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Abstract: 

Focusing on the just-in-time (JIT) operations management, earliness as well as, tardiness of jobs’ production and 
delivery should be discouraged. In accordance to this philosophy, scheduling problems involving earliness and 
tardiness penalties are very critical for the operations manager. In this paper, a new population heuristic based on 
the particle swarm optimization (PSO) technique is presented to solve the single machine early/tardy scheduling 
problem against a restrictive common due date. This type of scheduling sets costs depending on whether a job 
finished before (earliness), or after (tardiness) the specified due date. The objective is to minimize a summation of 
earliness and tardiness penalty costs, thus pushing the completion time of each job as close as possible to the due 
date. The problem is known to be NP-hard, and therefore large size instances cannot be addressed by traditional 
mathematical programming techniques. The performance of the proposed PSO heuristic is measured over 
benchmarks problems with up to 1000 jobs taken from the open literature, and found quite high and promising in 
respect to the quality of the solutions obtained. Particularly, PSO was found able to improve the 82% of the existing 
best known solutions of the examined benchmarks test problems. 
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1. Introduction 

Sequencing and scheduling problems involving due 
dates, play a crucial role in real-world production and 
operations management. This type of scheduling sets 
penalty costs depending on whether a job finished 
before (earliness), or after (tardiness) the specified due 
date. In the last two decades, much research effort has 
been spent on the study of earliness and tardiness 
penalties in scheduling1,2 due to its accordance with the 
principles of just-in-time (JIT) operations management. 
JIT adopts the notion that jobs must be completed as 
close as possible to their due date, neither too early, nor 
too late. Early jobs result in inventory holding costs, 
while late jobs result to penalties such as loss of 
customer goodwill and loss of orders. Therefore, 
earliness as well as tardiness of jobs should be 
discouraged.  
 
This paper deals with the single-machine early/tardy 
scheduling problem (SMETSP) of a set of jobs with a 
common due date (CDD) and objective the 
minimization of the jobs’ total earliness and tardiness. 
SMETSP belongs to a large class of scheduling 
problems2 formally classified as n/1//ET. This class 
consists of problems with distinct due dates, problems 
with a CDD, problems with single, or multiple 
performance measures being either linear or non-linear, 
etc. Some of these problems can be solved in 
polynomial time using traditional mathematical 
programming methods, while many other are known to 
be intractable. One assumption often made about CDD 
is that it is sufficiently large so that it does not constrain 
the scheduling of the jobs. This is known as the 
unrestricted version of the problem (consequently CDD 
is called unrestrictive). The restricted version of the 
problem is obviously harder since the value of CDD is 
small enough to constrain the scheduling process. 
 
Even the simplest formulation of SMETSP leads to an 
NP-hard combinatorial optimization problem (COP)1,2, 
and thus it seems fair, large size instances of the 
problem to be addressed by the means of heuristics. 
Since the pioneer work of Kanet3 which deals 
exclusively with the special case when the earliness and 

tardiness penalties are equal to one, many approximate 
algorithms have been proposed for various versions of 
the basic problem. Hall4 and Bagchi et al.5,6 proposed 
algorithms for the absolute deviation SMETSP, which 
involve minimizing the sum of absolute deviations of 
the job completion times from a CDD. Hall and Posner7 
examined the unrestricted weighted earliness and 
tardiness problem. De et al.8, proposed a greedy 
randomized adaptive heuristic for the unrestricted 
problem with different penalties to find both the 
optimal due date and the optimal sequence of the jobs. 
Hoogeveen and van de Velde9 addressed the 
unrestricted SMETSP with ‘almost’ CDD using a 
dynamic programming algorithm. More about 
algorithms on scheduling problems involving due dates 
can be found in two comprehensive reviews considered 
by Baker and Scudder1 and Cheng and Gupta10 
respectively. These reviews cover the results published 
before 1990. Recent material and results can be found 
in the survey paper of Gordon et al.11.  
 
The majority of the proposed algorithms for SMETSP 
addressed instances of the problem with a small number 
of jobs, up to 25 or 50 jobs. For instance, Abdul-Razaq 
and Potts12 solved to optimality problems with up to 25 
jobs using a branch and bound algorithm. Souza and 
Wolsey13 proposed branch and bound algorithms for 
solving a class of four different scheduling problems 
(including SMETSP) with 20 and 30 jobs. Almeida and 
Centeno14 addressed SMETSP with up to 50 jobs via a 
composite algorithm that combines steepest-descent, 
simulated annealing and tabu-search. Recently, the use 
of meta-heuristics such as tabu-search (see Refs. 15-
17), genetic algorithms15, simulated annealing18, 
differential evolution19,20, ant colony optimization21-23, 
artificial immune systems24 enable researchers to 
address effectively large size instances of the problem. 
Among them, James17, Feldmann and Biskup18, 
Nearchou and Omirou19, Nearchou20, and Lee et al.22 
addressed the restricted SMETSP with general earliness 
and tardiness penalties. Moreover, Biskup and 
Feldman25 generated a set of benchmarks for SMETSP 
together with their upper bounds on the optimal 
objective functions.  
 
The current paper investigates the application of the 
particle swarm optimizer (PSO) algorithm on the 
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restricted SMETSP with general earliness and tardiness 
penalties. PSO is one of the latest meta-heuristics 
introduced by Eberhart and Kennedy26 for optimization 
over continuous spaces and its application to discrete 
COPs is still limited. Previous PSO-based approaches 
on single-machine scheduling problems can be found in 
the recent works of Anghinolfi and Paolucci27 and Low 
et al.28. The former work tackled the classical single-
machine weighed tardiness scheduling problem with 
sequence-dependent setup times; while, the latter 
considered the single-machine scheduling problem with 
periodic maintenance. To the best of our knowledge, 
the only researchers who addressed scheduling 
problems involving due dates using the PSO algorithm 
have been Pan et al.29. Our PSO approach differs from 
these studies in two main points: first in the developed 
encoding mechanism; that is, in the way ‘particles’ are 
represented and mapped into actual scheduling 
solutions; and second, in the way of controlling the 
‘particles’ velocities of the entire swarm.  

The performance of the proposed PSO algorithm is 
examined over the most restricted instances against 
CDDs of the Biskup and Feldmann (2001)’s 
benchmarks25; including 140 instances in total ranging 
from 10 to 1000 jobs. The results obtained are of high 
quality since new upper bounds have been introduced 
by PSO in the 82% of the examined benchmarks 
instances. The motivation behind the idea of applying 
PSO on SMETSP goes back to our previous works19,20 
in which we tackled the problem with high success 
through another meta-heuristic namely, differential 
evolution. Since the last five years there is a 
considerably research interest to tackle hard COPs 
through PSO-based approaches, it was decided to 
investigate the behavior and the performance of PSO on 
SMETSP too. Therefore, a major objective of this work 
is to show (through extended analysis of critical 
aspects, such as solution space, representation, 
encoding and decoding mechanisms) how PSO, a meta-
heuristic initially proposed as global optimizer over 
continuous search spaces can be applied with success 
on discrete COPs too.  

The rest of this paper is organized as follows: 
Section 2 states the problem. Section 3 gives a 
description of the basic PSO algorithm for optimization 
over continuous search spaces. Section 4 introduces the 
way PSO can be applied on SMETSP (a typical discrete 

COP), while Section 5 presents and discusses the results 
of the experimental evaluations of the algorithm. 
Finally, Section 6 summarizes the contribution of the 
paper and states some directions for future work.  

 

2. Problem formulation 

SMETSP can be formally defined as follows: consider 
n jobs (numbered 1,2,…,n) to be processed without 
interruption on a single machine that can handle only 
one job at a time. Each job j (j=1,…,n) is available at 
time zero, requires a positive processing time jp and 
ideally must be completed exactly on a specific 
(common for all jobs) due date d. Penalties are incurred 
whenever a job is completed before or after this due 
date. Therefore, an ideal schedule is one in which all 
jobs finish on the specific due date. Assuming that jC  
is the completion time of job j, then the earliness and 
tardiness of job j are given by the relations, 

),0max( jj CdE −=  and ),0max( dCT jj −= , 
respectively, for all j=1,…,n. The objective is therefore 
to find a processing order of the n jobs that minimizes  

( )∑
=

+
n

j
jjjj TE

1

βα    (1) 

where jj βα , (j=1,…,n) are the earliness and tardiness 
(nonnegative) penalties, respectively, for job j and 
constitute data input to the scheduling problem.  

Penalties in Eq. (1) can be measured in different 
ways resulting in several variations of the basic 
SMETSP. A CDD d is called unrestrictive when 

∑≥ jpd (j=1,…,n) holds, otherwise is called 
restrictive. Moreover, d is also called unrestrictive when 
it constitutes a decision variable for the problem. 
Consequently, one can refer to the problem as either 
unrestricted or restricted SMETSP.  

The basic assumptions with SMETSP can be 
summarized as follows: 
§ Jobs’ processing times are deterministic. 
§ Machine breakdown and maintenance are 

neglected. The machine is continuously available 
and never kept idle while there are jobs waiting to 
proceed. 

§ The machine processes only one job at a time.  
§ No setups between jobs are assumed.  
§ Jobs are known in advance. 
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§ Each job is available for processing at time zero. 
§ No job pre-empt is permitted.  
§ Jobs are independent without precedence or other 

constraints.  
§ All jobs must be completed on a particular 

common due date. 
 
2.1. Properties for the unrestricted CDD SMETSP 

There exists an optimal solution to the unrestricted 
CDD SMETSP having the following properties:  
a) There is no inserted idle time in the schedule.  
b) The schedule, is V-shaped (see Fig. 1), i.e., early 

jobs are sequenced in non-increasing order of 
jjp α (‘\-shaped’ format), and late jobs are 

sequenced in non-decreasing order of jjp β  
(j=1,…,n) (‘/-shaped’ format).  

c) One job is completed exactly on the due date.  

d) The q-th job in the sequence completes on the due-
date d, where q is the smallest integer satisfying the 

inequality 
1 1
( )q n

j j jj j
α β β+

= =
≥∑ ∑  

 

 
Fig. 1: The V-shaped property 

 

2.2 Properties for the restricted CDD SMETSP 

For the restricted SMETSP with general earliness and 
tardiness penalties there is an optimal schedule with the 
following properties:  
a) No idle times are inserted between consecutive 

jobs30.  
b) The schedule is V-shaped, but a straddling job may 

exist, i.e., a job whose execution starts before and 
finished after the due date25.  

c) The processing time of the first job either starts at 
time zero, or one job is completed at the due date25. 

 
Obviously, the restricted SMETSP is much more 
complex than the unrestricted version since all its 
variations result to an NP-hard COP11. There is a gap in 
the related literature for algorithms taking into account 
the third property of the restricted SMETSP. That is, the 
case where the first job in an optimal schedule might 
not start at time zero; thus, excluding optimal schedules 
a priori. This characteristic is investigated in Biskup 
and Feldmann25. It is worth pointing out that, there is no 
such limitation with the proposed PSO algorithm. 
Particularly, the use of a suitable encoding scheme 
enables PSO taking into account the case of the third 
property in the generated SMETSP solutions. 

 
3. The particle swarm optimization (PSO) 

algorithm 

PSO is a stochastic population heuristic introduced by 
Eberhart and Kennedy26 for continuous non-linear 
function optimization. According to its founders, PSO 
has roots in two recent ‘intelligent’ optimization 
methodologies: in artificial life and in evolutionary 
computation. In regard to artificial life, PSO has ties 
with bird flocking and fish schooling theories, while in 
regard to evolutionary computation has similarities with 
genetic and evolutionary algorithms. Since its 
invention, PSO has been applied with success on 
various COPs such as, the unit commitment problem31, 
the traveling salesman problem32, the task assignment 
problem33, an optimal operational path finding for 
automated drilling operations34, a multi-objective order 
planning production problem in steel sheets 
manufacturing35, scheduling problems involving due-
dates29, the shortest path problem36, etc. Recently, its 
application has been extended on scheduling problems 
such as, flow-shop scheduling problems37-41, the single-
machine total weighting tardiness problem27,42, the 
single machine scheduling problem with periodic 
maintenance28, the two-stage assembly-scheduling 
problem43, and job-shop scheduling problems44,45.  

Assuming the problem of minimizing a real-valued 
function ƒ(x), x∈Ω⊂ℜD (Ω is assumed to be the 
feasible search space of the problem), PSO utilizes a set 
(called swarm) of Ns particles as a population to search 
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Ω toward the global optimal solution. Each particle 
represents a potential solution to the optimization 
problem flying in the D-dimensional search space, 
modifying (iteration by iteration) its position according 
to its own best position in history and that of its 
neighbors. Each particle i (i=1,2,…,Ns) has three 
attributes: its current position kix , , its personal best 
position achieved so far pbest

kix , , and its current velocity 
kiv , . Note that each one of these attributes is a D-

dimensional parameter vector. The index k denotes the 
iteration number of the algorithm. The initial population 
(k = 0), 
 

S = },,,{ 00,20,1 ,Nsxxx K ,          (2) 
 

is taken to be uniformly distributed in the search region 
using the following formula: 
 

)( minmaxmin0, xxxx randomj
i −⋅+= ,         (3) 

 
where, j

kix , is the position value of the i-th 
(i=1,2,…,Ns) particle with respect to the j-th 
(j=1,2,…,D) dimension. minx  and maxx are user 
defined bounds, and random is a uniform random 
number in (0,1). Similarly, the initial velocities of the 
particles are generated using the formula  
 

)( minmaxmin0, vvvv randomj
i −⋅+= ,    (4) 

 
with minv , maxv user-defined fixed bounds, and random 
a uniform random number in (0,1). 

At each iteration k, all particles in S are targeted for 
replacement. This is achieved by performing the 
following steps: 
 
STEP 1:  
For each particle i (i=1,2,…,Ns) 
1.1) Evaluate its objective function )( ,kixf . 
1.2) Determine its personal best position pbest

kix ,  as in the 
following: 
if k=0 then pbest

ix 0,  = 0,ix  
else if )( ,kixf < )( ,

pbest
kixf then pbest

kix ,  = kix ,  (5) 
 
STEP 2:  
Determine the global best position gbest

kx corresponding 
to the best objective function value among the 
population of the particles (i.e., the whole swarm). 

 
STEP 3:  
For each particle i (i=1,2,…,Ns) update its 
velocity kiv , as in the following: 

,, 1 1 , 2 2 ,

, 1

( ) ( )

       
i k k

pbest gbest
i k i k i k

k i k

v c r x x c r x x

w v −

= ⋅ ⋅ − + ⋅ ⋅ −

+ ⋅
(6 

where, c1 and c2 are called cognitive and social 
parameters, respectively, and r1, r2 are uniform random 
numbers drawn in (0,1), c1 and c2 (also known with the 
term learning factors) represent the attraction that a 
particle has toward to its own success (c1), or that of its 
neighbors (c2). In other words, c1 is a weight factor 
representing the attraction toward pbest

kix , , while c2 the 
attraction toward gbest

kx . Both of them are usually 
defined to be constants during the execution of the 
algorithm. wk in Eq. (6) is the inertia weight factor 
which gadgets the effect of the old velocity onto the 
new one. Generally, wk is updated by the linear 
equation: 
 

1k kw w −= Θ×         (7) 
 
where, Θ  is a decrement user-defined constant factor.  
 
STEP 4:  
For each particle i (i=1,2,…,Ns) calculate its new 
position as in the following: 

 
kikiki vxx ,1,, += − ,    for  k>0  (8) 

 
STEP 5:  
Repeat steps (1)-(4) until k exceeds a maximum (user-
defined) number of iterations. 
 

4. The proposed PSO algorithm for the CDD 
SMETSP  

4.1 Solution space and encoding mechanisms 

The core idea behind the developed PSO algorithm is to 
search for solutions that are V-shaped. This is 
accomplished by the following encoding scheme that 
designates each job either being early or tardy: 
assuming an n-job SMETSP a candidate solution kix ,  
(i=1,2,…,Ns) denoting the position of the i-th particle in 
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the k-th iteration, is a vector containing n floating-point 
numbers taken from values within the range [0,1]. Each 
such floating-point number is associated to a specific 
job 1,2,…,n with that order. A value less than or equal 
to 0.5 in the vector indicates that the corresponding job 
is early otherwise the job is tardy. So, the jobs are 
distinguished into two sets namely, SE and ST containing 
the early and the tardy jobs respectively. Following the 
V-shaped property, the jobs in SE are moved in the start 
of the schedule and sequenced in ‘\-shaped’ format. 
Late jobs are moved in the end of the schedule and 
sequenced in ‘/-shaped’ format. Let sump the total 
processing time of the early jobs in SE, then an optimal 
solution to SMETSP can fall in one of the following 
three cases18:  
 
(A) The first job in SE starts at time zero and the last 

job in SE finished exactly on due date d. 
(B) The first job in SE starts at time zero and the last 

job in SE is completed prior to d. Further, a 
straddling job exists, i.e., a job starting executed 
before d and ending after d. 

(C) The first job in SE does not start at time zero (i.e., it 
is delayed) and the last job in SE is finished exactly 
on the due date d. 

 
Case-(A) occurs when sump=d; case-(B) occurs when 
sump>d, while case-(C) occurs when   sump<d. 
Therefore, according to the proposed scheme, for every 
candidate vector of the entire population, the sets SE and 
ST are firstly created. Second, the processing time of the 
jobs in SE are summed up into sump until the value of 
this variable surpassed d or no other jobs are contained 
in SE. Third, the starting time of the first job in SE is 
defined. That is, when sump≥d (cases (A) and (B)), the 
first job starts at time zero, otherwise (case (C)), the 
first job is delayed starting at time d−sump. Fourth, jobs 
in SE are ordered based on ‘\-shaped’ property, while 
jobs in ST are ordered based on ‘/-shaped’ property. 
This encoding mechanism is given below in algorithmic 
form. Ψ=(ψ1,…,ψn) is an individual vector solution, 
while the notation {i} denotes the i-th job (i=1,…,n).  
 
Procedure Encoding_mechanism (Ψ) 
begin 
  Step1: Build sets SE and ST 
    SE = ST = ∅ ; sump = 0 ; caseB = false ; 

    for i = 1 to n do  
       if (ψi  ≤ 0.5) then  
           if (sump + }{ip ≤ d) then  
              sump = sump + }{ip  ;  
              SE = SE ∪ {i} ;   // insert {i} into SE // 
           else if not caseB then 
               caseB = true ;  
               k = {i} ;     // k is the straddling job // 
           else ST = ST  ∪ {i} ;  // insert {i} into ST // 
           endif 
       else ST = ST  ∪ {i} ;     
       endif 
    endfor 
 Step2: Build the final schedule 
   if caseB then   // case-(B) // 
      Sort the jobs in SE according to ‘\-shaped’ format.  
      Then, put at the tail of SE the straddling job k. Sort  
      the jobs in ST according to ‘/-shaped’ format. First  
      job in SE starts at time Tstart = 0. 
   else  // case-(A), or -(C) // 
      Sort the jobs in SE and ST according to ‘\/-shaped’  
      property. First job in SE starts at time  
     Tstart = d−sump 
    endif 
   g = SE + ST  // final schedule // 
  Return (g, Tstart) 
end 

 
Let us discuss how this mechanism works through a 
simple example for the 8-job SMETSP given in Table 
1. The demand is to finish the jobs on a common due 
date d=55. The summation of the tasks’ processing 
times is equal to ∑pi=91 (i=1,…,8). Suppose the 
following floating-point vector is given, generated at 
some point in time by PSO algorithm  

Ψ = (0.33, 0.76, 0.10, 0.40, 0.05, 0.20, 0.11, 0.86) 
 

Table 1: Jobs’ characteristics for an 8-jobs SMETSP. 

 j1 j2 j3 j4 j5 j6 j7 j8 
pi 20 6 13 13 12 12 12 3 
αi 4 1 5 2 7 9 5 6 
βi 5 15 13 13 6 6 15 1 

pi/αi 5 6 2.6 6.5 1.7 1.3 2.4 0.5 
pi/βi 4 0.4 1 1 2 2 0.8 3 

 
Since the 2nd and 8th components of Ψ have values 
greater than 0.5, then jobs 2 and 8 are put in the tardy 
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set ST. All the remaining jobs are candidate members of 
the early set SE. However, a job {i} is placed in SE only 
when the following three conditions are satisfied: (1) 
ψi≤0.5,   (2) sump+ 1p ≤d, and (3) {i} is not a straddling 
job. Otherwise, {i} is placed in ST.      
Hence, after applying step 1 of the above encoding 
mechanism, the two sets are formed as SE={1, 3, 4}, 
and ST={2, 6, 7, 8}; while job {5} becomes a straddling 
job. Therefore, the solution represented by Ψ falls into 
case-(B), meaning that the jobs in SE and ST must be 
sequenced according to ‘\-shaped’ and ‘/-shaped’ order, 
respectively. While the straddling job must be put 
between the tail of SE and the head of ST. Using the 
values given in Table 1, the final V-shaped solution 
corresponding to Ψ is displayed in Figure 2. 
 

 
Fig. 2: Τhe schedule for the 8-job problem of Table 1 
corresponding to the particle 

 

4.2 PSO implementation for the SMETSP 

Except from the above encoding mechanism which is 
necessary for mapping a particle’s position to an actual 
schedule solution, in order to apply PSO to SMETSP a 
way must be found for using Eqs (6) and (8). To that 
purpose, a technique similar to that previously used by 
Allahverdi and Al-Anzi43 for the solution of a two-stage 
assembly-scheduling problem was adopted. Let us see 
how this technique works through a simple example: 
Suppose that, for a 5-job SMETSP at some point in 
time during the k-th iteration, a specific particle say 

kx ,ϕ  (φ∈[1, Ns]) in the swarm has the following 
characteristics:             Present = (3, 4, 1, 2, 5), Pbest = 
(1, 4, 5, 2, 3), and Gbest = (2, 4, 5, 1, 3). Present 
denotes the SMETSP solution represented by kx ,ϕ . 
Pbest denotes the schedule solution corresponding to 

pbest
kx ,φ  and Gbest the schedule solution corresponding 

to gbest
kx .  
Let, D1 be the fraction of jobs that are different 

between Present and Pbest; and D2 the fraction of jobs 
that are different between Present and Gbest. In other 
words, D1 and D2 represent the differences between the 

jobs’ sequences Present and Pbest, and Present and 
Gbest, respectively. Therefore, for the above example, 
since Present differs from Pbest in three locations 
(actually in the 1st, 3rd, and 5th locations) then D1=3/5= 
0.6. Similarly, Present differs from Gbest in four (out 
the five in total) locations meaning that D2=4/5 = 0.8. 
Eqs. (6) and (8) can now be written as in the 
following43: 
Advance Present towards Pbest with a velocity,  
 

V1 = c1 ⋅ r1 ⋅ D1        (9) 
 
Advance Present towards Gbest with a velocity, 
 

V2 = c2 ⋅ r2 ⋅ D2      (10) 
 
r1,  r2 are uniform random numbers drawn in (0,1). 
Advancing Present towards Pbest at a speed equal to V1 
is implemented using the procedure: 

 
Procedure Move_towards_Pbest ( kx ,ϕ , Present,  
                    Pbest, pbest

kx ,φ , V1)  
begin 
   for j =1 to Ns do 
      if Presentj ≠ Pbestj then 
         if jR ≤ V1 then 
                jpbest

k
j

k xx ,
,, φφ =   // update particle’s position // 

         endif 
       endif 
    endfor 
    Return ( kx ,ϕ ) 
end 
 
Where, Presentj denotes the j-th job in Present 
sequence, and Pbestj the j-th job in Pbest 
sequence. jR ∈(0,1), is drawn randomly for each j. 
Similarly, advancing Present towards Gbest at a speed 
equal to V2 is implemented using the procedure:  
 
Procedure Move_towards_Gbest ( kx ,ϕ , Present,  
                    Gbest, gbest

kx , V2)  
begin 
   for j =1 to Ns do 
     if Presentj ≠ Gbestj then 
        if jR ≤ V2 then 
            jgbest

k
j

k xx ,
, =φ   // update particle’s position // 
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        endif 
     endif 
    endfor 
    Return ( kx ,ϕ ) 
end 
 
Therefore, if the job lying at position j (j=1,…,n) of 
Present is different from the associated job in Pbest 
(Gbest), then make the content of the j-th component of 

kx ,ϕ  same to that of the j-th component of 
pbest
kx ( gbest

kx ) with probability V1 (V2). Note that, V1 
and V2 are limited to take values in the range (0,1). 
Possible negative values are set to 0.01, and values 
greater than 1 are set to 0.95. The complete version of 
the proposed PSO algorithm is given below: 
 
Algorithm PSO for the SMETSP 
Input: The number of the jobs to be scheduled (n). The  
 common due date (d). Three quantities 
 ( jp , jα , jβ ) ∀ job j (j=1,…,n) corresponding 
 to the job’s processing time, and job’s 
 earliness and tardiness penalties, respectively. 
Output: The ‘best’ V-shaped Schedule (VS*). 
Begin 
    Step 1: Initialize control parameters  

1.1) Set the size Ns of the swarm;  
1.2) Set values for the weight factors c1 and c2; 
1.3) Initialize iteration counter k = 0, and set the 

maximum number of iterations kMAX; 
    Step 2: Swarm Initialization  

2.1) Set minx =0 , maxx =1, minv =0, maxv =1; 
2.2) Build initial swarm S using Eq. (3).  
2.3) For each particle i (i=1,2,…,Ns) in S, create 

its initial velocity kiv , using Eq. (4).   
    Step 3: Swarm Evaluation  
       for i = 1 to Ns do 

3.1) Build schedule kixv ,s corresponding to kix ,  
3.2) Set kixv ,s = Encoding_mechanism( kix , );  
3.3) Compute the cost of the generated schedule, 

COST( kixv ,s ) using Eq. (1); 
3.4) Determine the personal best position and its 

associated V-shaped schedule as in the 
following: 

 if (k=0) then  
      pbest

kix ,  = kix , ; pbest
kivs ,  = kixv ,s ; 

 elseif COST( kixv ,s ) < COST( pbest
kivs , ) then  

      pbest
kix ,  = kix , ; pbest

kivs ,  = kixv ,s ; 

 endif 
       endfor 
   Step 4: Population Statistics:  

4.1) Determine the global best V-shaped schedule 
of the swarm ( gbest

kvs ); save the associated 
global best position into gbest

kx ;  
4.2) Set Gbest = gbest

kvs ; 
4.3) Keep track for the best-so-far V-shaped 

solution s*v : 
   if k=0 then s*v = gbest

kvs   
                 else if COST( gbest

kvs ) < COST( s*v ) then 
       s*v = gbest

kvs  
   endif 
   Step 5: Update velocity and position  
      for each particle i (i=1,2,…,Ns) in S do  

5.1) Set Present = kixv ,s , Pbest = pbest
kivs , ; 

5.2) Determine D1 and D2 using the method 
described in sub-section 4.2; 

5.3) Compute V1 using Eq.(9), repair V1 if needed; 
5.4) Compute V2 using Eq.(10), repair V2 if 

needed; 
5.5) Advance Present towards Pbest at a speed V1 

using: Move_towards_Pbest( kix , ,Present,  
   Pbest, pbest

kix , , V1);    
5.6) Advance Present towards Gbest at a speed V2 

using:Move_towards_Gbest ( kix , , Present,  
  Gbest, gbest

kx , V2) ; 
      endfor 
   Step 6: Stopping criterion 

6.1) Advance iteration counter: k = k + 1; 
6.2) if  k ≤ kMAX then go to Step 3. 
6.3) Return ( s*v ); 

End; 
 

5. Experimental analysis and discussion 

The proposed PSO algorithm was implemented in 
Pascal and run on a Pentium 4 (1.2 GHz) PC. The 
algorithm was tested over a set of public benchmarks 
problems, recently proposed by Biskup and 
Feldmann25. These benchmarks include test instances 
ranging from small size with 10 jobs to large size 
instances with 1000 jobs. Specifically, there are seven 
categories of problems with 10, 20, 50, 100, 200, 500, 
and 1000 number of jobs with each category containing 
ten instances to be tested. The value of a restrictive 
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factor h=0.2, 0.4, 0.6, 0.8 classifies the problems as less 
or more restricted against a common due date d using 
the relation: 

 

1

n

j
j

d h p
=

= ∑ 
 

   (11) 
 
With y, denoting the biggest integer smaller than, or 
equal to y. That is, for each problem, the common due 
date d is estimated by multiplying the summation of the 
processing times of all the n jobs with the restrictive 
factor h. The lower the value of h the more restrictive is 
d (the higher the expected percentage of the late jobs). 
Note that h must be within (0, 1) recognizing that, for 
h=1 the problem becomes unrestrictive, while for h=0 
the problem becomes trivial. It is worth pointing out 
that optimal solutions for the examined benchmarks 
only exist for the 10 jobs test instances and have been 
achieved using an integer programming formulation 
with LINDO software25. 

As described in section 3 the performance of the 
proposed PSO algorithm is depended on the values of 
three parameters: the swarm size (Ns), the cognitive 
parameter (c1), and the social parameter (c2). In order to 
determine the correct settings for these parameters, the 
following control schemes were studied:  
(a) Different swarm sizes were examined in the 

range, Ns∈{max(10, 5+  n ), n, 2n, 3n}; with n 
being the number of the jobs to be scheduled. 
The function max(x,y) returns the maximum 
between x and y. Note that, formula max(10, 
5+  n  guarantees that Ns will be never less 
than 10 jobs (cases of test problems with n=10 
and n=20 jobs). Using swarms with less than 10 
particles was found in preliminary experiments to 
reduce drastically the performance of the 
developed algorithm resulting to solutions with 
poor quality.  

(b) To be consistent with the literature46,47 the two 
learning factors c1 and c2 were both set to a fixed 
and equal value within the range {0.5, 1.0, 2.0}. 
Furthermore, since some recent works (e.g., see 
Refs. 47 and 48) report that it might be even better 
to choose a larger cognitive parameter, c1, than a 
social parameter, c2, but with c1+c2 ≤4, experiments 
have been also conducted using the combination 
c1=2 and c2=1.5. 

 

In all the simulations, the PSO algorithm was left 
running for a maximum number of 500n evaluations 
(where an evaluation corresponds to the estimation of 
the objective (cost) function of an individual solution) 
and the best results obtained after this time duration 
were reported. The particular maximum running 
duration was found in preliminary experiments to be a 
quite good choice for terminating the running of the 
developed algorithm. It was the main result of an 
empirical investigation performed with the following 5 
termination conditions alternatives: stop after running 
for a maximum of, (a) 500n evaluations, (b) 1000n 
evaluations, (c) 1000 iterations; and (d) stop the 
algorithm if after a number of 50 iterations no 
improvement to the best so far solution is encountered.  

Moreover, in order to be fair with the stochastic 
behavior of the algorithm, multiple runs over each test 
instance were performed and the average results were 
reported. More specifically, to get the average 
performance of the PSO algorithm, 15 runs (starting 
each time from a different random number seed) on 
each problem instance were performed and the solution 
quality was averaged. Two performance measures were 
used to quantify the performance of the algorithm:  
(i). The average percentage deviation (dev%) from 

the existing optimum solution defined by the 
equation: 

 
( )% 100 /PSOdev Cost UB UB= × −  (12) 

 
Where, PSOCost  is the cost (Eq.(1)) of the best schedule 
achieved by the PSO algorithm for a specific 
benchmark instance; and UB  (=upper bound) the 
corresponding cost of the existing best known solution 
for this benchmark instance as reported in Ref. 25. 
 
(ii). The average CPU time (measured in seconds) 

consumed over each test instance until the 
convergence of the algorithm. 

 
Table 2 displays the influence of the various 

combinations of settings of the control parameters (Ns, 
c1, c2) on the performance of the PSO algorithm in 
regard to dev%. The results displayed concern the 
application of the PSO algorithm over the 10 instances 
included in the 50-job SMETSP (h=0.2) benchmarks. It 
is underlined that a similar influence of these 
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parameters on the performance of the algorithm was 
also investigated over the other benchmarks categories. 
As one can see from Table 2, best results were 
encountered using the combination, Ns=max(10, 
5+  n ), c1=2.0, and c2=1.5. The minus sign in the 
numerical results of this table denotes that PSO attained 
to generate schedules of lower costs than the costs of 
the existing best schedules for the specific benchmarks. 
Particularly, PSO improved the existing best objective 
function values for these benchmarks by approx. 5.5%.  

 

Table 2: Choosing the correct control settings for the PSO 
algorithm. Average dev% of the best solutions obtained after 
15 runs over the instances of the 50-jobs (h=0.2) benchmarks. 

Ns 
c1=c2
= 0.5

c1=c2
= 1

c1=c2
= 2

c1=2.0
c2=1.5

max(10, 5+  n ) -5.21 -5.42 -5.48 -5.55
n  -5.29 -5.26 -5.26 -5.34
2n -4.98 -5.18 -5.18 -5.21
3n -5.02 -5.14 -5.20 -5.20

 

In regard to the results of Table 2, one more comment 
about the selection of the appropriate population 
(swarm) size must be given for the interested reader. 
The empirical knowledge generally dictates that a larger 
population will work more slowly but will eventually 
achieve better solutions than a smaller population. 
However, this is not always true and the correct 
population size depends on the problem being solved, 
the run duration of the algorithm, the representation 
used and the operators manipulating this 
representation49. The experimental results presented 
throughout this paper are performed with the PSO 
algorithm running for a maximum number of 500n 
evaluations. Where, an evaluation corresponds to the 
estimation of the objective function of an individual 
solution. That is, given that the PSO algorithm is going 
to perform 500n=500×50=25,000 evaluations for the 
50-job SMETSP, 50,000 evaluations for the 100-job 
SMETSP, and so on, the above preliminary tests 
indicated that a population of max(10, 5+  n ) 
individuals is an effective choice to deal with the 
specific implementation of the PSO algorithm.  
 

The following discussion concerns the application of 
the PSO algorithm using the above ‘best’ combination 
of settings. The experiments have been carried out over 
the most difficult test instances of the Biskup and 
Feldmann (2001)’s benchmarks25; i.e., those instances 
that are more restricted against common due dates (i.e., 
with h = 0.2 and 0.4). The full computational results 
obtained by the proposed PSO algorithm are 
summarized in Tables 3 and 4. In particular, Table 3 
contains the results concerning the small size 
benchmark problems with up to 50 jobs; while Table 4 
contains the results concerning the large size 
benchmarks problems with jobs ranging from 100 to 
1000. For each test instance the two tables include the 
existing upper bound (UB) generated by Biskup and 
Feldmann25, the near-optimum solution achieved by the 
PSO algorithm (CostPSO), and the percentage offset 
(dev%) of the generated solution from the existing 
upper bound. It is worth pointing out that optimal 
solutions for these benchmarks only exist for the 10 
jobs test instances and have been achieved using an 
integer programming formulation with LINDO 
software25.  

 

Table 3: Results over the small size benchmarks. 

  h=0.2 h=0.4 

n  
UB/ 

  OPTIMUM  Costpso dev%
UB/ 

OPTIMUM    Costpsodev%
10 1 1936 1936 0.00 1025 1025 0.00

 2 1042 1042 0.00 615 615 0.00

 3 1586 1602 1.01 917 931 1.53

 4 2139 2169 1.40 1230 1230 0.00

 5 1187 1187 0.00 630 630 0.00

 6 1521 1521 0.00 908 908 0.00

 7 2170 2170 0.00 1374 1374 0.00

 8 1720 1720 0.00 1020 1020 0.00

 9 1574 1574 0.00 876 876 0.00

 10 1869 1869 0.00 1136 1140 0.35

20 1 4431 4394 -0.84 3066 3066 0.00

 2 8567 8460 -1.25 4897 4897 0.00

 3 6331 6221 -1.74 3883 3845 -0.98

 4 9478 9192 -3.02 5122 5122 0.00

 5 4340 4215 -2.88 2571 2495 -2.96
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 6 6766 6552 -3.16 3601 3584 -0.47

 7 11101 10459 -5.78 6357 6250 -1.68

 8 4203 3994 -4.97 2151 2201 2.32

 9 3530 3465 -1.84 2097 2096 -0.05

 10 5545 4987 
-

10.06 3192 2925 -8.36

50 1 42363 40734 -3.85 24868 23792 -4.33

 2 33637 30739 -8.62 19279 18042 -6.42

 3 37641 34505 -8.33 21353 20700 -3.06

 4 30166 27803 -7.83 17495 16693 -4.58

 5 32604 32332 -0.83 18441 18167 -1.49

 6 36920 35102 -4.92 21497 20402 -5.09

 7 44277 43229 -2.37 23883 23228 -2.74

 8 46065 43969 -4.55 25402 24947 -1.79

 9 36397 34326 -5.69 21929 20008 -8.76
 10 35797 32999 -7.82 20048 19238 -4.04

 
 
 

Table 4: Results over the large size benchmarks. 

 h=0.2 h=0.4 

n 
UB/ 

OPTIMUM  Costpso dev%
UB/ 

OPTIMUM 
 

Costpso dev%
100 1 156103 146132 -6.39 89588 86280 -3.69

 2 132605 125331 -5.49 74854 73459 -1.86

 3 137463 130414 -5.13 85363 80207 -6.04

 4 137265 131132 -4.47 87730 79947 -8.87

 5 136761 124882 -8.69 76424 71609 -6.30

 6 151938 139961 -7.88 86724 77987 -10.07

 7 141613 137407 -2.97 79854 78410 -1.81

 8 168086 161424 -3.96 95361 95612 0.26

 9 125153 118859 -5.03 73605 69812 -5.15

 10 124446 119795 -3.74 72399 72389 -0.01
200 1 526666 502920 -4.51 301449 298080 -1.12

 2 566643 556476 -1.79 335714 322705 -3.88

 3 529919 497396 -6.14 308278 296023 -3.98

 4 603709 599074 -0.77 360852 356197 -1.29

 5 547953 524601 -4.26 322268 306819 -4.79

 6 502276 490165 -2.41 292453 287009 -1.86

 7 479651 470485 -1.91 279576 275805 -1.35

 8 530896 505432 -4.80 288746 280383 -2.90

 9 575353 545248 -5.23 331107 315441 -4.73

 10 572866 544871 -4.89 332808 327299 -1.66
500 1 3113088 2995837 -3.77 1839902 1809150 -1.67

 2 3569058 3396297 -4.84 2064998 2019880 -2.18

 3 3300744 3114316 -5.65 1909304 1877994 -1.64

 4 3408867 3243457 -4.85 1930829 1923249 -0.39

 5 3377547 3127020 -7.42 1881221 1824148 -3.03

 6 3024082 2807257 -7.17 1658411 1637076 -1.29

 7 3381166 3193413 -5.55 1971176 1931460 -2.01

 8 3376678 3127525 -7.38 1924191 1829059 -4.94

 9 3617807 3376250 -6.68 2065647 1995866 -3.38
 10 3315019 3137808 -5.35 1928579 1867701 -3.16
1000 1 15190371 14496459   -4.57 8570154 8165112 -4.73

 2 13356727 12637411 -5.39 7592040 7324309  -3.53
 3 12919259 12424534 -3.83 7313736 7057780 -3.50
 4 12705290 12332609 -2.93 7300217 7063524 -3.24
 5 13276868 13013517 -1.98 7738367 7401864 -4.35
 6 12236080 11683666 -4.51 7144491 7012026 -1.85
 7 14160773 13299602 -6.08 8426024 7898469 -6.26
 8 13314723 12321242 -7.46 7508507 7264332 -3.25
 9 12433821 11789909 -5.18 7299271 7117968 -2.48
 10 13395234 12471333 -6.90 7617658 7330962 -3.76

 
 

As one can see from Tables 3 and 4 the 
performance of the PSO algorithm is of high quality. 
The algorithm reached the exact optimum solution in 
the majority of the test instances with 10-jobs (see 
Table 3); particularly, in the eight out the ten in total 
instances. Furthermore, (except from three instances of 
the h=0.4, 20-job benchmarks –see Table 3-) higher 
quality solutions than the existing best known solutions 
have been generated by PSO to all the test instances 
ranging from 20 to 1000 jobs. This fact is indicated by a 
negative percentage deviation (dev%) in the 
corresponding columns of the two tables. More 
specifically, for the most restricted class of benchmarks 
(h=0.2) the mean dev% for the solutions obtained are -
3.55% for 20 jobs problems, -5.48% for 50-jobs 
problems (Table 3),   -5.38% for 100-jobs, -3.67% for 
200-jobs (Table 4), and so on. PSO introduced new 
upper bounds in all the h=0.2 instances with n≥20, i.e. 
to approx. 86% of the instances of h=0.2 benchmarks. 
While, in regard to the h=0.4 benchmarks, PSO attained 
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to improve nearly the 75% of the available test 
instances. Figure 3 illustrates the average percentile 
improvement of the benchmarks solutions attained by 
the PSO algorithm.  
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Fig. 3: Average percentile improvement of the benchmarks 
solutions using the PSO algorithm. 

 
Figure 4 displays the mean actual running times for 

the PSO algorithm until the convergence to the near-
optimum solution. The running times (in seconds) are 
given in regard to the problems’ degree of restriction 
(value of parameter h) and problems’ sizes.  
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Fig. 4: Average CPU times (in seconds) until the 
convergence. Results on a Pentium 4 (1.2 GHz) PC. (a) 
case of small size problems, (b) case of large size 
problems. 
 

Figure 5 displays the optimal solutions (in Gantt 
charts) obtained by PSO for the first two instances 
included in the h=0.2 10-jobs benchmarks problems. f* 
denotes the cost (given by Eq. (1)) of the optimal 
solution. From Table 3 one can observe that PSO did 
not find the exact optimum solution in 4 (out the 20 in 
total) instances of the 10-jobs test beds. However, it is 
worth pointing out that, with a slight modifications of 
the swarm’s size (particularly, with a swarm’s size 
equal to 4n which in the case of the 10-jobs problems 
means 40 particles in the swarm), PSO attained to 
determine the exact optimal solution for these 4 
instances too.  

 

 
Fig. 5: The Gantt charts for the optimal solutions obtained by 
PSO for the first two instances included in 10-jobs (h=0.2) 
benchmarks problems. d and f* denotes the common due-date 
and the cost of the optimal solution, respectively. 

 
Some interesting comparative results between PSO 

and three known heuristics namely, evolution strategy 
(ES), stochastic hill-climber (SHC), and pure random 
search (pRS) technique are depicted in Fig. 6. These 
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results concern the dev% of the solutions obtained by 
the four methods (averaged after 15 runs) on the test 
instances included in the 50-jobs data sets. As one can 
observe from this figure, PSO (lower curve) 
outperforms all the other heuristics generating solutions 
of much higher quality (schedules of lower costs). As it 
was expected, the next best performance was due to ES, 
while the worst performance was due to pRS technique. 
The basic characteristics of the three implemented 
heuristics are briefly described below.  
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Fig. 6: Comparative results between PSO, ES, SHC and pRS 
over the 10 test instances included in the 50-jobs benchmarks 
data set. The % deviation of the solutions obtained by the four 
heuristics from the existing near-optimal benchmark 
solutions. Case of, (a) h=0.2 and (b) h=0.4 tests instances. 

 
To make the three heuristics comparable to PSO we 

used the same population size for all, and limit the 
running process for the same maximum number of 
iterations. Moreover, all the heuristics were 
implemented using the (same with PSO) encoding, and 
evaluation mechanisms described in sub-section 4.1. 
Particularly, each individual solution in ES, SHC and 
pRS is a vector containing n floating-point numbers 
within the range [0,1]. Each such floating-point vector 

is mapped to an actual SMETSP solution using 
procedure Encoding_mechanism also described in sub-
section 4.1. ES was implemented by following the 
recommendations of the literature50. After 
experimentation for choosing the correct survivor 
selection scheme, we found that using (μ,λ)-scheme 
within ES results in a superior optimizer to that of using 
(μ+λ)-scheme. For this reason (μ,λ)-scheme was 
adopted. μ was estimated using the heuristic rule λ/μ=7. 
Mutation was performed through Gaussian 
perturbation. Offspring were generated using discrete 
recombination. SHC was implemented as a modified 
version of the metropolis algorithm51 for a parallel 
searching of the solution space. That is, for each 
solution kix , ∈S in iteration k, search its neighbourhood 
N( kix , ) and choose the best solution ,i kx′ . Accept this 
solution (i.e., kix , = ,i kx′ ) if COST( ,i kx′ )<COST( kix , ) 
or with a probability 
exp((COST( kix , )−COST( ,i kx′ ))/T). T>0 (called 
temperature) determines the probability of accepting 
worse solutions. A value of T=10 was experimentally 
found to be a good choice for our problem. A new 
solution in N( kix , ) was generated by flipping randomly 
each time the jth (j=1,…,n) component of kix , . Thus, 
for each solution we generate n different neighbours. 
pRS is identical to SHC except from the point that, a 
new solution ,i kx′ is accepted and replaced its ancestor 

kix ,  only if it has a lower cost. 
We conclude by giving a short guide to those of the 

researchers who are willing to apply PSO on their 
discrete COPs: (a) Select an appropriate representation. 
This representation is directly depended on the structure 
of the problem being solved. (b) Design a suitable 
encoding mechanism that maps each vector solution to 
an actual COP’s solution. This mechanism must take 
into account the properties of the problem being solved. 
(c) If necessary, implement appropriate repairing 
mechanisms to guarantee the creation of legal solutions. 
(d) Follow the recommendation of the literature to 
estimate the proper settings of the control parameters 
(i.e., swarm size, inertia weight, learning factors). (e) 
Study the behavior of your PSO at different iterations 
so that to realize whether it converges too early. There 
are some important tricks in the literature to improve 
the rate of convergence of PSO, to control the diversity 
of the swarm so that to avoid local optima, etc. 
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6. Conclusion 
 
In today production management, scheduling against 
common due dates with respect to earliness and 
tardiness penalties is of great importance mainly due to 
its compliance with the principles of just-in-time 
‘philosophy’. This is a typical discrete combinatorial 
optimization problem (COP) known to be intractable, 
meaning that, the search for optimal schedules using 
traditional mathematical programming techniques is 
only possible for very small size instances of the 
problem.  

This paper presented a new particle swarm 
optimization (PSO) heuristic to address the problem of 
scheduling a number of jobs on a single machine 
against a restricted common due date. It is worth noting 
that PSO-based heuristics have rarely been applied to 
discrete COPs. The developed PSO differs from the 
existing PSO approaches in two main points: first in the 
way the ‘particles’ are represented and mapped into 
actual scheduling solutions; and second, in the way of 
controlling the ‘particles’ velocities of the entire swarm. 
Extensive experiments were performed over 140 highly 
restricted against a common due date benchmarks 
problems for which the upper bounds were known. The 
results obtained showed a high quality performance for 
the proposed PSO heuristic introducing to the majority 
of the benchmark instances new upper bounds. In 
particular, PSO reached or surpassed the 95% of the 
existing optimal benchmark solutions introducing new 
upper bounds in the 82% of the benchmarks instances.  
Furthermore, comparative experiments with existing 
heuristics (including evolution strategy, stochastic hill-
climber, and random search) showed a substantially 
superior performance for the developed approach in 
terms of solution quality. The method is quite general 
and can be rather easily modified and applied to any 
other COP. The only modifications required to be done 
is, firstly in the encoding mechanism (that is mapping 
the particles to actual solutions to the considered 
problem), and secondly in the evaluation mechanism 
(i.e. the objective function which is problem depended). 
Moreover, due to the small number of control 
parameters used within the algorithm, parameters’ 
tuning is performed easily. A limitation however of the 
proposed method is its convergence speed. In its current 

form the algorithm is rather slow when the number of 
the jobs to be scheduled exceeds 200.  
Future work will be focused on the development of a 
more robust and faster version of the PSO algorithm to 
address other more difficult scheduling problems that 
are known to be intractable, such as the job-shop 
scheduling problems. Hybridization of the PSO 
algorithm with local search techniques such as tabu-
search or/and simulated annealing is a very promising 
area of research and may result in more powerful 
heuristic. On going research is focused to the design of 
a multi-objective PSO algorithm to address the multi-
criteria flow-shop scheduling problem. Three criteria 
are currently under investigations with the objective to 
be simultaneously minimized, namely, the makespan, 
the maximum tardiness and the total flow time of the 
jobs.  
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