
A Particle Swarm Optimization Algorithm for Scheduling Against Restrictive Common Due
Dates

Andreas C. Nearchou∗
Department of Business Administration, University of Patras,

26 500 Patras, Greece

Sotiris L. Omirou

Department of Mechanical Engineering, Frederick University,
Pallouriotissa 1036, Nicosia, Cyprus,

E-mail: eng.os@frederick.ac.cy

Abstract:

Focusing on the just-in-time (JIT) operations management, earliness as well as, tardiness of jobs’ production and
delivery should be discouraged. In accordance to this philosophy, scheduling problems involving earliness and
tardiness penalties are very critical for the operations manager. In this paper, a new population heuristic based on
the particle swarm optimization (PSO) technique is presented to solve the single machine early/tardy scheduling
problem against a restrictive common due date. This type of scheduling sets costs depending on whether a job
finished before (earliness), or after (tardiness) the specified due date. The objective is to minimize a summation of
earliness and tardiness penalty costs, thus pushing the completion time of each job as close as possible to the due
date. The problem is known to be NP-hard, and therefore large size instances cannot be addressed by traditional
mathematical programming techniques. The performance of the proposed PSO heuristic is measured over
benchmarks problems with up to 1000 jobs taken from the open literature, and found quite high and promising in
respect to the quality of the solutions obtained. Particularly, PSO was found able to improve the 82% of the existing
best known solutions of the examined benchmarks test problems.

Key words: Meta-heuristics, swarm intelligence, combinatorial optimization, job scheduling, just-in-time.

∗Corresponding author. E-mail address: nearchou@upatras.gr

International Journal of Computational Intelligence Systems, Vol. 6, No. 4 (July, 2013), 684-699

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 684

mailto:eng.os@frederick.ac.cy
mailto:nearchou@upatras.gr
willieb
Typewritten Text
Received 1 April 2011

willieb
Typewritten Text
Accepted 14 December 2012

A. Nearchou, S. Omirou

 2

1. Introduction

Sequencing and scheduling problems involving due
dates, play a crucial role in real-world production and
operations management. This type of scheduling sets
penalty costs depending on whether a job finished
before (earliness), or after (tardiness) the specified due
date. In the last two decades, much research effort has
been spent on the study of earliness and tardiness
penalties in scheduling1,2 due to its accordance with the
principles of just-in-time (JIT) operations management.
JIT adopts the notion that jobs must be completed as
close as possible to their due date, neither too early, nor
too late. Early jobs result in inventory holding costs,
while late jobs result to penalties such as loss of
customer goodwill and loss of orders. Therefore,
earliness as well as tardiness of jobs should be
discouraged.

This paper deals with the single-machine early/tardy
scheduling problem (SMETSP) of a set of jobs with a
common due date (CDD) and objective the
minimization of the jobs’ total earliness and tardiness.
SMETSP belongs to a large class of scheduling
problems2 formally classified as n/1//ET. This class
consists of problems with distinct due dates, problems
with a CDD, problems with single, or multiple
performance measures being either linear or non-linear,
etc. Some of these problems can be solved in
polynomial time using traditional mathematical
programming methods, while many other are known to
be intractable. One assumption often made about CDD
is that it is sufficiently large so that it does not constrain
the scheduling of the jobs. This is known as the
unrestricted version of the problem (consequently CDD
is called unrestrictive). The restricted version of the
problem is obviously harder since the value of CDD is
small enough to constrain the scheduling process.

Even the simplest formulation of SMETSP leads to an
NP-hard combinatorial optimization problem (COP)1,2,
and thus it seems fair, large size instances of the
problem to be addressed by the means of heuristics.
Since the pioneer work of Kanet3 which deals
exclusively with the special case when the earliness and

tardiness penalties are equal to one, many approximate
algorithms have been proposed for various versions of
the basic problem. Hall4 and Bagchi et al.5,6 proposed
algorithms for the absolute deviation SMETSP, which
involve minimizing the sum of absolute deviations of
the job completion times from a CDD. Hall and Posner7
examined the unrestricted weighted earliness and
tardiness problem. De et al.8, proposed a greedy
randomized adaptive heuristic for the unrestricted
problem with different penalties to find both the
optimal due date and the optimal sequence of the jobs.
Hoogeveen and van de Velde9 addressed the
unrestricted SMETSP with ‘almost’ CDD using a
dynamic programming algorithm. More about
algorithms on scheduling problems involving due dates
can be found in two comprehensive reviews considered
by Baker and Scudder1 and Cheng and Gupta10
respectively. These reviews cover the results published
before 1990. Recent material and results can be found
in the survey paper of Gordon et al.11.

The majority of the proposed algorithms for SMETSP
addressed instances of the problem with a small number
of jobs, up to 25 or 50 jobs. For instance, Abdul-Razaq
and Potts12 solved to optimality problems with up to 25
jobs using a branch and bound algorithm. Souza and
Wolsey13 proposed branch and bound algorithms for
solving a class of four different scheduling problems
(including SMETSP) with 20 and 30 jobs. Almeida and
Centeno14 addressed SMETSP with up to 50 jobs via a
composite algorithm that combines steepest-descent,
simulated annealing and tabu-search. Recently, the use
of meta-heuristics such as tabu-search (see Refs. 15-
17), genetic algorithms15, simulated annealing18,
differential evolution19,20, ant colony optimization21-23,
artificial immune systems24 enable researchers to
address effectively large size instances of the problem.
Among them, James17, Feldmann and Biskup18,
Nearchou and Omirou19, Nearchou20, and Lee et al.22
addressed the restricted SMETSP with general earliness
and tardiness penalties. Moreover, Biskup and
Feldman25 generated a set of benchmarks for SMETSP
together with their upper bounds on the optimal
objective functions.

The current paper investigates the application of the
particle swarm optimizer (PSO) algorithm on the

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 685

Particle Swarm Optimization

restricted SMETSP with general earliness and tardiness
penalties. PSO is one of the latest meta-heuristics
introduced by Eberhart and Kennedy26 for optimization
over continuous spaces and its application to discrete
COPs is still limited. Previous PSO-based approaches
on single-machine scheduling problems can be found in
the recent works of Anghinolfi and Paolucci27 and Low
et al.28. The former work tackled the classical single-
machine weighed tardiness scheduling problem with
sequence-dependent setup times; while, the latter
considered the single-machine scheduling problem with
periodic maintenance. To the best of our knowledge,
the only researchers who addressed scheduling
problems involving due dates using the PSO algorithm
have been Pan et al.29. Our PSO approach differs from
these studies in two main points: first in the developed
encoding mechanism; that is, in the way ‘particles’ are
represented and mapped into actual scheduling
solutions; and second, in the way of controlling the
‘particles’ velocities of the entire swarm.

The performance of the proposed PSO algorithm is
examined over the most restricted instances against
CDDs of the Biskup and Feldmann (2001)’s
benchmarks25; including 140 instances in total ranging
from 10 to 1000 jobs. The results obtained are of high
quality since new upper bounds have been introduced
by PSO in the 82% of the examined benchmarks
instances. The motivation behind the idea of applying
PSO on SMETSP goes back to our previous works19,20
in which we tackled the problem with high success
through another meta-heuristic namely, differential
evolution. Since the last five years there is a
considerably research interest to tackle hard COPs
through PSO-based approaches, it was decided to
investigate the behavior and the performance of PSO on
SMETSP too. Therefore, a major objective of this work
is to show (through extended analysis of critical
aspects, such as solution space, representation,
encoding and decoding mechanisms) how PSO, a meta-
heuristic initially proposed as global optimizer over
continuous search spaces can be applied with success
on discrete COPs too.

The rest of this paper is organized as follows:
Section 2 states the problem. Section 3 gives a
description of the basic PSO algorithm for optimization
over continuous search spaces. Section 4 introduces the
way PSO can be applied on SMETSP (a typical discrete

COP), while Section 5 presents and discusses the results
of the experimental evaluations of the algorithm.
Finally, Section 6 summarizes the contribution of the
paper and states some directions for future work.

2. Problem formulation

SMETSP can be formally defined as follows: consider
n jobs (numbered 1,2,…,n) to be processed without
interruption on a single machine that can handle only
one job at a time. Each job j (j=1,…,n) is available at
time zero, requires a positive processing time jp and
ideally must be completed exactly on a specific
(common for all jobs) due date d. Penalties are incurred
whenever a job is completed before or after this due
date. Therefore, an ideal schedule is one in which all
jobs finish on the specific due date. Assuming that jC
is the completion time of job j, then the earliness and
tardiness of job j are given by the relations,

),0max(jj CdE −= and),0max(dCT jj −= ,
respectively, for all j=1,…,n. The objective is therefore
to find a processing order of the n jobs that minimizes

()∑
=

+
n

j
jjjj TE

1

βα (1)

where jj βα , (j=1,…,n) are the earliness and tardiness
(nonnegative) penalties, respectively, for job j and
constitute data input to the scheduling problem.

Penalties in Eq. (1) can be measured in different
ways resulting in several variations of the basic
SMETSP. A CDD d is called unrestrictive when

∑≥ jpd (j=1,…,n) holds, otherwise is called
restrictive. Moreover, d is also called unrestrictive when
it constitutes a decision variable for the problem.
Consequently, one can refer to the problem as either
unrestricted or restricted SMETSP.

The basic assumptions with SMETSP can be
summarized as follows:
§ Jobs’ processing times are deterministic.
§ Machine breakdown and maintenance are

neglected. The machine is continuously available
and never kept idle while there are jobs waiting to
proceed.

§ The machine processes only one job at a time.
§ No setups between jobs are assumed.
§ Jobs are known in advance.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 686

A. Nearchou, S. Omirou

 4

§ Each job is available for processing at time zero.
§ No job pre-empt is permitted.
§ Jobs are independent without precedence or other

constraints.
§ All jobs must be completed on a particular

common due date.

2.1. Properties for the unrestricted CDD SMETSP

There exists an optimal solution to the unrestricted
CDD SMETSP having the following properties:
a) There is no inserted idle time in the schedule.
b) The schedule, is V-shaped (see Fig. 1), i.e., early

jobs are sequenced in non-increasing order of
jjp α (‘\-shaped’ format), and late jobs are

sequenced in non-decreasing order of jjp β
(j=1,…,n) (‘/-shaped’ format).

c) One job is completed exactly on the due date.

d) The q-th job in the sequence completes on the due-
date d, where q is the smallest integer satisfying the

inequality
1 1
()q n

j j jj j
α β β+

= =
≥∑ ∑

Fig. 1: The V-shaped property

2.2 Properties for the restricted CDD SMETSP

For the restricted SMETSP with general earliness and
tardiness penalties there is an optimal schedule with the
following properties:
a) No idle times are inserted between consecutive

jobs30.
b) The schedule is V-shaped, but a straddling job may

exist, i.e., a job whose execution starts before and
finished after the due date25.

c) The processing time of the first job either starts at
time zero, or one job is completed at the due date25.

Obviously, the restricted SMETSP is much more
complex than the unrestricted version since all its
variations result to an NP-hard COP11. There is a gap in
the related literature for algorithms taking into account
the third property of the restricted SMETSP. That is, the
case where the first job in an optimal schedule might
not start at time zero; thus, excluding optimal schedules
a priori. This characteristic is investigated in Biskup
and Feldmann25. It is worth pointing out that, there is no
such limitation with the proposed PSO algorithm.
Particularly, the use of a suitable encoding scheme
enables PSO taking into account the case of the third
property in the generated SMETSP solutions.

3. The particle swarm optimization (PSO)

algorithm

PSO is a stochastic population heuristic introduced by
Eberhart and Kennedy26 for continuous non-linear
function optimization. According to its founders, PSO
has roots in two recent ‘intelligent’ optimization
methodologies: in artificial life and in evolutionary
computation. In regard to artificial life, PSO has ties
with bird flocking and fish schooling theories, while in
regard to evolutionary computation has similarities with
genetic and evolutionary algorithms. Since its
invention, PSO has been applied with success on
various COPs such as, the unit commitment problem31,
the traveling salesman problem32, the task assignment
problem33, an optimal operational path finding for
automated drilling operations34, a multi-objective order
planning production problem in steel sheets
manufacturing35, scheduling problems involving due-
dates29, the shortest path problem36, etc. Recently, its
application has been extended on scheduling problems
such as, flow-shop scheduling problems37-41, the single-
machine total weighting tardiness problem27,42, the
single machine scheduling problem with periodic
maintenance28, the two-stage assembly-scheduling
problem43, and job-shop scheduling problems44,45.

Assuming the problem of minimizing a real-valued
function ƒ(x), x∈Ω⊂ℜD (Ω is assumed to be the
feasible search space of the problem), PSO utilizes a set
(called swarm) of Ns particles as a population to search

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 687

Particle Swarm Optimization

Ω toward the global optimal solution. Each particle
represents a potential solution to the optimization
problem flying in the D-dimensional search space,
modifying (iteration by iteration) its position according
to its own best position in history and that of its
neighbors. Each particle i (i=1,2,…,Ns) has three
attributes: its current position kix , , its personal best
position achieved so far pbest

kix , , and its current velocity
kiv , . Note that each one of these attributes is a D-

dimensional parameter vector. The index k denotes the
iteration number of the algorithm. The initial population
(k = 0),

S = },,,{ 00,20,1 ,Nsxxx K , (2)

is taken to be uniformly distributed in the search region
using the following formula:

)(minmaxmin0, xxxx randomj
i −⋅+= , (3)

where, j

kix , is the position value of the i-th
(i=1,2,…,Ns) particle with respect to the j-th
(j=1,2,…,D) dimension. minx and maxx are user
defined bounds, and random is a uniform random
number in (0,1). Similarly, the initial velocities of the
particles are generated using the formula

)(minmaxmin0, vvvv randomj
i −⋅+= , (4)

with minv , maxv user-defined fixed bounds, and random
a uniform random number in (0,1).

At each iteration k, all particles in S are targeted for
replacement. This is achieved by performing the
following steps:

STEP 1:
For each particle i (i=1,2,…,Ns)
1.1) Evaluate its objective function)(,kixf .
1.2) Determine its personal best position pbest

kix , as in the
following:
if k=0 then pbest

ix 0, = 0,ix
else if)(,kixf <)(,

pbest
kixf then pbest

kix , = kix , (5)

STEP 2:
Determine the global best position gbest

kx corresponding
to the best objective function value among the
population of the particles (i.e., the whole swarm).

STEP 3:
For each particle i (i=1,2,…,Ns) update its
velocity kiv , as in the following:

,, 1 1 , 2 2 ,

, 1

() ()

i k k

pbest gbest
i k i k i k

k i k

v c r x x c r x x

w v −

= ⋅ ⋅ − + ⋅ ⋅ −

+ ⋅
(6

where, c1 and c2 are called cognitive and social
parameters, respectively, and r1, r2 are uniform random
numbers drawn in (0,1), c1 and c2 (also known with the
term learning factors) represent the attraction that a
particle has toward to its own success (c1), or that of its
neighbors (c2). In other words, c1 is a weight factor
representing the attraction toward pbest

kix , , while c2 the
attraction toward gbest

kx . Both of them are usually
defined to be constants during the execution of the
algorithm. wk in Eq. (6) is the inertia weight factor
which gadgets the effect of the old velocity onto the
new one. Generally, wk is updated by the linear
equation:

1k kw w −= Θ× (7)

where, Θ is a decrement user-defined constant factor.

STEP 4:
For each particle i (i=1,2,…,Ns) calculate its new
position as in the following:

kikiki vxx ,1,, += − , for k>0 (8)

STEP 5:
Repeat steps (1)-(4) until k exceeds a maximum (user-
defined) number of iterations.

4. The proposed PSO algorithm for the CDD
SMETSP

4.1 Solution space and encoding mechanisms

The core idea behind the developed PSO algorithm is to
search for solutions that are V-shaped. This is
accomplished by the following encoding scheme that
designates each job either being early or tardy:
assuming an n-job SMETSP a candidate solution kix ,
(i=1,2,…,Ns) denoting the position of the i-th particle in

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 688

A. Nearchou, S. Omirou

 6

the k-th iteration, is a vector containing n floating-point
numbers taken from values within the range [0,1]. Each
such floating-point number is associated to a specific
job 1,2,…,n with that order. A value less than or equal
to 0.5 in the vector indicates that the corresponding job
is early otherwise the job is tardy. So, the jobs are
distinguished into two sets namely, SE and ST containing
the early and the tardy jobs respectively. Following the
V-shaped property, the jobs in SE are moved in the start
of the schedule and sequenced in ‘\-shaped’ format.
Late jobs are moved in the end of the schedule and
sequenced in ‘/-shaped’ format. Let sump the total
processing time of the early jobs in SE, then an optimal
solution to SMETSP can fall in one of the following
three cases18:

(A) The first job in SE starts at time zero and the last

job in SE finished exactly on due date d.
(B) The first job in SE starts at time zero and the last

job in SE is completed prior to d. Further, a
straddling job exists, i.e., a job starting executed
before d and ending after d.

(C) The first job in SE does not start at time zero (i.e., it
is delayed) and the last job in SE is finished exactly
on the due date d.

Case-(A) occurs when sump=d; case-(B) occurs when
sump>d, while case-(C) occurs when sump<d.
Therefore, according to the proposed scheme, for every
candidate vector of the entire population, the sets SE and
ST are firstly created. Second, the processing time of the
jobs in SE are summed up into sump until the value of
this variable surpassed d or no other jobs are contained
in SE. Third, the starting time of the first job in SE is
defined. That is, when sump≥d (cases (A) and (B)), the
first job starts at time zero, otherwise (case (C)), the
first job is delayed starting at time d−sump. Fourth, jobs
in SE are ordered based on ‘\-shaped’ property, while
jobs in ST are ordered based on ‘/-shaped’ property.
This encoding mechanism is given below in algorithmic
form. Ψ=(ψ1,…,ψn) is an individual vector solution,
while the notation {i} denotes the i-th job (i=1,…,n).

Procedure Encoding_mechanism (Ψ)
begin
 Step1: Build sets SE and ST
 SE = ST = ∅ ; sump = 0 ; caseB = false ;

 for i = 1 to n do
 if (ψi ≤ 0.5) then
 if (sump + }{ip ≤ d) then
 sump = sump + }{ip ;
 SE = SE ∪ {i} ; // insert {i} into SE //
 else if not caseB then
 caseB = true ;
 k = {i} ; // k is the straddling job //
 else ST = ST ∪ {i} ; // insert {i} into ST //
 endif
 else ST = ST ∪ {i} ;
 endif
 endfor
 Step2: Build the final schedule
 if caseB then // case-(B) //
 Sort the jobs in SE according to ‘\-shaped’ format.
 Then, put at the tail of SE the straddling job k. Sort
 the jobs in ST according to ‘/-shaped’ format. First
 job in SE starts at time Tstart = 0.
 else // case-(A), or -(C) //
 Sort the jobs in SE and ST according to ‘\/-shaped’
 property. First job in SE starts at time
 Tstart = d−sump
 endif
 g = SE + ST // final schedule //
 Return (g, Tstart)
end

Let us discuss how this mechanism works through a
simple example for the 8-job SMETSP given in Table
1. The demand is to finish the jobs on a common due
date d=55. The summation of the tasks’ processing
times is equal to ∑pi=91 (i=1,…,8). Suppose the
following floating-point vector is given, generated at
some point in time by PSO algorithm

Ψ = (0.33, 0.76, 0.10, 0.40, 0.05, 0.20, 0.11, 0.86)

Table 1: Jobs’ characteristics for an 8-jobs SMETSP.

 j1 j2 j3 j4 j5 j6 j7 j8
pi 20 6 13 13 12 12 12 3
αi 4 1 5 2 7 9 5 6
βi 5 15 13 13 6 6 15 1

pi/αi 5 6 2.6 6.5 1.7 1.3 2.4 0.5
pi/βi 4 0.4 1 1 2 2 0.8 3

Since the 2nd and 8th components of Ψ have values
greater than 0.5, then jobs 2 and 8 are put in the tardy

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 689

Particle Swarm Optimization

set ST. All the remaining jobs are candidate members of
the early set SE. However, a job {i} is placed in SE only
when the following three conditions are satisfied: (1)
ψi≤0.5, (2) sump+ 1p ≤d, and (3) {i} is not a straddling
job. Otherwise, {i} is placed in ST.
Hence, after applying step 1 of the above encoding
mechanism, the two sets are formed as SE={1, 3, 4},
and ST={2, 6, 7, 8}; while job {5} becomes a straddling
job. Therefore, the solution represented by Ψ falls into
case-(B), meaning that the jobs in SE and ST must be
sequenced according to ‘\-shaped’ and ‘/-shaped’ order,
respectively. While the straddling job must be put
between the tail of SE and the head of ST. Using the
values given in Table 1, the final V-shaped solution
corresponding to Ψ is displayed in Figure 2.

Fig. 2: Τhe schedule for the 8-job problem of Table 1
corresponding to the particle

4.2 PSO implementation for the SMETSP

Except from the above encoding mechanism which is
necessary for mapping a particle’s position to an actual
schedule solution, in order to apply PSO to SMETSP a
way must be found for using Eqs (6) and (8). To that
purpose, a technique similar to that previously used by
Allahverdi and Al-Anzi43 for the solution of a two-stage
assembly-scheduling problem was adopted. Let us see
how this technique works through a simple example:
Suppose that, for a 5-job SMETSP at some point in
time during the k-th iteration, a specific particle say

kx ,ϕ (φ∈[1, Ns]) in the swarm has the following
characteristics: Present = (3, 4, 1, 2, 5), Pbest =
(1, 4, 5, 2, 3), and Gbest = (2, 4, 5, 1, 3). Present
denotes the SMETSP solution represented by kx ,ϕ .
Pbest denotes the schedule solution corresponding to

pbest
kx ,φ and Gbest the schedule solution corresponding

to gbest
kx .
Let, D1 be the fraction of jobs that are different

between Present and Pbest; and D2 the fraction of jobs
that are different between Present and Gbest. In other
words, D1 and D2 represent the differences between the

jobs’ sequences Present and Pbest, and Present and
Gbest, respectively. Therefore, for the above example,
since Present differs from Pbest in three locations
(actually in the 1st, 3rd, and 5th locations) then D1=3/5=
0.6. Similarly, Present differs from Gbest in four (out
the five in total) locations meaning that D2=4/5 = 0.8.
Eqs. (6) and (8) can now be written as in the
following43:
Advance Present towards Pbest with a velocity,

V1 = c1 ⋅ r1 ⋅ D1 (9)

Advance Present towards Gbest with a velocity,

V2 = c2 ⋅ r2 ⋅ D2 (10)

r1, r2 are uniform random numbers drawn in (0,1).
Advancing Present towards Pbest at a speed equal to V1
is implemented using the procedure:

Procedure Move_towards_Pbest (kx ,ϕ , Present,
 Pbest, pbest

kx ,φ , V1)
begin
 for j =1 to Ns do
 if Presentj ≠ Pbestj then
 if jR ≤ V1 then
 jpbest

k
j

k xx ,
,, φφ = // update particle’s position //

 endif
 endif
 endfor
 Return (kx ,ϕ)
end

Where, Presentj denotes the j-th job in Present
sequence, and Pbestj the j-th job in Pbest
sequence. jR ∈(0,1), is drawn randomly for each j.
Similarly, advancing Present towards Gbest at a speed
equal to V2 is implemented using the procedure:

Procedure Move_towards_Gbest (kx ,ϕ , Present,
 Gbest, gbest

kx , V2)
begin
 for j =1 to Ns do
 if Presentj ≠ Gbestj then
 if jR ≤ V2 then
 jgbest

k
j

k xx ,
, =φ // update particle’s position //

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 690

A. Nearchou, S. Omirou

 8

 endif
 endif
 endfor
 Return (kx ,ϕ)
end

Therefore, if the job lying at position j (j=1,…,n) of
Present is different from the associated job in Pbest
(Gbest), then make the content of the j-th component of

kx ,ϕ same to that of the j-th component of
pbest
kx (gbest

kx) with probability V1 (V2). Note that, V1
and V2 are limited to take values in the range (0,1).
Possible negative values are set to 0.01, and values
greater than 1 are set to 0.95. The complete version of
the proposed PSO algorithm is given below:

Algorithm PSO for the SMETSP
Input: The number of the jobs to be scheduled (n). The
 common due date (d). Three quantities
 (jp , jα , jβ) ∀ job j (j=1,…,n) corresponding
 to the job’s processing time, and job’s
 earliness and tardiness penalties, respectively.
Output: The ‘best’ V-shaped Schedule (VS*).
Begin
 Step 1: Initialize control parameters

1.1) Set the size Ns of the swarm;
1.2) Set values for the weight factors c1 and c2;
1.3) Initialize iteration counter k = 0, and set the

maximum number of iterations kMAX;
 Step 2: Swarm Initialization

2.1) Set minx =0 , maxx =1, minv =0, maxv =1;
2.2) Build initial swarm S using Eq. (3).
2.3) For each particle i (i=1,2,…,Ns) in S, create

its initial velocity kiv , using Eq. (4).
 Step 3: Swarm Evaluation
 for i = 1 to Ns do

3.1) Build schedule kixv ,s corresponding to kix ,
3.2) Set kixv ,s = Encoding_mechanism(kix ,);
3.3) Compute the cost of the generated schedule,

COST(kixv ,s) using Eq. (1);
3.4) Determine the personal best position and its

associated V-shaped schedule as in the
following:

 if (k=0) then
 pbest

kix , = kix , ; pbest
kivs , = kixv ,s ;

 elseif COST(kixv ,s) < COST(pbest
kivs ,) then

 pbest
kix , = kix , ; pbest

kivs , = kixv ,s ;

 endif
 endfor
 Step 4: Population Statistics:

4.1) Determine the global best V-shaped schedule
of the swarm (gbest

kvs); save the associated
global best position into gbest

kx ;
4.2) Set Gbest = gbest

kvs ;
4.3) Keep track for the best-so-far V-shaped

solution s*v :
 if k=0 then s*v = gbest

kvs
 else if COST(gbest

kvs) < COST(s*v) then
 s*v = gbest

kvs
 endif
 Step 5: Update velocity and position
 for each particle i (i=1,2,…,Ns) in S do

5.1) Set Present = kixv ,s , Pbest = pbest
kivs , ;

5.2) Determine D1 and D2 using the method
described in sub-section 4.2;

5.3) Compute V1 using Eq.(9), repair V1 if needed;
5.4) Compute V2 using Eq.(10), repair V2 if

needed;
5.5) Advance Present towards Pbest at a speed V1

using: Move_towards_Pbest(kix , ,Present,
 Pbest, pbest

kix , , V1);
5.6) Advance Present towards Gbest at a speed V2

using:Move_towards_Gbest (kix , , Present,
 Gbest, gbest

kx , V2) ;
 endfor
 Step 6: Stopping criterion

6.1) Advance iteration counter: k = k + 1;
6.2) if k ≤ kMAX then go to Step 3.
6.3) Return (s*v);

End;

5. Experimental analysis and discussion

The proposed PSO algorithm was implemented in
Pascal and run on a Pentium 4 (1.2 GHz) PC. The
algorithm was tested over a set of public benchmarks
problems, recently proposed by Biskup and
Feldmann25. These benchmarks include test instances
ranging from small size with 10 jobs to large size
instances with 1000 jobs. Specifically, there are seven
categories of problems with 10, 20, 50, 100, 200, 500,
and 1000 number of jobs with each category containing
ten instances to be tested. The value of a restrictive

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 691

Particle Swarm Optimization

factor h=0.2, 0.4, 0.6, 0.8 classifies the problems as less
or more restricted against a common due date d using
the relation:

1

n

j
j

d h p
=

= ∑ 
 

 (11)

With y, denoting the biggest integer smaller than, or
equal to y. That is, for each problem, the common due
date d is estimated by multiplying the summation of the
processing times of all the n jobs with the restrictive
factor h. The lower the value of h the more restrictive is
d (the higher the expected percentage of the late jobs).
Note that h must be within (0, 1) recognizing that, for
h=1 the problem becomes unrestrictive, while for h=0
the problem becomes trivial. It is worth pointing out
that optimal solutions for the examined benchmarks
only exist for the 10 jobs test instances and have been
achieved using an integer programming formulation
with LINDO software25.

As described in section 3 the performance of the
proposed PSO algorithm is depended on the values of
three parameters: the swarm size (Ns), the cognitive
parameter (c1), and the social parameter (c2). In order to
determine the correct settings for these parameters, the
following control schemes were studied:
(a) Different swarm sizes were examined in the

range, Ns∈{max(10, 5+  n), n, 2n, 3n}; with n
being the number of the jobs to be scheduled.
The function max(x,y) returns the maximum
between x and y. Note that, formula max(10,
5+  n guarantees that Ns will be never less
than 10 jobs (cases of test problems with n=10
and n=20 jobs). Using swarms with less than 10
particles was found in preliminary experiments to
reduce drastically the performance of the
developed algorithm resulting to solutions with
poor quality.

(b) To be consistent with the literature46,47 the two
learning factors c1 and c2 were both set to a fixed
and equal value within the range {0.5, 1.0, 2.0}.
Furthermore, since some recent works (e.g., see
Refs. 47 and 48) report that it might be even better
to choose a larger cognitive parameter, c1, than a
social parameter, c2, but with c1+c2 ≤4, experiments
have been also conducted using the combination
c1=2 and c2=1.5.

In all the simulations, the PSO algorithm was left
running for a maximum number of 500n evaluations
(where an evaluation corresponds to the estimation of
the objective (cost) function of an individual solution)
and the best results obtained after this time duration
were reported. The particular maximum running
duration was found in preliminary experiments to be a
quite good choice for terminating the running of the
developed algorithm. It was the main result of an
empirical investigation performed with the following 5
termination conditions alternatives: stop after running
for a maximum of, (a) 500n evaluations, (b) 1000n
evaluations, (c) 1000 iterations; and (d) stop the
algorithm if after a number of 50 iterations no
improvement to the best so far solution is encountered.

Moreover, in order to be fair with the stochastic
behavior of the algorithm, multiple runs over each test
instance were performed and the average results were
reported. More specifically, to get the average
performance of the PSO algorithm, 15 runs (starting
each time from a different random number seed) on
each problem instance were performed and the solution
quality was averaged. Two performance measures were
used to quantify the performance of the algorithm:
(i). The average percentage deviation (dev%) from

the existing optimum solution defined by the
equation:

()% 100 /PSOdev Cost UB UB= × − (12)

Where, PSOCost is the cost (Eq.(1)) of the best schedule
achieved by the PSO algorithm for a specific
benchmark instance; and UB (=upper bound) the
corresponding cost of the existing best known solution
for this benchmark instance as reported in Ref. 25.

(ii). The average CPU time (measured in seconds)

consumed over each test instance until the
convergence of the algorithm.

Table 2 displays the influence of the various

combinations of settings of the control parameters (Ns,
c1, c2) on the performance of the PSO algorithm in
regard to dev%. The results displayed concern the
application of the PSO algorithm over the 10 instances
included in the 50-job SMETSP (h=0.2) benchmarks. It
is underlined that a similar influence of these

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 692

A. Nearchou, S. Omirou

 10

parameters on the performance of the algorithm was
also investigated over the other benchmarks categories.
As one can see from Table 2, best results were
encountered using the combination, Ns=max(10,
5+  n), c1=2.0, and c2=1.5. The minus sign in the
numerical results of this table denotes that PSO attained
to generate schedules of lower costs than the costs of
the existing best schedules for the specific benchmarks.
Particularly, PSO improved the existing best objective
function values for these benchmarks by approx. 5.5%.

Table 2: Choosing the correct control settings for the PSO
algorithm. Average dev% of the best solutions obtained after
15 runs over the instances of the 50-jobs (h=0.2) benchmarks.

Ns
c1=c2
= 0.5

c1=c2
= 1

c1=c2
= 2

c1=2.0
c2=1.5

max(10, 5+  n) -5.21 -5.42 -5.48 -5.55
n -5.29 -5.26 -5.26 -5.34
2n -4.98 -5.18 -5.18 -5.21
3n -5.02 -5.14 -5.20 -5.20

In regard to the results of Table 2, one more comment
about the selection of the appropriate population
(swarm) size must be given for the interested reader.
The empirical knowledge generally dictates that a larger
population will work more slowly but will eventually
achieve better solutions than a smaller population.
However, this is not always true and the correct
population size depends on the problem being solved,
the run duration of the algorithm, the representation
used and the operators manipulating this
representation49. The experimental results presented
throughout this paper are performed with the PSO
algorithm running for a maximum number of 500n
evaluations. Where, an evaluation corresponds to the
estimation of the objective function of an individual
solution. That is, given that the PSO algorithm is going
to perform 500n=500×50=25,000 evaluations for the
50-job SMETSP, 50,000 evaluations for the 100-job
SMETSP, and so on, the above preliminary tests
indicated that a population of max(10, 5+  n)
individuals is an effective choice to deal with the
specific implementation of the PSO algorithm.

The following discussion concerns the application of
the PSO algorithm using the above ‘best’ combination
of settings. The experiments have been carried out over
the most difficult test instances of the Biskup and
Feldmann (2001)’s benchmarks25; i.e., those instances
that are more restricted against common due dates (i.e.,
with h = 0.2 and 0.4). The full computational results
obtained by the proposed PSO algorithm are
summarized in Tables 3 and 4. In particular, Table 3
contains the results concerning the small size
benchmark problems with up to 50 jobs; while Table 4
contains the results concerning the large size
benchmarks problems with jobs ranging from 100 to
1000. For each test instance the two tables include the
existing upper bound (UB) generated by Biskup and
Feldmann25, the near-optimum solution achieved by the
PSO algorithm (CostPSO), and the percentage offset
(dev%) of the generated solution from the existing
upper bound. It is worth pointing out that optimal
solutions for these benchmarks only exist for the 10
jobs test instances and have been achieved using an
integer programming formulation with LINDO
software25.

Table 3: Results over the small size benchmarks.

 h=0.2 h=0.4

n
UB/

 OPTIMUM Costpso dev%
UB/

OPTIMUM Costpsodev%
10 1 1936 1936 0.00 1025 1025 0.00

 2 1042 1042 0.00 615 615 0.00

 3 1586 1602 1.01 917 931 1.53

 4 2139 2169 1.40 1230 1230 0.00

 5 1187 1187 0.00 630 630 0.00

 6 1521 1521 0.00 908 908 0.00

 7 2170 2170 0.00 1374 1374 0.00

 8 1720 1720 0.00 1020 1020 0.00

 9 1574 1574 0.00 876 876 0.00

 10 1869 1869 0.00 1136 1140 0.35

20 1 4431 4394 -0.84 3066 3066 0.00

 2 8567 8460 -1.25 4897 4897 0.00

 3 6331 6221 -1.74 3883 3845 -0.98

 4 9478 9192 -3.02 5122 5122 0.00

 5 4340 4215 -2.88 2571 2495 -2.96

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 693

Particle Swarm Optimization

 6 6766 6552 -3.16 3601 3584 -0.47

 7 11101 10459 -5.78 6357 6250 -1.68

 8 4203 3994 -4.97 2151 2201 2.32

 9 3530 3465 -1.84 2097 2096 -0.05

 10 5545 4987
-

10.06 3192 2925 -8.36

50 1 42363 40734 -3.85 24868 23792 -4.33

 2 33637 30739 -8.62 19279 18042 -6.42

 3 37641 34505 -8.33 21353 20700 -3.06

 4 30166 27803 -7.83 17495 16693 -4.58

 5 32604 32332 -0.83 18441 18167 -1.49

 6 36920 35102 -4.92 21497 20402 -5.09

 7 44277 43229 -2.37 23883 23228 -2.74

 8 46065 43969 -4.55 25402 24947 -1.79

 9 36397 34326 -5.69 21929 20008 -8.76
 10 35797 32999 -7.82 20048 19238 -4.04

Table 4: Results over the large size benchmarks.

 h=0.2 h=0.4

n
UB/

OPTIMUM Costpso dev%
UB/

OPTIMUM

Costpso dev%
100 1 156103 146132 -6.39 89588 86280 -3.69

 2 132605 125331 -5.49 74854 73459 -1.86

 3 137463 130414 -5.13 85363 80207 -6.04

 4 137265 131132 -4.47 87730 79947 -8.87

 5 136761 124882 -8.69 76424 71609 -6.30

 6 151938 139961 -7.88 86724 77987 -10.07

 7 141613 137407 -2.97 79854 78410 -1.81

 8 168086 161424 -3.96 95361 95612 0.26

 9 125153 118859 -5.03 73605 69812 -5.15

 10 124446 119795 -3.74 72399 72389 -0.01
200 1 526666 502920 -4.51 301449 298080 -1.12

 2 566643 556476 -1.79 335714 322705 -3.88

 3 529919 497396 -6.14 308278 296023 -3.98

 4 603709 599074 -0.77 360852 356197 -1.29

 5 547953 524601 -4.26 322268 306819 -4.79

 6 502276 490165 -2.41 292453 287009 -1.86

 7 479651 470485 -1.91 279576 275805 -1.35

 8 530896 505432 -4.80 288746 280383 -2.90

 9 575353 545248 -5.23 331107 315441 -4.73

 10 572866 544871 -4.89 332808 327299 -1.66
500 1 3113088 2995837 -3.77 1839902 1809150 -1.67

 2 3569058 3396297 -4.84 2064998 2019880 -2.18

 3 3300744 3114316 -5.65 1909304 1877994 -1.64

 4 3408867 3243457 -4.85 1930829 1923249 -0.39

 5 3377547 3127020 -7.42 1881221 1824148 -3.03

 6 3024082 2807257 -7.17 1658411 1637076 -1.29

 7 3381166 3193413 -5.55 1971176 1931460 -2.01

 8 3376678 3127525 -7.38 1924191 1829059 -4.94

 9 3617807 3376250 -6.68 2065647 1995866 -3.38
 10 3315019 3137808 -5.35 1928579 1867701 -3.16
1000 1 15190371 14496459 -4.57 8570154 8165112 -4.73

 2 13356727 12637411 -5.39 7592040 7324309 -3.53
 3 12919259 12424534 -3.83 7313736 7057780 -3.50
 4 12705290 12332609 -2.93 7300217 7063524 -3.24
 5 13276868 13013517 -1.98 7738367 7401864 -4.35
 6 12236080 11683666 -4.51 7144491 7012026 -1.85
 7 14160773 13299602 -6.08 8426024 7898469 -6.26
 8 13314723 12321242 -7.46 7508507 7264332 -3.25
 9 12433821 11789909 -5.18 7299271 7117968 -2.48
 10 13395234 12471333 -6.90 7617658 7330962 -3.76

As one can see from Tables 3 and 4 the
performance of the PSO algorithm is of high quality.
The algorithm reached the exact optimum solution in
the majority of the test instances with 10-jobs (see
Table 3); particularly, in the eight out the ten in total
instances. Furthermore, (except from three instances of
the h=0.4, 20-job benchmarks –see Table 3-) higher
quality solutions than the existing best known solutions
have been generated by PSO to all the test instances
ranging from 20 to 1000 jobs. This fact is indicated by a
negative percentage deviation (dev%) in the
corresponding columns of the two tables. More
specifically, for the most restricted class of benchmarks
(h=0.2) the mean dev% for the solutions obtained are -
3.55% for 20 jobs problems, -5.48% for 50-jobs
problems (Table 3), -5.38% for 100-jobs, -3.67% for
200-jobs (Table 4), and so on. PSO introduced new
upper bounds in all the h=0.2 instances with n≥20, i.e.
to approx. 86% of the instances of h=0.2 benchmarks.
While, in regard to the h=0.4 benchmarks, PSO attained

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 694

A. Nearchou, S. Omirou

 12

to improve nearly the 75% of the available test
instances. Figure 3 illustrates the average percentile
improvement of the benchmarks solutions attained by
the PSO algorithm.

-1

0

1

2

3

4

5

6

7

10 20 50 100 200 500 1000

Number of jobs

%
 im

pr
ov

em
en

t

h=0,2 h=0,4

Fig. 3: Average percentile improvement of the benchmarks
solutions using the PSO algorithm.

Figure 4 displays the mean actual running times for

the PSO algorithm until the convergence to the near-
optimum solution. The running times (in seconds) are
given in regard to the problems’ degree of restriction
(value of parameter h) and problems’ sizes.

0
1
2
3
4
5
6
7
8

10 20 50

Number of jobs

C
PU

 (s
ec

)

h=0,2 h=0,4

(a)

50

2050

4050

6050

8050

10050

100 200 500 1000
Num ber of jobs

C
PU

 (s
ec

)

h=0,2 h=0,4

(b)

Fig. 4: Average CPU times (in seconds) until the
convergence. Results on a Pentium 4 (1.2 GHz) PC. (a)
case of small size problems, (b) case of large size
problems.

Figure 5 displays the optimal solutions (in Gantt
charts) obtained by PSO for the first two instances
included in the h=0.2 10-jobs benchmarks problems. f*
denotes the cost (given by Eq. (1)) of the optimal
solution. From Table 3 one can observe that PSO did
not find the exact optimum solution in 4 (out the 20 in
total) instances of the 10-jobs test beds. However, it is
worth pointing out that, with a slight modifications of
the swarm’s size (particularly, with a swarm’s size
equal to 4n which in the case of the 10-jobs problems
means 40 particles in the swarm), PSO attained to
determine the exact optimal solution for these 4
instances too.

Fig. 5: The Gantt charts for the optimal solutions obtained by
PSO for the first two instances included in 10-jobs (h=0.2)
benchmarks problems. d and f* denotes the common due-date
and the cost of the optimal solution, respectively.

Some interesting comparative results between PSO

and three known heuristics namely, evolution strategy
(ES), stochastic hill-climber (SHC), and pure random
search (pRS) technique are depicted in Fig. 6. These

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 695

Particle Swarm Optimization

results concern the dev% of the solutions obtained by
the four methods (averaged after 15 runs) on the test
instances included in the 50-jobs data sets. As one can
observe from this figure, PSO (lower curve)
outperforms all the other heuristics generating solutions
of much higher quality (schedules of lower costs). As it
was expected, the next best performance was due to ES,
while the worst performance was due to pRS technique.
The basic characteristics of the three implemented
heuristics are briefly described below.

-10
-5
0
5

10
15

1 2 3 4 5 6 7 8 9 10
test instances

de
v%

PSO
SHC
ES
pRS

(a)

-10
-5
0
5

10
15
20
25

1 2 3 4 5 6 7 8 9 10
test instances

de
v%

PSO
SHC
ES
pRS

(b)

Fig. 6: Comparative results between PSO, ES, SHC and pRS
over the 10 test instances included in the 50-jobs benchmarks
data set. The % deviation of the solutions obtained by the four
heuristics from the existing near-optimal benchmark
solutions. Case of, (a) h=0.2 and (b) h=0.4 tests instances.

To make the three heuristics comparable to PSO we

used the same population size for all, and limit the
running process for the same maximum number of
iterations. Moreover, all the heuristics were
implemented using the (same with PSO) encoding, and
evaluation mechanisms described in sub-section 4.1.
Particularly, each individual solution in ES, SHC and
pRS is a vector containing n floating-point numbers
within the range [0,1]. Each such floating-point vector

is mapped to an actual SMETSP solution using
procedure Encoding_mechanism also described in sub-
section 4.1. ES was implemented by following the
recommendations of the literature50. After
experimentation for choosing the correct survivor
selection scheme, we found that using (μ,λ)-scheme
within ES results in a superior optimizer to that of using
(μ+λ)-scheme. For this reason (μ,λ)-scheme was
adopted. μ was estimated using the heuristic rule λ/μ=7.
Mutation was performed through Gaussian
perturbation. Offspring were generated using discrete
recombination. SHC was implemented as a modified
version of the metropolis algorithm51 for a parallel
searching of the solution space. That is, for each
solution kix , ∈S in iteration k, search its neighbourhood
N(kix ,) and choose the best solution ,i kx′ . Accept this
solution (i.e., kix , = ,i kx′) if COST(,i kx′)<COST(kix ,)
or with a probability
exp((COST(kix ,)−COST(,i kx′))/T). T>0 (called
temperature) determines the probability of accepting
worse solutions. A value of T=10 was experimentally
found to be a good choice for our problem. A new
solution in N(kix ,) was generated by flipping randomly
each time the jth (j=1,…,n) component of kix , . Thus,
for each solution we generate n different neighbours.
pRS is identical to SHC except from the point that, a
new solution ,i kx′ is accepted and replaced its ancestor

kix , only if it has a lower cost.
We conclude by giving a short guide to those of the

researchers who are willing to apply PSO on their
discrete COPs: (a) Select an appropriate representation.
This representation is directly depended on the structure
of the problem being solved. (b) Design a suitable
encoding mechanism that maps each vector solution to
an actual COP’s solution. This mechanism must take
into account the properties of the problem being solved.
(c) If necessary, implement appropriate repairing
mechanisms to guarantee the creation of legal solutions.
(d) Follow the recommendation of the literature to
estimate the proper settings of the control parameters
(i.e., swarm size, inertia weight, learning factors). (e)
Study the behavior of your PSO at different iterations
so that to realize whether it converges too early. There
are some important tricks in the literature to improve
the rate of convergence of PSO, to control the diversity
of the swarm so that to avoid local optima, etc.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 696

A. Nearchou, S. Omirou

 14

6. Conclusion

In today production management, scheduling against
common due dates with respect to earliness and
tardiness penalties is of great importance mainly due to
its compliance with the principles of just-in-time
‘philosophy’. This is a typical discrete combinatorial
optimization problem (COP) known to be intractable,
meaning that, the search for optimal schedules using
traditional mathematical programming techniques is
only possible for very small size instances of the
problem.

This paper presented a new particle swarm
optimization (PSO) heuristic to address the problem of
scheduling a number of jobs on a single machine
against a restricted common due date. It is worth noting
that PSO-based heuristics have rarely been applied to
discrete COPs. The developed PSO differs from the
existing PSO approaches in two main points: first in the
way the ‘particles’ are represented and mapped into
actual scheduling solutions; and second, in the way of
controlling the ‘particles’ velocities of the entire swarm.
Extensive experiments were performed over 140 highly
restricted against a common due date benchmarks
problems for which the upper bounds were known. The
results obtained showed a high quality performance for
the proposed PSO heuristic introducing to the majority
of the benchmark instances new upper bounds. In
particular, PSO reached or surpassed the 95% of the
existing optimal benchmark solutions introducing new
upper bounds in the 82% of the benchmarks instances.
Furthermore, comparative experiments with existing
heuristics (including evolution strategy, stochastic hill-
climber, and random search) showed a substantially
superior performance for the developed approach in
terms of solution quality. The method is quite general
and can be rather easily modified and applied to any
other COP. The only modifications required to be done
is, firstly in the encoding mechanism (that is mapping
the particles to actual solutions to the considered
problem), and secondly in the evaluation mechanism
(i.e. the objective function which is problem depended).
Moreover, due to the small number of control
parameters used within the algorithm, parameters’
tuning is performed easily. A limitation however of the
proposed method is its convergence speed. In its current

form the algorithm is rather slow when the number of
the jobs to be scheduled exceeds 200.
Future work will be focused on the development of a
more robust and faster version of the PSO algorithm to
address other more difficult scheduling problems that
are known to be intractable, such as the job-shop
scheduling problems. Hybridization of the PSO
algorithm with local search techniques such as tabu-
search or/and simulated annealing is a very promising
area of research and may result in more powerful
heuristic. On going research is focused to the design of
a multi-objective PSO algorithm to address the multi-
criteria flow-shop scheduling problem. Three criteria
are currently under investigations with the objective to
be simultaneously minimized, namely, the makespan,
the maximum tardiness and the total flow time of the
jobs.

References

1. K. Baker and G. Scudder, Sequencing with earliness and

tardiness penalties: A review, Operations Research 38
(1990) 22-36.

2. S. French, Sequencing and scheduling, an introduction to
the mathematics of the job-shop (Ellis Horwood
publication, 1990).

3. J.J. Kanet, Minimizing the average deviation of job
completion times about a common due date, Naval
Research Logistics 28 (1981) 643-651.

4. N. Hall, Single and multiple processor models for
minimizing completion time variance, Naval Research
Logistics Quarterly 33 (1986) 49-54.

5. U. Bagchi, R.S. Sullivan, and Y.L Chang. Minimizing
mean absolute deviation of completion times about a
common due-date, Naval Research Logistics Quarterly
33 (1986) 227-240.

6. U. Bagchi, R.S. Sullivan, and Y.L. Chang, Minimizing
absolute and squared deviations of completion times with
different earliness and tardiness penalties about a
common due-date, Naval Research Logistics Quarterly
34 (1987) 739-751.

7. N. Hall and M. Posner, Earliness-tardiness scheduling
problems I: weighted deviation of completion times
about a common date, Operations Research 39 (1991)
836-846.

8. P. De, J.B Ghosh, C.E. Wells, Solving a generalized
model for CON due date assignment and sequencing, Int.
Journal of Production Economics 34 (1994) 179-185.

9. J.A. Hoogeveen, and S.L. van de Velde, Earliness-
tardiness scheduling around almost equal due date,
INFORMS Journal on Computing 9 (1997) 92-99.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 697

Particle Swarm Optimization

10. T. Cheng and M. Gupta, Survey of scheduling research
involving due date determination decision, European
Journal of Operational Research 38 (1989) 156-166.

11. V. Gordon, J.-M.Proth, and C. Chu, A survey of the
state-of-the-art of common due date assignment and
scheduling research, European Journal of Operational
Research 139 (2002) 1-25.

12. T. Abdul-Razaq and C.N. Potts, Dynamic programming
state-space relaxation for single-machine scheduling,
Journal of the Operational Research Society 39 (1988)
141-152.

13. J.P. Souza and L.A. Wolsey, A time indexed formulation
of non-preemptive single machine scheduling problems,
Mathematical Programming 54 (1992) 353-367.

14. M.-T. Almeida and M. Centeno, A composite heuristic
for the single machine early/tardy job scheduling
problem, Computers and Operations Research 25 (1998)
625-635.

15. C.-Y. Lee and S.J. Kim, Parallel genetic algorithms for
the earliness-tardiness job scheduling problem with
general penalty weights, Computers and Industrial
Engineering 28 (1995) 231-248.

16. Q. Hao, Z. Yang, D. Wang, Z. Li, Common due date
determination and sequencing using tabu search,
Computers and Operations Research 23 (1996) 409-417.

17. R.J.W. James, Using tabu search to solve the common
due date early/tardy machine scheduling problem,
Computers and Operations Research 24 (1997) 199-208.

18. M. Feldmann and D. Biskup, Single-machine scheduling
for minimizing earliness and tardiness penalties by meta-
heuristic approaches, Computers and Industrial
Engineering 44 (2003) 307-323.

19. A.C. Nearchou and S.L. Omirou, Differential evolution
for sequencing and scheduling optimization, Journal of
Heuristics 12 (2006) 395–411.

20. A.C. Nearchou, A differential evolution approach for the
common due date early/tardy job scheduling problem,
Computers & Operations Research 35 (2008) 1329-
1343.

21. Z.-J. Lee, C.-C. Chuang and K.-C. Ying, An intelligent
algorithm for scheduling jobs on a single machine with a
common due date, Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) 4693
LNAI (PART 2) (2007) 689-695.

22. Z.-J. Lee, S.-W. Lin, K.-C. Ying, A dynamical ant
colony optimization with heuristics for scheduling jobs
on a single machine with a common due date, Studies in
Computational Intelligence 128 (2008) 91-103.

23. R. M’Hallah and A. Alhajraf, Ant Colony Optimization
for the Single Machine Total Earliness Tardiness
Scheduling Problem, in New Frontiers in Applied
Artificial Intelligence: Lecture Notes in Computer
Science, N.T. Nguyen et al. (Eds.) 5027 (2008) 397-407.

24. M. Reisi and G. Moslehi, Minimizing the number of
tardy jobs and maximum earliness in the single machine
scheduling using an artificial immune system, Int
Journal of Advanced Manufacturing Technology 54
(2011) 749–756

25. D. Biskup and M. Feldmann, Benchmarks for scheduling
on a single machine against restrictive and unrestrictive
common due dates, Computers and Operations Research
28 (2001) 787-801.

26. R.C. Eberhart and J. Kennedy, A new optimizer using
particle swarm theory, in Proc. of the 6th Int. Symposium
on Micro Machine and Human Science, (1995) 39-43.

27. Anghinolfi and M. Paolucci, A new discrete particle
swarm optimization approach for the single-machine
total weighted tardiness scheduling problem with
sequence-dependent setup times, European Journal of
Operational Research 193 (2009) 73-85.

28. C. Low, C.-J. Hsu, C.-T. Su, A modified particle swarm
optimization algorithm for a single-machine scheduling
problem with periodic maintenance, Expert Systems with
Applications 37 (2010) 6429-6434.

29. Q.-K. Pan, M.F. Tasgetiren and Y.-C. Liang, A discrete
particle swarm optimization algorithm for single
machine total earliness and tardiness problem with a
common due date. In: Proc. of the World Congress on
Evolutionary Computation (CEC’06, Vancouver, Canada
2006) 3281–3288.

30. T.C.E. Cheng and H.G. Kahlbacher, A proof for the
longest/job/first policy in one/machine scheduling, Naval
Research Logistics 38 (1991) 715-720.

31. T.-On Ting, M.V.C. Rao, C.K. Loo and S.S. Ngu,
Solving Unit Commitment Problem Using Hybrid
Particle Swarm Optimization, Journal of Heuristics 9
(2003) 507–520.

32. M. Clerc, Discrete particle swarm optimization,
illustrated by the traveling salesman problem, New
Optimization Techniques in Engineering, (Heidelberg,
Germany, Springer, 2004) 219-239.

33. Salman, I. Ahmad, S. Al-Madani, Particle swarm
optimization for task assignment problem,
Microprocessors and Microsystems 26 (2003) 363-371.

34. G.C. Onwubolu and M. Clerc, Optimal operational path
for automated drilling operations by a new heuristic
approach using particle swarm optimization, Int. Journal
of Production Research 42 (2004) 473-491.

35. S. Liu, J. Tang and J. Song, Order-planning model and
algorithm for manufacturing steel sheets, Int. Journal of
Production Economics 100 (2006) 30-43.

36. A.W. Mohemmed, N. C. Sahoo, T. K. Geok, Solving
shortest path problem using particle swarm optimization,
Applied Soft Computing 8 (2008) 1643-1653.

37. K. Rameshkumar, R.K. Suresh, and K.M.
Mohanasundaram, Discrete particle swarm optimization
(DPSO) algorithm for permutation flowshop scheduling
to minimize makespan, in Proc. ICNC 2005, L. Wang,

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 698

A. Nearchou, S. Omirou

 16

K. Chen, and Y.S. Ong (Eds.), Springer-Verlag, Berlin
2005) 572-581.

38. C.–J. Liao, C.-T. Tseng, P. Luarn, A discrete version of
particle swarm optimization for flowshop scheduling
problems, Computers & Operations Research 34 (2007)
3099-3111.

39. Z. Lian, X. Gu and B. Jiao, A novel particle swarm
optimization algorithm for permutation flow-shop
scheduling to minimize makespan, Chaos, Solitons &
Fractals 5 (2008) 851-861.

40. C.-T. Tseng and C.-J. Liao, A discrete particle swarm
optimization for lot-streaming flowshop scheduling
problem, European Journal of Operational Research,
191 (2008) 360-373.

41. Zhang, J. Sun, X. Zhu and Q. Yang, An improved
particle swarm optimization algorithm for flowshop
scheduling problem, Information Processing Letters 108
(2008) 204-209.

42. M.F. Tasgetiren, Y.-C. Liang, M. Sevkli and G.
Gencyilmaz, Particle swarm optimization and differential
evolution for the single machine total weighted tardiness
problem, Int. Journal of Production Research 44 (2006)
4737-4754.

43. Allahverdi and F.S. Al-Anzi, Evolutionary heuristics and
an algorithm for the two-stage assembly scheduling
problem to minimize makespan with setup times, Int.
Journal of Production Research 44 (2006) 4713-4735.

44. Lei, A Pareto archive particle swarm optimization for
multi-objective job shop scheduling, Computers &
Industrial Engineering 54 (2008) 960-971.

45. T.-L. Lin, S.-J. Horng, T.-W. Kao, Y.-H. Chen, R.-S.
Run, R.-J. Chen, J.-L. Lai and I-H. Kuo, An efficient
job-shop scheduling algorithm based on particle swarm
optimization, Expert Systems with Applications 37
(2010) 2629-2636.

46. J. Kennedy, The behavior of particles, In: Porto V.W.,
Saravanan N, Waagen D. and Eiben A.E. (eds)
Evolutionary Programming VII (Springer 1998) 581–
590.

47. K.E. Parsopoulos and M.N. Vrahatis, Recent approaches
to global optimization problems through particle swarm
optimization, Natural Computing 1 (2002) 235-306.

48. Carlisle and G. Dozier, An Off-The-Shelf PSO, in Proc.
of the Particle Swarm Optimization Workshop 2001, pp.
1–6

49. Z. Michalewicz and D.B Fogel, How to solve it: Modern
heuristics, (Springer-Verlag, Berlin 2000).

50. A.E. Eiben and J.E. Smith, Introduction to evolutionary
computing, (Springer, Berlin 2003).

51. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller
and E. Teller, Equation of state calculations for fast
computing machines, Journal of Chemical Physics 21
(1953) 1087-1092.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 699

