
(2)For the function call instructions. Because we are
unable to analyze internal assignment behavior of
library functions, we consider library functions as a
whole. We do not check their assignment behavior for
internal variables and only ensure that other variables
aren’t written into the process illegally. During the
running process of library functions, all written
addresses during recording are verified after returning
from library functions. The addresses written by the
library functions can be divided into the following
categories:
(1)The local variable address of library functions. If
writing address is the local variable address of library
functions or belongs to the local variable address of
function call in its internal implementation, we will
believe that the assignment is legal and doesn’t verify
any more.
 (2) The address of the heap area. If the writing address
belongs to an allocated address in the heap, we will first
check whether the address belongs to the allocated heap
space of application-defined functions. If not, it
indicates that it is the internal heap space of library
function, and we believe that the assignment is legal.
Otherwise, we will find in the address set that can be
assigned in the measurement points and verify whether
the writing to heap space belongs to the expected
address set.
(3) Other Address. If the writing address doesn’t belong
to the address of above (1)(2), for example, the global
variables of process, the local variables of application-
defined functions and so on, we will scan the address set

that can be assigned in the verification points and verify
whether the address belongs to the expected address set.

5. Analysis and Tests

This paper performed the test and evaluated on several
software implemented in the C programming language
under the Linux operating system, kernel version 2.6.18.
For the sake of simplicity, accuracy as well as
effectiveness, this paper utilized the tool ROSE10 to
construct the expected behavior model. Meanwhile, we
used dynamic instrumentation tool Dyninst11 to achieve
dynamic verification of software behavior during
runtime. Fig.4 shows the main modules of our test
framework. There are two main parts including static
analysis and dynamic measurement. The related
modules of static analysis analyze source files and
construct expected behavior based on feedback from
ROSE which outputs software’s expected behavior and
stores it into files. In the meantime, we developed
dynamic instrumentation tools by combining the
Dyninst which injects codes into target codes to monitor

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 720

Dan Wang,Yan Lu,Lihua Fu,Wenbing Zhao

the execution of process. The function of each module is
described as follows.
(1) Extract measurement statements module. It reads
untrusted input statements from configuration files and
utilizes the program slicing techniques to extract
statements that directly or indirectly rely on the
untrusted statement set.
(2) Analyze assignment operation module. It reads the
variable identifier of assignment operation from the
abstract syntax tree, and then analyzes the scope of the
identifier to identify the variable. By pointer analysis, it
calculates each possible variable set that can be
referenced by the pointer, and then converts pointer
dereference to actual variables.
 (3) Optimization module. It traverses statements
associated with abstract syntax trees and determines the
secure statement, and its assignable variables set. Only
control statements and expressions that make
assignment to basic types are removed by this process.
 (4) Analyze address module. It converts statements and
variables of source codes into statements and address
respectively through reading DWARF12(Debugging
With Attributed Record Formats) by use of ROSE.
(5) Information flow behavior instrumentation module.
It loads process by means of tool Dyninst and analyzes
expected behavior of software information flow, then
locates verification points and data maintenance points
of executable files by calling Dyninst. Then, it injects
address authentication functions into verification points
and maintains expected data functions on maintenance
points, respectively. After configuration, it calls the
Dyninst interface to start the process and monitors
software runtime.

(6) LibChkWrOp: LibChkWrOp is a dynamic link
library of C programming language. A series of
functions in the library implement expected data
management, address authentication, initialization, etc.
We tested the expected behavior model by using some
test programs with artificial security vulnerabilities
including stack buffer overflow, heap buffer overflow
and format string attack. Fig.5 shows our test program.
It treated inputs from stdin as untrusted data.
(1) Stack buffer overflow. In the code fragment shown
in Fig.5 (a), statement 3 had a vulnerability of stack
buffer overflow. If it inputs 18 bytes into buf and covers
the return address of foo() with the entrance address of
fun(), the function foo() would be unable to return to its
correct address after execution.
(2) Heap buffer overflow. In the code fragment shown
in Fig.5 (b), statement 7 had a vulnerability of
heapbuffer overflow. If it inputs 64 bytes into statement
7, and writes address of fun() into the four bytes
between (p+60) and (p+63), writing the value of ((&f)-
12) into the four bytes between (p+56) and (p+59),
respectively when program executes to statement 8, the
buffer “p” would be released. As addresses “p+56” and
“p+60” happened to be the pointer address of heap free
fields doubly linked list, so when free field merged after
“p” released, “*(((&f)-12)+12)=(fun)” equals “f=fun”,
pointer “f” has been tampered. When execution reaches
statement 9, the program’s executing flow of process
has been violated.
(3) Format string attacks. In the code segment shown in
Fig.5 (c), statement 6 had a vulnerability of format
strings. The address of global variable i is “0x8049604”.
If we input string “\x04\x96\x04\08%d%d%d%d%n”

Stack buffer overflow
1. void fun(){return;}
 void foo(){
2. char buf[10];
3. scanf("%s",buf);
4. return;
 }

 int main(){
5. foo();
6. return;
7. }

(a)

Heap buffer overflow
1. void foo(){ return; }
2. void fun(){ return; }
3. void (*f)();
 int main(){
4. char* p;
5. f = foo;
6. p = malloc(40);
7. gets(p);
8. free(p);
9. f();
10. return;
 }

(b)

Format String Attack
1. int i;
2. void foo(){return;}
 int main(){
3. char buf[100]
4. i= 0;
5. scanf("%s",buf);
6. printf(buf);
7. if(i==0)
8. foo();
9. return;
 }

(c)

Fig.5. Some Test

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 721

 A Dynamic Verification Model

into buf via function scanf() at statement 5, then while
performing function printf() at instruction 6, the value
of i would be tampered as call statement 8, and branch
statement 7 would be tampered subsequently.
Test results showed that our model could detect
abnormal information flow in functions scanf(), gets()
and printf(). Furthermore, we tested model effectiveness
with two practical examples, which treated remote input
as untrusted:
 (1) wu-ftpd format string vulnerability. wu-ftpd is a
commonly used server on Linux, and offers basic and
simple ftp service. In version 2.6.0 or earlier of wu-ftpd
server, it had the format vulnerabilities on calling
function “vsnprintf()”. Attackers could use the
vulnerability to get super-user permissions by rewriting
user login ID, or to tamper with function return
addresses to change program control flow. Our test
tampered function return address.
(2) Openssh integer overflow vulnerability. Openssh is a
set of connection tools for safe access to remote
computers. Before version of 2.9, Openssh has an
integer vulnerability in the process of authenticating
remote accesses. We used a 32-bit integer to assign a
16-bit integer variable which is the parameter of
function malloc().After the variable overflowing by
malicious input, attackers can tamper data in any
address. Our test used this vulnerability to tamper the
value of decision variables of branch statements in
authentication function, and that would allow users
attempting a connection to avoid the security
authentication mechanism.
Test results showed that our expected behavior model
did detect the two security attacks above.

6. Conclusion and future works

We propose a model to verify whether the program
follows its expected behavior during execution. Aiming
at its limitation, we plan to investigate the following
aspects in the future:
(1)This paper treats aggregate-type variables as a single
unit during assignable-variables collection and
statement analysis and does not distinguish members of
aggregated types. This strategy is far easier to
implement, but leads to inaccuracy, which could cause
miss-reports. How to increase accuracy and lower miss-
reports is a topic for future study.

(2)During the analysis period, we fail to analyze
assignment behavior of library functions effectively for
lack of source files for library functions. Therefore, the
default assumptions of assignment to internal variables
of library functions are correct, which could also cause
miss-reports. At the same time, this paper relies on
pointer analysis techniques to construct information
flow expected behavior. For the sake of execution
effectiveness, the pointer analysis techniques might
cause some loss of accuracy, the reported results are
generally larger than actual one because it enlarges the
range of assignable addresses. That could also cause
miss-reports. We will give further research on these
issues a high priority.
(3)Follow-up research will conduct validation
experiments on larger data sets.

Acknowledgment

This work is partially supported by Beijing Municipal
Natural Science Foundation of China under Grant
No.4122007.

References

1. L.O. Andersen. Program Analysis and
Specialization for the C Programming Language,
Copenhagen:University of Copenhagen. Ph.D.
1994,pp.112-152.

2. S. Forrest, S.A.Hofmeyr, A.Somayaji,
T.A.Longstaff. A Sense of Self for UNIX Processes.
In Proc. of the 1996 IEEE Symposium on Security
and Privacy. Los Alamitos, CA(IEEE Computer
Society Press. 1996) pp.120-128.

3. W.Li,Y.X.Dai,Y.F.Lian. Context sensitive Host-
based IDS using Hybrid Automaton. Journal of
Software. 20(1) (2009),pp.138-151.

4. C.Michael, A.Ghosh. Using Finite Automate to
Mine Execution Data for Intrusion Detection: A
Preliminary Report. Lecture Notes in Computer
Science (1907), (RAID 2000),pp.66-79.

5. H.Feng, O.Kolesnikov, P.Fogla, W.Lee, W.Gong.
Anomaly Detection Using Call Stack Information.
In IEEE Symposium on Security and Privacy,
Oakland, California(2003),pp.62-76.

6. M.Abadi, M.Budiu, Ú.Erlingsson. Control-flow
integrity. In Proc. of the 12th ACM conference on

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 722

Dan Wang,Yan Lu,Lihua Fu,Wenbing Zhao

Computer and communications security, New York,
USA(2005),pp.340-353.

7. J.Newsome. D.Song. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software. In
Proc. of the 12th Annual Network and Distributed
System Security Symposium (NDSS) (2005),pp.10-
17.

8. R.Jedidiah. Crandall, T.C.Frederic. Minos: Control
Data Attack Prevention Orthogonal to Memory
Model. In Proc. of the 37th annual IEEE/ACM
International Symposium on
Microarchitecture(2004),pp.221-232.

9. S.Horwitz, T.Reps, D.Binkley. Interprocedural
slicing using dependence graphs. ACM SIGPLAN
Notices. 39(4) (2004),pp.229-243.

10. N.Wang,J.Liu. Proficiency and effectiveness
comparision of five types pointer analysis
algorithm. Computer Engineer and design.
24(12)(2003),pp.38-42.

11. ROSE. https:// www.rosecompiler.org/.
12. Dyninst. http:// www.dyninst.org.
13. DWARF. http://www.dwarfstd.org/

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 723

