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Abstract

In this paper, we propose a facial feature localization algorithm based on a binary neural network tech-
nique - k-Nearest Neighbour Advanced Uncertain Reasoning Architecture(kNN AURA) to encode, train
and match the feature patterns to accurate identify the nose tip in 3D. Based on the results of the 3D
nose tip localization, the main face area is detected and cropped from the original 3D image. Then we
present a novel framework to implement the 3D face registration by several integrated phases. First we
use Principal Component Analysis(PCA) to roughly correct the server misalignment. Then we exploit
the symmetric of human face to reduce the misalignment aboutoy andoz axis. In order to reduce the
effect of facial expression variations, the expression-invariant region is segmented. Using Iterative Clos-
est Point(ICP) algorithms, the expression-invariant region of faces can be aligned according to a standard
face model, the misalignment aboutox is then eventually corrected. Our experiments performed on the
FRGC v2 database which contains pose and expression variations show that our approach outperforms
the current state-of-the-art techniques both in the nose tip localization and face registration.

Keywords:3D Face, Facial Feature Extraction, Face Registration,Binary Neural Networks, Correlation
Matrix Memories, Iterative Closest Point.

1. Introduction

Generally speaking, a 3D face is a group of high di-
mensional vectors of thex, y andz positions of the
vertexes of a face surface.RGBcolor or grayscale
information can be added into this vector if the tex-
ture values of those vertices is required. A 3D face
is usually represented by a 3D shape file and 2D
texture image. Face recognition based on 3D has

the potential to overcome the challenging problems
caused by expression and illumination variations6.
In order to implement 3D face recognition, firstly we
need to know where the main face area is, especially
when the 3D face surface includes face, hair, cloth-
ing and other noise caused by objects surrounding
the face. If the main face area can be found, the face
area then can be cropped from the original 3D sur-
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face to reduce the effect of noise and other non-face
factors. A sphere around the nose tip can be defined
to crop the face area. Thus a robust and accurate
nose tip localization is crucial for an automatic face
recognition system. In this paper, we use a binary
neural network technique - kNN AURA to precisely
localize the nose tip based on a multi-shell 3D shape
descriptor. Furthermore, the effect of head orienta-
tion variations is a crucial problem of the face recog-
nition. Thereby, an effective face alignment is also
required to correct the poses of all faces. Especially
those faces belonging to the same individual should
be in a consistent pose. To solve the alignment prob-
lem, we present an integrated approach to align faces
even with expression variations.

1.1. Related work

1.1.1. Approaches of 3D face detection

The nose tip is the most important facial feature and
also the center of the face. Many works28 10 29 21

perform nose tip detection and use the nose tip as
the foundation to detect other features or the face it-
self, as the nose tip is the most prominent feature of
the face. Some approaches use an assumption that
the nose is the closest point to the camera or de-
vice which acquires the 3D data14 18. Although
this supposition is true in most cases, there is no
100% guarantee due to the noise. Various pose ro-
tations and the complex situation of hair and clothes
could make some places closer than the nose. Mak-
ing use of the corresponding 2D texture information
is a possible way to detect the face area first then lo-
calize the nose tip within the selected 3D face crop.
That requires 2D texture and 3D shape to correspond
perfectly. However, the 2D texture channel is not
always precisely matched with the 3D shape chan-
nel. Using the 2D face crop method in a face with a
poor 2D-3D corresponding probably will obtain the
wrong 3D shape crop.

Colombo et al.8 presented a method to identify
the shape of facial features based on 3D geometri-
cal information only by usingHK Gaussian Curva-
ture classification. They achieved a 96.85% iden-
tification rate on a small dataset, although only the
rough nose/eye shapes are identified and no accu-

rate locations of the nose tip are detected. Of other
algorithms, Bevilacqua et al. implemented an ex-
periment to detect the nose tip based on extending
the Hough Transform to 3D point cloud. Howev-
er, only 18 3D faces are involved in the experimen-
t 5. Spin image and support vector Machine (SVM)
are used to represent and classify 3D shape9 30. In
30, a 99.3% successful localization rate of the nose
tip is claimed, but it was tested on a limited dataset
without benchmark evaluation. The main problem
of those approaches is that they only used a smal-
l face database which is not enough to evaluate the
performance of the facial feature localization.

Segundo et al.26 proposed a 3D facial landmark
detection based on the analysis of y-projections and
x-projections of the topographic depth information.
They used a combination of region/edge detection
algorithms and a Hough transform based shape de-
tection method to localize the main face area first
and then detect facial features. They reported a nose
detection rate of 99.95% on Face Recognition Grand
Challenge(FRGC) v2 database24. However, using
methods to detect face area first may result in ex-
tra chance of mistakes and they did not report the
accuracy of their face detection. Furthermore, it is
helpless if the face detection is the purpose of the
nose tip localization.

Another problem of above approaches is that
their results are not compared with the ground truth
data. To the best of our knowledge, most of the
methods do not use benchmark datasets to evalu-
ate their results. Romero et al.25 presented the
first work on benchmark datasets based on FRGC
database. They manually marked landmarks of
eleven facial features. With those marked feature
locations, an over 90% nose tip identification is re-
ported. Overall, the nose tip localization is the key
solution to the face detection problem. The current
approaches either do not achieve satisfied results or
do not run the test on enough face data.

1.1.2. approaches of 3D face
registration/alignment

A face recognition system should have the ability to
handle the influence of pose variations. Therefore,
a face registration/alignment step is required. Mian
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et al. 21 used a Principle Component Analysis (P-
CA) based algorithm to correct the pose variations.
Three principle components are used as thex, y and
z-coordinates of the point cloud of a face. However
the noise (for example hair), surface loss and dis-
tortion of a face will affect the performance of this
method. A widely used solution is ICP-based face
alignment. Faltemier et al.10 proposed a method for
curvature and shape index based nose tip detection
to localize the position of the nose tip and then align
the whole input image to a template using the ICP
algorithm. Kakadiaris et al.16 implemented a mul-
tistage alignment method including three algorith-
mic steps: Spin-images based alignment, ICP-based
alignment and Simulated Annealing on Z-Buffers
alignment. However, both of these approaches used
the whole face area during their alignments. The ex-
pression variations could affect the results of align-
ment by using the whole area of the input images.
Other ICP-based approaches19 29attempted to solve
the expression problems by only using the less mal-
leable face area such as areas around nose and eye-
s. Although using the least affected areas is theo-
retically robust to expression variations, it is based
on an assumption that the segmentation of those
expression-invariant regions is accurate and 100%
correct, which is normally difficult to obtain. Anoth-
er problem of current face registration approaches
is it is difficult to evaluate the experimental result-
s. Most of the current approaches barely mention
the evaluation of the face registration results. Some
approaches use the further face recognition results
to represent the performance of the face registration.
However, it is only the between-class performance
and is also affected by many other factor involved in
the face recognition phase.

1.1.3. Overview of our approach

In the paper, we propose a novel Multi Shell 3D
Shape Descriptor to represent the shape of the 3D
shape/surface. Using a binary neural network tech-
nique - knn AURA to train, store and retrieve the
patterns of the shape descriptor of the nose tip, the
location of the nose tip can be precisely identified.
The main face area is then detected by using the lo-
cation of the nose tip. As for the face registration,

unlike other approaches, we align face alongox, oy
and oz-axis separately. Firstly, we roughly correct
the poses of all faces by using PCA. Then we min-
imize the misalignment aboutoy andoz-axis by us-
ing the symmetry of the face. On the basis of these
achievements, the expression-invariant region of a
face can be extracted. Finally, ICP algorithm is ap-
plied to align the expression-invariant regions of all
faces.

This paper is organized as follows. In section 2,
The methodology for nose tip identification based
on Multi Shell 3D Shape Descriptor and kNN AU-
RA is presented. Section 3 proposes the integrated
face registration method. Section 4 shows the exper-
imental results. Section 5 makes the conclusion of
this paper.

2. Nose tip localization and face detection

2.1. Multi shell descriptor

3D facial features can be considered as small groups
of points and pieces of 3D surface. There are many
methods to describe a 3D shape or surface. In 1984,
Grimson and Lozano-Perez12 first discussed how
local measurements of 3D position and surface nor-
mals recorded by a set of tactile sensors may by used
to identify and locate objects. They mentioned that
angles relative to the surface normal is an efficien-
t local constraint. Compared with curvature-based
shape descriptors, Stein and Medioni27 proposed a
method using a splash structure to describe a sur-
face. At a given locationP they compute the surface
normal n. Then a circular slice aroundn with the
geodesic radiusr is computed. A surface normaln‘

can be determined at every point on this circle.θ an-
gles between then and alln‘ are obtained. By using
splashes, a 3D surface can be described. They also
stated that the computation of curvature requires a
higher order derivative than the tangent. For a curva-
ture based scheme, the signal to noise ratio is lower
than for a tangent(or surface normal) based scheme.
In 1997, Chua and Jarvis7 introduced the Point Sig-
nature method to describe a 3D shape. They used
a sphere to crop a 3D shape at a pointP. Then a
number of contour points are produced. The surface
normal and normal plane also can be calculated at
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thepoint P. Distancesd from the contour of points
to the normal plane are computed starting from a
certain position along a clockwise direction.d and
the angleθ of the clockwise rotation together can
be used to describe a 3D surface within a sphere.
Rather than only use the contour points cropped by
a sphere, Xu et al.30 computed the distancesd of all
points to the normal plane at the center pointP with-
in a sphere. Then the central and second statistical
moments - mean and the deviations of thesed are
computed. A 3D surface patch cropped by a sphere
is described using these two moments. Inspired by
the above approaches, in this paper, the moments of
the local shape characteristics - angles related to the
surface normal are used to describe a 3D surface.
We provide a novel method to describe the convex
or concave degree of 3D local shape within a given
sphere but related to a number of shells.

Fig. 1. P and its neighbouring point within two spheres.

For a pointP in a 3D point cloud, itself and its
neighbouring pointsPi together forms a 3D surface
as shown in figure 1. By finding all the pointsPi

with the length of edgePi −P approximately equal
to the radiusr, point P and thosePi create a 1−ring
mesh. Then the angle betweenPi −P and the vertex
normalNp can be calculated by using the following
equation:

θ = arccos(
(Pi −P) ·Np

|Pi −P||Np|
) (1)

whereNp is the vertex normal of pointP, θ is the
angle between the vertex normalNp and the edge
Pi −P, r is the radius of a sphere.θ is between
0o ∼ 180o

After the θ of all farthest neighbouring points
are calculated, each pointP has one of the farthest
neighbouring point setPF(P) = {P1,P2, ...,Pn} and
one angle setθ(P) = {θ1,θ2, ...,θn}(n is the num-
ber of farthest neighbouring point). By calculating
the meanθ , we can find out how convex or concave
the mesh surface is. For instance, if the meanθi of
all those farthest neighbouring points is greater than
90o, this surface within a sphere of radiusr can be
considered as a convex surface. When the mean of
θi is less than 90o,the surface will be a concave one.

However, meanθ above is not enough to de-
scribe the subtlety of 3D curvature. Therefore, an-
other statistical attribute: standard deviation ofθ
is used to provide extra information of the shape.
Moreover, the various situation of the cloth and hair
sometimes may cause unexpected points to have
similar mean value and STD ofθ to an expected lo-
cal facial feature. Similar results can be seen in oth-
er works30 25 using descriptors representing shapes
within a single sphere. Inspired by M. Ankerst’s
work 2 which first mentioned the multi-shell model,
we introduce more shells to calculate mean and de-
viation of angles. Those two kinds of attributes are
used with more shells as shown in figure 2 to cre-
ate a Multi Shell Surface Angle Moments Descrip-
tor(MSSAMD).

Fig. 2.The 3D surface is separated by several shells around
a point.

The θi represents the angle betweenNp andPPi

as shown as in figure 1. Each ‘shell’ has its stan-
dard deviation and mean value of the angles of the
points located in its range. Therefore, a 3D surface is
described by this MSSAMD including two vectors:
[std1,std2, ...,stdn] and [mean1,mean2, ...,meann].
The third eigenvector of the covariance matrix as
the direction of the normal on pointP. Given point
p(x,y,z) as the center of a sphere and its neighbour-
ing pointspi(xi ,yi ,zi) inside the sphere, the covari-
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ance matrix of pointp is:

C=
1
n

n

∑
i=1

(pi −m)(pi −m)T (2)

CV = DV (3)

wherem is the mean vector of all points, V is the
matrix of eigenvectors and D is the matrix of eigen-
values.

2.2. k-Nearest Neighbour AURA Algorithm

To localize the nose tip, we have to create a standard
model of a nose tip. The most similar shape within
a face to the standard model is the most likely posi-
tion of the nose tip. A face point-cloud may contain-
s more than thousand of points and a face database
usually consists of thousands faces. Thus, a high ef-
fective pattern storage and pattern retrieval method
is required. In this paper, we use a binary neutral
network technique (kNN AURA algorithm) to mea-
sure the similarity between the query shape and the
standard feature model.

Advanced Uncertain Reasoning Architecture
(AURA) is a set of methods based on binary neural
networks in the form of correlation matrix memories
(CMMs) for high performance pattern matching3.
Correlation Matrix Memories (CMMs) are a form
of static associative memories. Kohonen17first in-
troduced the idea of correlation matrix memories in
1972 and made the pioneering contribution together
with Anderson1. CMMs learn and store the associa-
tions between input patternsP and outputsO, which
have to be transformed to a binary vector. The input
and output patterns are involved in the training of
an initially empty binary matrixM. During training,
the values withinM are only changed to ‘1’ where
both input and output vectors are set according to the
Hebbian learning introduced in 194913. The train-
ing of M is presented as the following equation.

M =
∨

PTO (4)

WhereP is the input pattern (a row vector of binary
elements);O: output pattern;M: Correlation Matrix
memory;

∨
is logical OR. Figure 3 shows an exam-

ple of CMM training process.

Fig. 3. Example of training a CMM. When both of the bit of
the input and output vectors are ‘1’, a connection of corre-
sponding position in matrix will be set.

After training, the recall operation returns a
summed integer output vectorV, then can be thresh-
olded to be a binary vector. IfI is the input vector
for recall operation, then (following equation):

V = MIT (5)

In order to apply AURA technique, input pattern-
s have to be quantized and converted into binary val-
ues. The simplest way to transform decimal values
into binary values is to divide the possible range of
the decimal value of an attribute into several parts
called bins, then a binary bit is set to ‘1’ on the basis
of which bin the actual value belongs to. CMM ne-
cessitates both input and output vectors. The train-
ing process stores the binary attributes value into a
column of the matrix. Therefore, the output vector is
designed as the sequence number of the faces in the
training group. As shown as in Figure 4, the training
process is to store the nose tips one by one until all
the training faces have been saved in the matrix.

Fig. 4. Store the each image into a column one by one.

In the recall or query phase, the query pattern is
measured and then feature attributes are generated.
However, a difficulty of the quantization method is
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the boundary effect. Since there are clear bound-
aries between bins, a decimal value will only belong
to one bin. Thus, the distance between two values
within the same bin may be greater than the distance
of two values in two neighbouring bins. In this pa-
per, we use a Integer Pyramid technique proposed
by Hodge et al.15 to compensate for that situation.
In recall procedure, a weight vector replaces the s-
ingle bits set in the query vector, each with a ‘trian-
gular kernel’ of integer values arranged so that the
maximum value of a kernel is located where the set
bit was, and adjacent zero bits are replaced with s-
maller integers, decreasing uniformly. This vector
of integers then forms the input to the CMM, with
the responseV calculated in the same way as be-
fore. This use of kernels gives a maximum value
in V for the stored vector that has been most close-
ly corresponding to the query vector. Vectors that
do not match exactly will have a reduced but non-
zero response to each query bit. This gives a more
gradual decrease in response for non-matching vec-
tor than in the original CMM application. Knowing
what the maximum response should be, we convert
the reduction in response to a vector of ‘distances’
of the query from the stored vectors. With the tri-
angular kernel described, the distance approximates
the quantized City Block Distance. An example of
this use of kernels is shown in figure 5.

Fig. 5. An example of CMM recall with kernel weighted
inputs.

The weight vector is later improved using a
parabolic kernel 15 to approximate the quantized
squared Euclidean distance. For one stored vector,
the distance is:

d2
E = ∑

∀ f

(xf −x′f )
2 (6)

whered2
E is the squared Euclidean distance,xf is

the query attribute value andx′f is the stored value
for attribute f .

To calculate this distance using a CMM, the
parabolic kernel weight values are calculated as in
the equation below. For the attributef and bink,
with the original set bin in bint:

Wf ,k = (
n∗

2
)2− (t −k)2α f (7)

α f =
n∗2

n2
f

wheren∗ is the maximum number of bins for any at-
tribute andnf is the number of bins for the attribute
f . af is to ensure the spread of the kernel for al-
l attributes within the CMM input vector. Figure 6
shows the parabolic shape weight values.

Fig. 6. The weight values of the CMMs are set to be anal-
ogous to parabolic shape which describe the distance from
the central bin.

By using the parabolic kernel technique, the out-
putV contains scores ranked by Euclidean distance.
These can be used as a similarity score vector for
each query, soV = {v1,v2, ...,vp} is the similarity
with each of the training nose tips.max(V) tells the
level of similarity that a query pattern has to at least
one nose tip of the training group.

2.3. Nose tip localization hierarchical
methodology

In order to create a MSSAMD descriptor suitable for
nose tip detection, the maximum radius of the far-
thest sphere is defined as 25mmsimply because it is
the approximately range from a nose tip to its edges.
We simply used 5mm to be the width of a shell to
make sure there are enough points existing in every
shell area. As a result, there are totally five shells.
By using the manually marked nose tips in the train-
ing dataset, the attributes in MSSAMD of different
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shapes of nose tips are converted into binary vectors
then stored into the CMM. After the training pro-
cess, the attributes of the MSSAMD of all points in
the target faces are also calculated and encoded with
kNN AURA weights.

We define the three following steps to reduce the
number of candidate points for the nose tip in a par-
ticular image:

Step one: For a pointPi, the attributes of MC-
SAMD or MSSAMD are matched with the features
stored in the AURA. By using a kNN AURA match-
ing algorithm, a similarity score vectorV is gener-
ated.V contains the similarity scores to all features
from different subjects stored in AURA. The high-
est similarity scoreS= max(V) is chosen as the fi-
nal similarity score for this pointPi. Then by sim-
ply defining a thresholdTnose, any candidate with a
similarity score belowTnoseis deleted from the can-
didates list. This step can significantly narrow down
the range of candidate points.

Step two: There are usually some other points
left in the candidate list such as those in the hair,
clothes or chin areas that cannot be eliminated in
step one. However, most of those exceptional points
are scattered and the points around the actual nose
tip always get a relatively high similarity score.
Therefore, we can locate the correct nose tip cluster
by calculating the number of the candidates within a
certain range. The cluster with the highest density of
candidate points is chosen as the nose tip candidate
cluster.

Step three: After the nose tip cluster is selected,
the candidate with the highest similarity score inside
this cluster is considered as the final choice.

2.4. Face localization

After the nose tip has been identified and localized.
As the nose tip is at the center of the face, the main
face area can be extracted from the original image.
In this paper, 100mmis selected as the radius of this
sphere to crop face so as to keep as much detail as
possible. An example is shown in figure 7.

Fig. 7. Left figure is the original face; right side is the
cropped face using a sphere r= 100mm; the center of the
sphere is at the nose tip.

3. Face alignment

3.1. Face pose correction based on Principle
Component Analysis

A 3D face appears as a 3D shape that has the most
convex point at its center - the nose tip. The other
parts of the face are very close to a cropped piece of
barrel surface as shown as in figure 8. The length of
c is shorter than the length ofa andb and the length
of a is longer than the length ofb. That fact has
been illuminated by A. Mian et al21 and L. Zhang et
al. 31.

Fig. 8. a,b and c are the width, height and depth of the 3D
face surface.

Thereupon, according to the distribution infor-
mation of points such asa,b and c, the top three
largest principle components can be used asx, y and
z coordinates axes. Then poses of all faces theo-
retically can be aligned into a consistent coordinate
system. Firstly, letpi(xi ,yi ,zi) 1 6 i 6 n represent
a point within a face surfaceS, which hasn points.
Takingm as the mean vector of allpi . Then the co-
variance matrixC can be given by:

C =
1
n

n

∑
i=1

(pi −m)(pi −m)T (8)

By performing PCA on the covariance matrixC,
a matrixV of eigenvectors and a diagonal matrixD
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of eigenvalues are given by:

CV = DV (9)

Then three eigenvaluesλ1 > λ2 > λ3 and three
corresponding eigenvectorsν1, ν2 and ν3 can be
computed. Due to the particular shape of the
cropped face, the smallest distribution of the point
cloud of a face is along the normal direction of the
face surface. Consequently, the eigenvectorν3 rep-
resents the normal direction and theν1 and ν2 are
the vertical and horizontal dimension directions. By
means of PCA, the matrixV is also a rotation ma-
trix to convert the coordinates ofSto be its principal
axes:

Snew=V(S−m) (10)

After PCA pose correction, most faces are at a
good front view position. However, some faces are
not correctly aligned due to the asymmetric shape
produced by different hair styles. In some cases, sur-
face loss at some positions will cause misalignment.
Additionally, distortion of the face also will affect
the accuracy of the face alignment.

3.2. Face alignment based on the symmetry of
the human face

A human face can be considered as a symmetric sur-
face along theOYZplane as shown in figure 9. In-
spired by 31 and 22, face alignment based on the
Iterative Closest Point(ICP) algorithm can be opti-
mized by utilizing the symmetry of the face. The
iterative closest point algorithm algorithm (ICP) is
widely used for geometric alignment of 3D model-
s. ICP is a method to fit a target cloud of points
to another cloud of points which constitute a mod-
el image. The whole idea of ICP is to minimize
the sum of square error between target points and
the model points, then estimate an appropriate trans-
formation to align the target points to the model
points. Besel et al.4 proposed the first ICP algo-
rithm and proved that the ICP algorithm always con-
verges monotonically to the nearest local minimum
of a mean-square distance metric. The smallest dis-
tances between each point in the target image and
the points of model image are calculated to form a
rotation matrix. This procedure is repeated until the

squared error distance of the points of the target im-
age to their closest points in the model image falls
below a preset threshold.

If there is a target face:F = (Xt ,Yt ,Zt), we can
define a mirror face as the model faceM:

M = Fmirror = (−1·Xt,Yt ,Zt) (11)

Fig. 9. Human face is a symmetric surface about OY Z
plane.

By applying the ICP algorithm, the target face
can rotate to fit the model face if the mirror face
is used as the model face. The rotation matrix and
the transformation matrix can be calculated and ob-
tained. According to the fundamentals of computer
graphics11, every 3D rotation is a composition of
three rotations about thex-axis,y-axis andz-axis:

R= Ry(θ) ·Rx(α) ·Rz(β ) (12)

Fig. 10. Rotations along y-axis(left figure) and z-axis(right
figure) from the target face to model face(mirror face).

Fig. 11. The target face is aligned to a perfect front view
position according to theθ and β generated by applying
ICP to rotate target face to model face (mirror face).
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Since the model face is the mirror face of the tar-
get face along theoyz plane, the rotation angleα
along thex-axis is equal to zero and there are two
rotations left as shown in figure 10. If the target face
is rotated by angleθ2 along they-axis and angelβ2 a-
long thez-axis, the aligned face is just at a front view
pose as shown in figure 11. After applying the ICP
algorithm between the target model and the mirror
model, a rotation matrixRand a transformation ma-
trix T can be calculated. Given the rotation matrix
R, we can calculate the three anglesα , θ andβ re-
spectively. As we already know that the model face
is thex mirror of the target face, the rotation along
x-axis is almost equal to zero. The composite rota-
tion is mainly formed by rotations about they-axis
andz-axis. If there is a rotation defined as follows:

αnew= 0 (13a)

θnew=
θ
2

(13b)

βnew=
β
2

(13c)

The transformation matrixT = [tx, ty, tz] can be
calculated by applying ICP algorithm. Then the new
transformation matrix can be created as:

Tnew= [
tx
2
,0,0] (14)

Then we can apply the rotation according to the
new rotation matrixRnewand the transformation ma-
trix Tnew. The target face is aligned to a new position
by applying the rotation:

Fnew= Rnew·F +Tnew (15)

Even when the automatic localized position of
the nose tip has a certain distance to the real nose
tip that is exactly on the symmetry plane, the error
distance alongx-axis of the nose tip to the real po-
sition is neutralized because of the calculation oftx

2
as shown as in figure 12. Thus, another effect of this
rotation is that the error distance of the automatical-
ly localized nose tip position alongx-axis is further
reduced towards zero.

Fig. 12. The position of the nose tip is further corrected by
implementing[ tx

2 ,0,0] as the transformation matrix.

Facial expression variations could generate some
asymmetric shapes, which will affect the mirror face
alignment. However, most facial expressions oc-
cur in the area near the mouth and the facial re-
gion around the nose tip is the area least affected
by expression variations. Consequently we can use
a sphere around the nose tip to crop a piece of the
face surface as a relatively expression-invariant and
symmetric area. Additionally hair also may affect
the symmetry of this area. Thus we choose 45mmas
the radius of this sphere to avoid the effect of hair
and keep the symmetry of this area.

Finally, implementing the face alignment using
the symmetry of human face has two outcomes: 1.
Error distance of the localized nose tip position a-
long thex-axis is reduced towards zero. 2. Face
misalignments along they-axis andz-axis are mini-
mized.

3.3. ICP face alignment using
expression-invariant regions

After face alignment based on the symmetry of the
human face, the misalignment along thex-axis is
still not aligned and there is still an error in the au-
tomatic localized position of the nose tip along the
y-axis andz-axis. On the other hand, human faces
share relatively similar facial features and structure.
So it is possible to align a face to another face
by adjusting its rotation to a standard position. If
the slight imprecision of the alignment caused by
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thevariations of facial expression is temporarily ig-
nored, the faces from the same individual share a
common shape. Thus, when those faces are fitted to
a standard face template which is from another indi-
vidual, their alignments will appear very close to be
the same. Every facial feature is aligned to almost
the same position. That result also can be used to
further improve the accuracy of the nose tip detec-
tion. Since faces belonging to the same person share
more elements in common than faces from differen-
t individuals, the facial features, especially the nose
tip, if they are from the same people, will be correct-
ed to similar positions. In order to reduce the num-
ber of misalignments caused by expressions, it is re-
quired that the parts of the face insensitive to expres-
sions are used in the alignment. In face alignmen-
t based on the symmetry of the face, the misalign-
ments alongy andz-axis have been minimized. As a
result, we can define a region shown in figure 13 On-
ly points near the nose tip and above the eyes (with-
in a spherer = 70mm) are used in the ICP alignment
just because the nose, eyes and the forehead regions
are the least affected by expressions in 3D shapes.
The expression-invariant region cropped in the stan-
dard face template is slightly (radius=75mm) larger
than the corresponding region of the target face to
avoid unexpected incorrect results.

Fig. 13. When apply the ICP algorithm, only the points
within the red region of the target model are used.

Such a region which is on the upper face could
be affected by hair noise as shown as in figure 14.
Hair style variations may cause asymmetric shapes.
Fortunately, we have aligned the face according to
the symmetry of the face. The shape of a face espe-
cially in the expression-invariant region should be a
symmetric shape. So, thez value of a certain point
should equal its corresponding point on the mirror
side. Consequently, the hair can be detected by find-
ing the much largerzvalues (by defining a threshold)
compared to the corresponding points of the mirror

side of the face. Then those points are removed be-
fore applying the ICP algorithm in case those points
affect the alignment.

Fig. 14. The hair could damage the symmetry of the shape
in expression-invariant region. The hair noise also could
affect the results of ICP-based alignment.

Unlike other face alignment approaches19 29 10

based on the ICP algorithm, which used the whole
composite rotation matrix to rotate the target face,
we only use the information about rotation along the
x-axis to align the target face. Given a composite
rotation matrix generated by the ICP algorithm, we
can obtain the rotation anglesα , θ andβ along the
x, y andz-axis. Since we have minimized the mis-
alignments on they-axis andz-axis in the face align-
ment based on the symmetry of the face, here we
only need theα along thex-axis to align the target
face. Then the rotation matrixR can be calculated
by usingR= Rx(α). And the transformation matrix
T can be computed as:T = [0,ytemplate,0], where
ytemplateis they value of the nose tip of the standard
face template.

Fig. 15. Nose tip re-localization. Green face is the target
face and the black face is the standard face template. Using
the y value of the nose tip position of standard face template
and the original x value to locate the new nose tip position.
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Then we can implement the composite rotation
by using equation 15. Furthermore, after applying
ICP alignment, the nose tip of the target face is re-
localized by using the nose tip of the standard face
template. The new position of the nose tip uses the
y value of the nose tip position of the standard face
template plus its ownx value of the nose tip to find
the closestz value within the target face. Figure 15
demonstrates an example of how to implement nose
tip re-localization. This process can further improve
the accuracy of the nose localization, especially the
nose position accuracy between faces belonging to
the same individual simply because those face share
a similar shape. After this ICP-based alignment us-
ing the expression-invariant region, all faces are pre-
cisely aligned into a perfect front view position even
along all of thex, y and z-axis. Defining the re-
localized nose tip as the zero point of the coordinate
system, all faces are shifted into the same coordinate
system.

4. Experiments results

4.1. Results of 3D nose tip localization

In this paper, the FRGC dataset is chosen as the ex-
perimental database. The face images of the FRGC
database are segmented into training and validation
partitions. The training set contains 3D scans, and
controlled and uncontrolled still images from 943
subject sessions. The validation partition is designed
as target subsets, there are 4,007 subject sessions of
466 subjects. Each subject session has a 3D scan file
containing 3D points and a 2D still image file repre-
senting texture information. The resolution of faces
in the FRGC dataset is 640×480. In order to reduce
the cost of computation, we resize the 2D and 3D file
to 160×120. The resized 3D files are smoothed to
delete the spikes and to fill in the unexpected holes
by using a similar technique to that proposed by Mi-
an et al.20. Firstly, we remove spikes from the face
surface by locating outlier points. Any point whose
distance is greater than a certain thresholdd from
any of its neighbouring points will be considered
as a spike point.d is defined usingd = µ + 0.6σ ,
whereµ is the mean distance between neighbouring
points andσ is the standard deviation. The holes

caused by the removal of spike points can be com-
pensated and filled by using cubic interpolation. 40
3D faces are selected from the Spring2003 subset as
the training set. Those 40 faces are from 40 indi-
viduals including different races, genders and num-
bers of points. 4007 faces from the Fall2003 subset
and the Spring2004 subset are used as target group-
s. Since there are 139 faces with very poor 2D-3D
corresponding, 3868 faces having good 2D-3D cor-
responding are selected to more precisely evaluate
the performance.
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Fig. 16.Error distance curves for the nose tip identification
of all faces.
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Fig. 17. Histogram of the identification frequency
for the nose tip identification of all faces.(Good:0 −
12mm;poor:12−24mm;failure:> 24mm)
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Fig. 18.Error distance curves for the nose tip identification
on faces with good 2D-3D corresponding.
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Fig. 19. Histogram of the identification frequency for the
nose tip identification on faces with good 2D-3D corre-
sponding.

The face detection depends on how accurate the
nose tip localization is, so we can use the perfor-
mance of the nose tip localization to represent the
accuracy of the face detection. Using the position
of the nose tip in the ground truth data as the stan-
dard position, the error distance between the local-
ized nose tip and the ground truth data can be cal-
culated. Figure 16 shows the cumulative error dis-
tance curve of all faces in the FRGC v2 database.
Figure 17 shows the histogram of the identification
frequency of all faces in the FRGC v2 database. We
have to emphasize that even a large error distance
does not always mean that the nose tip localization
of this face is fail due to the mismatching between

2D and 3D channels in some face images. By man-
ually checking all positions of the localized nose tip
in 3D channel, our nose tip localization method only
fails in two faces which actually have no nose tip at
all. If we use all faces (4950 faces) in three subset-
s of the FRGC database as the experiment dataset,
99.96% nose tips can be correctly localized. When
the ground truth data are used to evaluate 3868 faces
having good 2D-3D corresponding, 100% nose tip-
s are correctly localized. Figure 18 and figure 19
shows the error distance curve and the histogram of
the identification frequency of those faces.

Unlike some techniques making use of the tex-
ture information in the 2D face detection, this ap-
proach is a pure 3D shape analysis which is natural-
ly invariant to illumination variations. It is also an
orientation-invariant method. The range of rotation
aroundz-axis can be 00-3600. In order to compare
with approaches using all faces in FRGC database
including v1 and v2 datasets, the nose tip localiza-
tion is also implemented on FRGC v1 database, the
nose tip detection rate is 100% on 943 faces. Thus
the nose tip detection of whole FRGC database is
99.96%(2 failures out of 4950). Compared with
results using other state-of-the-art techniques, our
approach achieved the highest detection rate of the
nose tip localization, shown in table 1.

Table 1.Details in comparison with state-of-the-art techniques.

Manually check results
FRGC v2 (4007 faces) Identification rate
Our approach 99.95%
Segundo26 99.95%
Faltemier10 98.20%

Manually check results
FRGC v1&v2 (4950 faces) Identification rate
Our approach 99.96%
Mian 20 98.3%

Compared with ground truth data
FRGC v2 Identification rate
Our approach (3868 faces) 100%
Pears 23 (3680 faces) 99.92%
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4.2. Evaluations of 3D face alignment

Using the results of the nose tip localization, the
main face area can be cropped. Then we apply
the PCA pose correction on the FRGC v2 database.
About 10% of the 4007 faces appear to have a
certain misalignment. By applying the integrated
face alignment approach, no observable misalign-
ment is found during the manual check. Howev-
er, it is not easy to compare the performance of
our face alignment method with other state-of-the-
art techniques. In this section, we try to evaluate
the within-class and between-class differences of all
faces in the FRGC v2 database by comparing dif-
ferent face alignment approaches. We separate the
FRGC v2 face database into two categories: neu-
tral faces (2182 faces) and non-neutral faces (1825
faces) to test the performance of correcting face pose
and the ability to handle the expression variation-
s. We classify the current state-of-the-art techniques
into four types and then use the following methods
to simulate those four face alignment techniques.

1. PCA-based face alignment using the whole
face area which is introduced in section 3.1 (a simi-
lar method is used in21).

2. Face alignment using the ICP algorithm to
fit the whole target face to a standard face template
(similar methods are used in10 16).

3. Face alignment using the ICP algorithm to
fit a sphere (r=45mm) area around the nose tip of
the target face to a standard face template (a similar
method is used in29).

4. Face alignment using the ICP algorithm to fit
the expression-invariant area of the target face to a
standard face template (a similar method is used in
19).

Table 2. Comparison the MSE between faces belonging to the
same individual by using different face alignment approaches in
(within class performance).

Methods MSE(Neutral) MSE(Non-neutral)
1 0.5033mm 0.5793mm
2 0.2594mm 0.3327mm
3 0.3186mm 0.4358mm
4 0.2729mm 0.3084mm

Our method 0.1940mm 0.2550mm

Fig. 20. Cumulative percentages of the within-class Mean
Squared Error Distance of neutral faces.

Fig. 21. Cumulative percentages of the within-class Mean
Squared Error Distance of non-neutral faces.

Since the expression-invariant regions of faces
belonging to the same people share similar shapes,
we can use the differences of the expression-
invariant region between faces of the same individu-
al to represent how good the face alignment is. It
is also an indicator of the within-class difference.
We can calculate the mean squared error distance
(MSE) between the corresponding points within the
expression-invariant region of faces belonging to the
same individual. If a subject hasn face images, we
will calculate the MSE of every possible face-face
combination. Then we compute the mean values of
the error distances between the corresponding points
(the closest points) of these face-face combinations.
Table 2 shows the within-class MSE values of differ-
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ent face alignment methods. Our method achieves
the smallest within-class MSE values both in neutral
faces and non-neutral faces. The cumulative per-
centages of the within-class MSE of neutral faces
and non-neutral faces using different face alignment
methods are shown in figure 20 and figure 21.

Table 3.Comparison of rank-one identification rates (between-
class performance).

Methods firs vs neutral first vs non-neutral
1 27.71% 19.99%
2 63.60% 44.97%
3 47.42% 30.43%
4 53.83% 46.60%

Our approach 96.31% 85.29%

The MSE evaluation given above tests the
within-class differences of these approaches. On the
other hand, we can use the results of the identifi-
cation experiment based on the results of different
alignment approaches to compare the between-class
distinguishing ability. In the FRGC v2 database
there are 465 subjects. We select the first face im-
ages of each subject as the gallery dataset. The re-
maining face images are separated into two datasets:
neutral faces and non-neutral faces. We define two
rank-one identification experiments: “first face vs
neutral face” and “first face vs non-neutral face”. In
the “first face vs neutral face” experiment, 1761 neu-
tral faces consist of the test dataset and the gallery
dataset includes all of the first face image (465 faces)
of each individual in FRGC v2 dataset. Each face
in the test dataset is matched to every face in the
gallery dataset. If the match with rank-one similar-
ity is a match between two faces belonging to the
same person, this match is considered as a correct
match, otherwise it is an incorrect one. So there are
1761×465 matches. In the “first face vs non-neutral
faces” experiment there are 1781×465 matches. To
generate the similarity score of a match, we use the
mean squared error distance method to measure the
similarity between expression-invariant regions of t-
wo faces. The mean squared error distance method
is also used in the ICP-based face recognition ap-
proach10 21. Table 3 shows the results of these two
experiments. We find that our approach outperforms

the other methods both in “neutral faces vs neutral
faces” and “non-neutral faces vs non-neutral faces”
experiments.

5. Conclusion

This paper presented an automatic 3D face detection
and registration approach. We use kNN AURA al-
gorithm to identify and localize a key facial features
- the nose tip to detect the main face area. A 99.96%
identification rate of the nose tip localization in a
large dataset(FRGC v2) with expression variation-
s demonstrated the robustness and effectiveness of
this method. Excepts two noseless faces, 100% nose
tips are correctly identified. After then, we proposed
an integrated ICP-based approach to align faces even
with expression variations. We firstly use PCA
to roughly correct some server misalignment, then
align face by using the symmetry of the face min-
imizes the possibility of misalignments along they
andz-axis and reduce the error distance of the au-
tomatically localized nose tip position alongx-axis
to zero. The expression-invariant region can be ex-
tracted. Finally, a face alignment based on ICP algo-
rithm using the expression-invariant region produces
the rotation angleα along thex-axis. In order to e-
valuation the result of face registration, we propose
a method to measure the within-class and between-
class performance in face registration/alignment. In
the comparison with state-of-the-art face alignment
techniques based on FRGC v2 dataset, our approach
achieves the best performance. Our approach is a
full automatic method both in face detection and reg-
istration without manually amending the results dur-
ing the process. It builds a good foundation even for
the further face recognition phase.
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