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AbstractAbstractAbstractAbstract

For good security and large payload in information hiding, matrix embedding is a popular method for increasing the
embedding efficiency. This paper analyzes the security of matrix embedding against cryptanalytic attacks. The
secrecy security of matrix embedding using information theory under the conditions of known-cover attack and
chosen-stego attack is studied. After that, the unicity distance of the key, message equivocation and the relationship
among wet ratio, embedding rate and key equivocation for the wet paper channel are given through analyzing the
key model under the known-cover attack condition. Furthermore, an effective differential attack to matrix
embedding under chosen-stego attack condition is proposed. The results of analysis show that the matrix
embedding is not secure enough with respect to cryptographic secrecy against the stronger adversaries.

Keywords: matrix embedding; known-cover attack; chosen-stego attack; stego-only attack; message equivocation;
key equivocation

1.1.1.1. IntroductionIntroductionIntroductionIntroduction

The Internet of things (Iot) is a large network
which integrates the current devices including
Radio Frequency Identification (RFID)
devices, sensors and other equipments and
services etc. The Iot has an effect on the
security and privacy of the involved
stakeholders. In [1] and [2], the current
technological and their effect on the security,
privacy, and governance of Iot are discussed.
With the extensive application of RFID
technology, particularly people pay more and
more attention to its security and privacy
issues. Currently, security issues have become
major factors which impede the large-scale
applications of RFID technology. Security and
privacy in RFID systems have been defined as
[3].

Information hiding is one of the hot spots
in the domain of information security, of
which steganography and watermarking are
the main branches. In recent years, information
hiding techniques have been introduced to
enhance the security of RFID systems. In [4],
ID Modulation is used to embed a bit stream
representing sensor information in a standards-
compliant RFID channel, which is backward
compatibility with pre-existing standards and
hardware. In [5], a novel watermarking based
on tamper detection solution for low cost
RFID passive tags which use the 32 bit kill
password as the cover medium is proposed.
Most previous applications of information
hiding (eg. matrix embedding) have
emphasized either concealment security (as in
steganography) or robustness to removal (as in
watermarking). For good security and large
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payload in steganography, it is desired to
embed as many messages as possible per
change of the cover-object, i.e., to have high
embedding efficiency.

Matrix embedding is the most popular
method for increasing the embedding
efficiency. Matrix embedding was firstly
proposed by Crandall in [6], applied in F5
algorithm [7] and systematically investigated
in [8,9]. In recent years, many matrix
embedding methods based on structured
covering codes [10,11] or random linear codes
[12,13] have been reported to increase the
embedding efficiency and enhance the
concealment security of steganography.

Traditionally, steganography only
consider the concealment security of matrix
embedding, i.e., how to resist the detection
from the attacker in [14]. However, after
determining the stego image, the attacker will
further try to recover the stego key and extract
the hidden messages, which will produce
enough evidence in support of the existence of
steganography. We call the ability of
steganography to protect the stego key and
message content as secret security.

Phillip firstly studied the secrecy security
of matrix embedding under the condition of
stego-only attack in [15]. Based on message
equivocation and key equivocation, he studied
the secrecy security of matrix embedding
under various key models. So far, recent work
in matrix embedding mainly focused on the
security under the condition of stego-only
attack.

Note that recovering the stego key or
extracting the hidden messages is a very
difficult problem, which is impossible unless
the attacker get enough conditions, such as all
details of the steganographic algorithm, many
stego images generated from one common
cover or the cover itself. In fact, the secret
security of steganography is similar to the
security of cryptography. According to the
Kerckhoffs’ principle， if the attacker can get
some information base on any other

assumption except knowing the key, such
security is not reliable.

Therefore, it is necessary to consider the
secrecy security of steganography under strong
attack conditions, such as the known-cover
attack, because we cannot build secret security
by supposing that the attack cannot get the
cover. In practice, the condition of known-
cover is possible. For instance, if the attacker
obtains the computer of the steganographers,
e.g., the case of Russian spies in [16, 17], he
may get the stego systems, the cover images
and the stego images. After obtaining the
cover, it is easy for the attacker to detect the
existence of the steganography, but it is still
hard to recover the stego key and extract the
hidden message. Therefore, the secrecy
security of matrix embedding under the
stronger attack condition, such as known-cover
should be considered by both steganographers
and attackers.

In this paper, we discuss the secrecy
security of matrix embedding against
cryptanalytic attacks. Based on the results in
[15], we further study the secrecy security of
matrix embedding using information theory
under the condition of known-cover attack and
chosen-stego attack.

The contributions of this paper lie in the following
three aspects:

(i) To the best of our known, this paper firstly studies
the secrecy security of matrix embedding under the
condition of known-cover attack which has become
a real-world steganalysis under some special
attacking conditions.

(ii) For wet paper channel, this paper shows the
relationship among wet ratio, embedding rate, and
key equivocation for the wet paper channel under
the known-cover attack condition.

(iii) This paper presents an effective differential attack
to matrix embedding under chosen-stego attack,
which can recover the key by using some groups of
differential equations.
The rest of this paper is organized as

follows. Section 2 introduces the concepts of
matrix embedding and wet paper codes, as
well as some notations used in this paper. All
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main results are in Section 3. Section 4
summarizes this paper briefly.

2.2.2.2. TheTheTheThe PPPPresentationresentationresentationresentation ofofofof PPPProblemroblemroblemroblem

2.1.2.1.2.1.2.1. SymbolsSymbolsSymbolsSymbols

Throughout the text, italic capital letters denote random
variables, and boldface small letters denote the instances
of random variables. Let Σ be the finite set of letters,

nΣ be a sequence of Σ , the length of which is n. Note
that S is the cover sequence, C is the stego sequence, K
is the shared key between the sender and recipient, M is
the secret message, T is the way used to choose the
embedding positions. Security referred behind
represents the secrecy security.

Considering that both communication
sides use matrix embedding to transfer secret
message such as digital images, audios, and
videos on the multimedia channel. Figure 1
demonstrates the flow chart of communication.

message mmmm
stego sequence cccc

decoding mapping stego signal

cover sequence ssss

key kkkk

encoding
mapping

matrix
embedding

Encode

cover signal

Message mmmmkey kkkk

encoding mapping

stego sequence cccc

matrix
extraction

Decode

stego signal

Figure. 1 information hiding system using matrix embedding

Assume that the sender wants to transfer binary
message sequence mmmm(mmmm 2

qF∈ ) with q bits. The sender
first maps the cover signals to a binary cover sequence
ssss(ssss 2

nF∈ ) with length n such that 0<q≤n by using the
encoding mapping. Thus, with a binary random matrix kkkk
as the stego key, the sender embeds the message mmmm into
ssss and gets the stego sequence cccc(cccc 2

nF∈ ), satisfy mmmm=kckckckc....
The stego sequence cccc is then used to generate the stego
signals. After receiving the stego signals, the recipient
obtains the stego sequence cccc by using the decoding
mapping, and extracts the secret message mmmm by

multiplying cccc by the stego key kkkk, such that mmmm=kckckckc. For
example, it is the common form of encoding mapping
getting the Least Significant Bits (LSB) sequence of the
cover signal, and using the stego sequence to take the
place of the LSB sequence of the cover signal is the
common form of the corresponding decoding mapping.

As for a good encoding mapping function, the 2n

instances of the coverssss are equiprobable. Assume that
the message has been compressed, and then the 2q

instances of the message are equiprobable. The key kkkk is
a random matrix on 2

q nF × .
The entropy function is denoted by ( )H ⋅ as follows

2

2( ) Pr( ) log Pr( ).
nF

H S
∈

= ∑
ssss

s ss ss ss s

The mutual information is defined as ( )I ⋅ , where

2 2

2
Pr( , )( , ) Pr( , ) log .

Pr( ) Pr( )n nF F

I M C
∈ ∈

= ∑ ∑
m cm cm cm c

m cm cm cm c
m cm cm cm c

m cm cm cm c

As for the zero-distortion channel, the channel
capacity is defined as C=H(C|S), and the information
transfer rate is defined as Rm=H(M)/n. Define H(C|S)-
H(M) as embeddingembeddingembeddingembedding redundancyredundancyredundancyredundancy. The unicityunicityunicityunicity distancedistancedistancedistance
to a stegosystem is the number of signals needed by the
attacker to make the expectation of the number of
pseudo-keys equal to zero. The attacker maybe use only
cipher texts or both cipher texts and plaintexts for
different attacking conditions.

A binary [n,k] matrix embedding C is a linear
subspace of 2

nF . Given the key kkkk, define the rank of kkkk as
q, and kkkk is full-rank. Then for any 2

nF∈bbbb , the
vector 2

nF∈g = kbg = kbg = kbg = kb is called the syndrome of bbbb. The
set ( )C =mmmm 2{ | (mod 2)}nF∈ ≡b m kbb m kbb m kbb m kb is called a coset.
The cosets associated with different syndromes are
disjoint. Therefore, there are 2n-k   disjoint cosets,
with each consisting of 2k vectors. Let w(ssss) be the
Hamming weight of the vector ssss, and d(ssss,cccc) be the
Hamming distance between vectors ssss and cccc. Let e(mmmm) be
a coset leader, if e(mmmm) satisfy

( ( )) min{ ( ) | ( )}w e w C= ∈m b b mm b b mm b b mm b b m .

2.2.2.2.2.2.2.2. MatrixMatrixMatrixMatrix embeddingembeddingembeddingembedding

Matrix embedding is a typical application of linear
covering codes, which is proposed to improve the
embedding efficiency of information hiding. Using
matrix embedding, we can embed message mmmm with q
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bits into a binary cover sequence ssss. The embedding
algorithm Emb() is such that

( , , ) ( ) .Emb e= + − =s m k s m ks cs m k s m ks cs m k s m ks cs m k s m ks c

The corresponding extracting algorithm Ext() is as
follows

( , ) ,Ext =c k kcc k kcc k kcc k kc

where

.e= + − = + − =kc ks k (m ks) ks m ks mkc ks k (m ks) ks m ks mkc ks k (m ks) ks m ks mkc ks k (m ks) ks m ks m

Because mmmm follows the uniform distribution, the
average change number needed for the embedding
process is equal to the average Hamming weight of all
the coset leaders of a code C. The average change
number is equal to the average distance to code. The
distance of two arbitrary code words of the same coset
to the code is equivalent, both equal to the Hamming
weight of any coset leader of the coset, i.e.

( , ) ( , ) ( )d C d C w e= =s cs cs cs c . Consequently, the average
distance sR of all the code words is equal to the average
number of embedding changes, i.e.

-

2

2

-
1

1 1( , ) ( ( )).
2 2

n k

n
s n n k

iF

R d C w e
=∈

= =∑ ∑
ssss

s ss ss ss s

2.3.2.3.2.3.2.3. WetWetWetWet paperpaperpaperpaper codescodescodescodes

Wet paper codes were previously proposed as a tool for
the construction of steganographic schemes with
arbitrary (non-shared) selection channels.
Using wet paper codes, the sender can embed message
into a cover when the position of the cover is restricted
to be not changed, while the receiver can extract
message without the information of the restricted
positions.

Assume that the sender chooses l changeable bits
sj， {1,2, }j L n∈ ⊂ ⋯ ， L l= ， from a binary cover
ssss= (s1,…, sn), while the remaining n----l bits cannot be
changed. The changeable position is called dry position
and the unchangeable position is called wet positions.
The sender embeds the message into ssss by changing
some sj, {1,2, }j L n∈ ⊂ ⋯ and gets cccc, which satisfy

kckckckc=mmmm. (1)

Let vvvv=c-sc-sc-sc-s, then

kvkvkvkv= m-ksm-ksm-ksm-ks. (2)

Since n----l position of ssss is not allowed to change,
there are l unknown vj, {1,2, }j L n∈ ⊂ ⋯ , while the
remaining n----l values vi, i L∉ , are zeros. Thus, we can
remove n----l unused columns from kkkk, and denote the
obtained matrix as hhhh. We also remove n----l unused
elements from vvvv, and denote the obtained vector as uuuu.
We get the following equation from (2)

huhuhuhu= m-ksm-ksm-ksm-ks, (3)

where hhhh is a binary q×l matrix and uuuu is an
unknown l×1 binary vector. The encoding of
wet paper codes is completed by solving (3).
The wet rate of the cover is denoted
as ( ) /wet n l nα = − , where 0 1wetα≤ < . The
embedding rate of wet paper codes is denoted
as /wetr q l= . In fact, the random matrix
embedding can be viewed as one of the special
wet paper codes, of which the wet rate is 0.

3.3.3.3. SecrecySecrecySecrecySecrecy securitysecuritysecuritysecurity analysisanalysisanalysisanalysis

The secrecy security of matrix embedding
under the conditions of stego-only attack has
been studied in [15]. This paper focuses
mainly on the security under the conditions of
known-cover attack and chosen-stego attack
separately.

3.1.3.1.3.1.3.1. KeyKeyKeyKey equivocationequivocationequivocationequivocation

TheoremTheoremTheoremTheorem 1111.([15]) Under the condition of stego-only
attack, the key equivocation function of matrix
embedding is bounded as

( ; ) [ ( )] [ ( ) ( )]I K C q H M H C H S≤ − + − .

Theorem 1 indicates that, under the condition of
stego-only attack, if the embedded message has been
compressed, i.e. ( )H M q= , and the cover sequence
obtained by the encoding mapping is random,
i.e. ( )H S n= , then ( ) ( )H C n H S= = and ( ; ) 0I K C = .
Here matrix embedding can achieve the perfect secrecy.

Now we extend Philip’s theorem to known-cover
attack.

LemmaLemmaLemmaLemma 1111. Under the condition of known-cover
attack, we have

( ; , , , ) ( , ) 0,I T K C S M n qφ≥ ≥
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where
0

( , ) log log
q

q i q i
n q n i

i
n q q C C Cφ −

−
=

= + − ∑ .

Proof.Proof.Proof.Proof. Considering ( ; , , , )I T K C S M , both the way
of choosing embedding position T and the embedded
message M are independent of the key K, so the receiver
can extract M using stego object S without T. Thus, for
any given S, we have

( ; , , , ) ( ; , )
( ) ( | , ),

I T K C S M I T C S
H T H T C S

=
= −

where

1( ) Pr( ) log log
Pr( )

q
n

t T
H T C

∈

= =∑ tttt
tttt

.

The information about the way of choosing embedding
positions T can only be obtained by comparing the
difference between the cover object C and stego object
S, consequently

,

0

( | , ) Pr( ) ( | )

Pr( ( ) ) ( | ( ) ).

c s

q

i

H T C S H T

w i H T w i
=

= ⊕ ⊕

= ⊕ = ⊕ =

∑

∑

c s c sc s c sc s c sc s c s

c s c sc s c sc s c sc s c s

Because cccc is random on 2
nF , and the Hamming

weight of ⊕c sc sc sc s is ( )w ⊕c sc sc sc s . Then

0 0

Pr( ( ) ) ,
2

i q i i q i i q i
n n i n n i n n i

q q q q
j q j q j n
n n j n q

j j

C C C C C C
w i

CC C C C

− − −
− − −

−
−

= =

⊕ = = = =

∑ ∑
c sc sc sc s

( | ( ) ) log q i
n iH T w i C −
−⊕ = =c sc sc sc s .

As
0

1
2

i q iq
n n i
q q

i n

C C
C

−
−

=

=∑ , according to JeJeJeJennnnsensensensen IIIInequationnequationnequationnequation in

[18], we have

0

0 0

0

( | ) log
2

log log
2 2

log .

i q iq
q in n i
n iq q

i n

q q
i q i q i q i q i
n n i n i n q n i

i i
q q q q
n n

q
i q i
q n i

i

C C
H T C

C

C C C C C C

C C

C C q

−
−−
−

=

− − −
− − −

= =

−
−

=

⊕ = ⋅

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟≤ =
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= −

∑

∑ ∑

∑

c sc sc sc s

Then

0

( ; , , , ) ( ) ( | )

log log ( , ).
q

q i q i
n q n i

i

I T K C S M H T H T

q C C C n qφ−
−

=

= − ⊕

≥ + − ∑

c sc sc sc s

≜

According to VandermondeVandermondeVandermondeVandermonde IdenticalIdenticalIdenticalIdentical EquationEquationEquationEquation in

[18],
0

n
i k i k
n m n m

i
C C C−

+
=

⋅ =∑ , for 0 i q≤ ≤ , we have

0

0

0 log log ( , ),

( , ) log log .

q
q i q i
n q n q

i
q

q i q i
n q n

i

q C C C n q

n q q C C C q

φ

φ

−
−

=

−

=

= + − <

< + − =

∑

∑

As a result, 0 ( , ) ( ; , , , )n q I T K C S Mφ≤ ≤ .
TheoremTheoremTheoremTheorem 2222. Under the condition of known-cover

attack, the key equivocation function of matrix
embedding is bounded as

( ; , ) [ ( | ) ( )] ( , )I K S C H C S H M n qφ≤ − − .

Specially, I(K;S,C) achieves the maximum value
when / 2q n= .

ProofProofProofProof.... For the proof, firstly we have

0

( , , , , )
( , , , ) ( | , , , )

( ) ( ) ( ) ( ).

H C K M T S
H K M T S H C K M T S

H K H M H S H T
=

= +

= + + +

��������� (4)

At the same time,

0

( , , , , )
( ) ( | ) ( | , ) ( | , , )

( | , , , )
( ) ( | ) ( | , ) ( | , , , ).

H C K M T S
H C H S C H K C S H M K C S

H T K C S M
H C H S C H K C S H T K C S M

=

= + + +

+
= + + +

�������
(5)

As a result,

( ) ( ) ( ) ( )

( ) ( | ) ( | , ) ( | , , , ),

H K H M H S H T

H C H S C H K C S H T K C S M

+ + +

= + + +

and

[ ( ) ( | )] [ ( ) ( | , )]
[ ( ) ( | , , , )]
( ) ( ).

H S H S C H K H K C S
H T H T K C S M

H C H M

− + −

+ −

= −

As
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( ; ) ( ) ( | )
( ; , ) ( ) ( | , )
( ; , , , ) ( ) ( | , , , ),

I C S H S H S C
I K C S H K H K C S
I T K C S M H T H T K C S M

= −⎧
⎪ = −⎨
⎪ = −⎩

we have

( ; ) ( ; , ) ( ; , , , ) ( ) ( ).I C S I K C S I T K C S M H C H M+ + = −

Then, according to Lemma 1,

( ; , ) ( ) ( ) ( ; ) ( ; , , , )

( | ) ( ) ( ; , , , )

[ ( | ) ( )] ( , ).

I K C S H C H M I C S I T K C S M

H C S H M I T K C S M

H C S H M n qφ

= − − −

= − −

≤ − −

(6)

For fixed n, we obtain following conclusions.
(iv) When 0r → or 1r→ , the key equivocation

achieves the maximal upper bound, which is close
to the hidden capacity;

(v) When 0.5r→ , the key equivocation achieves the
minimal upper bound.
We make a theoretical analysis of the relation

between the embedding rate wetr of wet paper codes and
the key equivocation ( ; , )I K C S for different wet rate

wetα . Generally speaking, we have
(vi) When 0.5 1wetα≤ < , if 1wetr = , the key

equivocation achieves the minimum value; if
0wetr → , the key equivocation achieves the

maximum value and is close to the embedding
redundancy.

(vii) When 0 0.5wetα≤ < , if 0.5(1 )wet wetr α= − , the key
equivocation achieves the minimum value; if

0wetr → , the key equivocation achieves the
maximum value and is close to the embedding
redundancy.

(viii) When 0wetα = , if 0.5wetr = , the key equivocation
achieves the minimum value; if 0wetr → , the key
equivocation achieves the maximum value and is
close to the embedding redundancy.
Theorem 2 indicates that the channel

redundancy should be increased as much as
possible to improve the secrecy of matrix
embedding. In order to decrease the key
equivocation, the sender should choose a
suitable embedding rate according to the wet
rate.

3.2.3.2.3.2.3.2. UnicityUnicityUnicityUnicity distancedistancedistancedistance

TheoremTheoremTheoremTheorem 3333. Under the condition of stego-only attack,
unicity distance of the key kkkk, i.e., the expected number

of stego signals N for determining the key, has the
following lower bound

( ) .
( ) [ ( ) ( )]

H K qN
H C H M H S

−
≥

− +

Proof.Proof.Proof.Proof. According to Theorem 1,

( | , , )
( ) ( | ) ( ; , ) ( ) ( ) ( ),
H S K C T
H K H K C I T K C H M H S H C= − + + + −

where ( | , , )H S T K C q≤ and ( ; , ) 0I T K C = .
Thus we have

( | ) ( ) ( ) ( ) ( ) ( | , , )
( ) ( ) ( ) ( ) .

H K C H K H M H S H C H S T K C
H K H M H S H C q

= + + − −
≥ + + − −

Denote N groups of stego objects as
1 2{ , , , }N

N=c c c cc c c cc c c cc c c c⋯ , and then

( | ) ( ) [ ( ) ( ) ( )] .NH H K N H M H S H C q≥ + + − −k ck ck ck c

So we have

log( 1) ( ) [ ( ) ( ) ( )] .pK H K N H M H S H C q+ ≥ + + − −

At the same time,

( ) [ ( ) ( ) ( )]2 1H K q N H M H S H C
pK

− + + −≥ − .

So unicity distance is

( )
( ) [ ( ) ( )]

H K qN
H C H M H S

−
≥

− +
.

TheoremTheoremTheoremTheorem 4444. Under the condition of known-cover
attack, unicity distance of the key kkkk is upper bounded as

( )
( | ) [ ( ) ( ; , , , )]

H KN
H C S H M I T M C S K

≥
− +

.

ProofProofProofProof.... Denote N groups of covers and stego
objects as 1 2{ , , , }N

N=s s s ss s s ss s s ss s s s⋯ and 1 2{ , , , }N
N=c c c cc c c cc c c cc c c c⋯

respectively. Given N pairs of covers and stego objects,
the set of all the possible stego keys is

( , ) { | , , Pr( ) 0 and }N N
i i i i iK K M T= ∈ ∃ ∈ ∈ > =c s k m t m kc mc s k m t m kc mc s k m t m kc mc s k m t m kc m .

And the expectation of the number of pseudo-keys
is

( , ) ( , )

( , ) ( , )

Pr( , )[ ( , ) 1]

Pr( , ) ( , ) 1.

N N N N

N N N N

N N N N
p

C S

N N N N

C S

K K

K
∈

∈

= −

= −

∑

∑
c sc sc sc s

c sc sc sc s

c s c sc s c sc s c sc s c s

c s c sc s c sc s c sc s c s
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We have

( , ) ( , )

( , ) ( , )

( | , )

Pr( , ) ( | , )

log Pr( , ) | ( , ) |

log( 1),

N N N N

N N N N

N N

N N N N

C S

N N N N

C S

p

H K
H K

K

K

∈

∈

=

≤

= +

∑

∑
c sc sc sc s

c sc sc sc s

c sc sc sc s

c s c sc s c sc s c sc s c s

c s c sc s c sc s c sc s c s

and ( | , , , ) 0H C K M T S = .
On the other hand,

0

( , , , , )

( , , , ) ( | , , , )

[ ( ) ( ) ( )] ( ).

N N N N

N N N N N N N

H

H H

N H S H M H T H K
=

= +

= + + +

c s m t kc s m t kc s m t kc s m t k

s m t k c s m t ks m t k c s m t ks m t k c s m t ks m t k c s m t k��������� (7)

Thus,
( , , , , )

( ) ( | ) ( | , ) ( | , , )

( | , , , )

( ) ( | ) ( | , ) ( | , , , )

[ ( ) ( | ) ( ) ( ; , , , )] ( | , ).

N N N N

N N N N N N N N

N N N N

N N N N N N

N N

H

H H H H
H

NH S NH C S H H
N H S H C S H T I T M C S K H

= + + +

+

≤ + + +

≤ + + − +

c s m t kc s m t kc s m t kc s m t k

s c s k c s m c s ks c s k c s m c s ks c s k c s m c s ks c s k c s m c s k

t m c s kt m c s kt m c s kt m c s k

k c s t m c s kk c s t m c s kk c s t m c s kk c s t m c s k

k c sk c sk c sk c s

(8)

From equation (7) and equation (8),

( | , ) ( ) [ ( | ) ( ) ( ; , , , )].N NH H K N H C S H M I T M C S K≥ − − −k c sk c sk c sk c s

Then

log( 1) ( ) [ ( | ) ( ) ( ; , , , )].pK H K N H C S H M I T M C S K+ ≥ − − −

Consequently, the expected number of pseudo-keys
is

( ) [ ( | ) ( ) ( ; , , , )]( | , ) 2 1.N N H K N H C S H M I T M C S K
pK H − − −≥ ≥ −k c sk c sk c sk c s

So unicity distance has following upper bound

( ) .
( | ) [ ( ) ( ; , , , )]

H KN
H C S H M I T M C S K

≥
− +

3.3.3.3.3.3.3.3. MessageMessageMessageMessage equivocationequivocationequivocationequivocation

TheoremTheoremTheoremTheorem 5.5.5.5.([15]) Under the condition of stego-only
attack, (1) The message equivocation of the uniform
permutation model is ( ; ) 2 .nI M C q−= (2) The message
equivocation of the Bernoulli key model with sufficiently
large nq is 2( ; ) 2 ( )nI M C nqH p−= , where

2 2 2( ) log (1 ) log (1 )H p p p p p= − − − − is the binary
entropy function.

Now we extend Theorem 5 to known-cover attack
model as follows.

TheoremTheoremTheoremTheorem 6666. Under the condition of known-cover
attack, the message equivocation function is bounded as

( ; , ) ( | ) [ ( ; , ) ( , )]I M S C H C S I K M C n qφ≤ − + ,

where
0

( , ) log log
q

q i q i
n q n i

i
n q q C C Cφ −

−
=

= + − ∑ , and (1) For

the uniform permutation model,

( ; , ) 2 nI K M C q q−= − .

(2) For the Bernoulli key model,

2( ; , ) 2 ( )nI K M C nqH p−≈ − .

Proof.Proof.Proof.Proof. We have

( ; , ) ( ) ( | , )I M S C H M H M S C= −

And

( , , , , )
( ) ( | ) ( | , )

( | , , ) ( | , , , ),

H C K M T S
H S H C S H M C S
H K M C S H T M C S K

= + +
+ +

(9)

( , , , , ) ( ) ( ) ( ) ( ).H C K M T S H S H K H M H T= + + + (10)

From Equation (9) and Equation (10),

( ) ( | , )
( | ) ( | , , ) ( | , , , )

( ) ( ),

H M H M S C
H C S H K M S C H T M C S K
H T H K

−

= + +
− −

and
( ; , ) ( | ) ( ; , , ) ( ; , , , ).I M S C H C S I K M S C I T M C S K= − −

Thus,

( ; , , , ) ( , ),I T M C S K n qφ≥

( ; , , ) ( ; , ),I K M S C I K M C≥

( ; , ) ( | ) ( ; , , ) ( , )
( | ) ( ; , ) ( , ).

I M S C H C S I K M S C n q
H C S I K M C n q

φ
φ

≤ − −
≤ − −

According to Theorem 2 in [15], for the uniform
permutation model,

( ; , ) 2 .nI K M C q q−= −

Thus,

( ; , ) ( | ) 2 ( , ).nI M S C H C S q q n qφ−≤ − + −

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                      645



Chen Liu and Zhang

For the Bernoulli key model,

2( ; , ) 2 ( ).nI K M C nqH p−≈

Thus,

2( ; , ) ( | ) 2 ( ) ( , ),nI M S C H C S nqH p n qφ−≤ − −

where Pr( 1) 1 Pr( 0)ij ijp K K= = = − = .
Theorem 6 indicates that for both the uniform

permutation model and the Bernoulli key model, the
message equivocation achieves the upper bound when
the embedding rate 0r → .

3.4.3.4.3.4.3.4. DifferentialDifferentialDifferentialDifferential attackattackattackattack

TheoremTheoremTheoremTheorem 7777. Under the condition of chosen-stego attack,
the attacker can recover the key by using n groups of
differential equations.

Proof.Proof.Proof.Proof. Assume that by some way the attacker has
already known that wet paper codes are used to transfer
the secret message, and can be viewed as an encryption
algorithm. Take the message block as plaintext and the
stego block as cipher text, wet paper codes can be
viewed as a block cipher, because the sender uses the
same key kkkk to encrypt different blocks of plaintexts.
The only goal of the attacker is to recover the key kkkk .
Assume that the attacker has already had many
plaintext-cipher text pairs, and could choose the needful
stego block cccc and the corresponding message groupmmmm ,
which amounts to making a chosen-cipher text attack.

Then an attack is given under the above condition
that some information of the key is obtained by using
differential attack and a group of equivalent keys are
found by solving a group of linear equations.

The following operations are discussed on 2F .
Because the attacker can choose stego objects, he can
get two stego objects 1cccc and 1 'cccc ,
where 1 1 ' (1,0,0, ,0)− = TTTTc cc cc cc c ⋯ . Let the corresponding
messages of two stego objects be 1mmmm and 1 'mmmm separately,
so differential equations can be obtained by

1 1 1 1' '.− = −kc kc m mkc kc m mkc kc m mkc kc m m

Since 1 1 ' (1,0,0, ,0)− = TTTTc cc cc cc c ⋯ , we have

1 1 ,1 1 1( ') '.j− = = −k c c k m mk c c k m mk c c k m mk c c k m m

Similarly, for
�

' (0,0, 1, ,0)
i

i i− = TTTTc cc cc cc c ⋯ ⋯ , we can get
differential equations

, ',j i i i= −k m mk m mk m mk m m

where 1,2, ,i n= ⋯ . Because the attacker can get q bits
of kkkk by solving a group of equations, only n groups of
differential equations need to be constructed, and then
the key kkkk is obtained.

For example, assume that the attacker wants to
recover the key kkkk of matrix embedding under the
condition of chosen-stego attack, where

1 0 1 0
1 1 0 0
0 1 1 1

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

kkkk .

Then the attacker could firstly choose two stego
sequences 1cccc and 1 'cccc , where their differential vector is
(1,0,0,0)T . For instance, ( )1 1,1,1,1 T=cccc and

( )1 ' 0,1,1,1 T=cccc . Then, find the corresponding message
sequence of 1cccc and 1 'cccc . Note that 1 (0,0,1)T=mmmm

1 ' (1,1,1)T=mmmm . Finally, calculate 1 1 ' (1,1,0)T− =m mm mm mm m ,
where (1,1,0)T the first group of is kkkk . Similarly, kkkk can
be completely recovered by 4 groups of differential
equations.

Theorem 7 indicates that secrecy security of matrix
embedding is weak under the condition of chosen-stego
attack.

4.4.4.4. ConclusionConclusionConclusionConclusion

This paper studies the secrecy security of the
matrix embedding schemes under the
conditions of known-cover attack by
concerning about the message equivocation,
key equivocation and unicity distance
functions, as well as the relationship among
the wet rate, embedding rate and the key
equivocation. But it should be pointed out that
the mimic cover can not be exactly estimated,
and in fact, the restoration of cover object is a
difficult problem in information hiding. We
also point out that matrix embedding is not
secrecy secure under the condition of chosen-
stego attack. The current used schemes of
fixed shared key for matrix embedding have
weak secrecy security against stronger
attackers.

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                      646



Cryptographic Secrecy Matrix Embedding

AcknowledgmentAcknowledgmentAcknowledgmentAcknowledgmentssss

This work is supported by the Natural Science
Foundation of China under Grant [61170234,
60803155], the Strategic Priority Research
Program of the Chinese Academy of Sciences
[XDA06030601], the National Science and
Technology Major Project of China
[2010ZX03004-003], Science and Technology
Innovation Team of Zhengzhou [10CXTD150].

ReferencesReferencesReferencesReferences
1. V. Oleshchuk, Internet of things and privacy preserving

technologies, in proc. 1st Int. Conf. Wireless
Communication, Vehicular Technology, Information
Theory and Aerospace & Electronics Systems
Technology, eds. K.E. Skouby(Grimstad, Norway, 2009),
pp. 336–340.

2. C.M. Medaglia and A. Serbanati, An Overview of
Privacy and Security Issues in the Internet of Things,
(Springer, New York, 2010).

3. J. Banks, Understanding RFID Part 9: RFID Privacy and
Security, Accessed on February 1, 2009. Available online
at http://www. rfidnews.org, 2008.

4. A.N.M. Noman, K. Curran, and T. Lunney, ID
modulation: embedding sensor data in an RFID time
series, in Proc. 7th Int. Conf. Information Hiding, eds. R.
J. Anderson(Barcelona, Spain, 2005), pp. 234–246.

5. A.N.M. Noman, K. Curran, and T. Lunney, A
watermarking based tamper detection solution for RFID
tags, in Proc. 6th Int. Conf. Intelligent Information
Hiding and Multimedia Signal Processing, eds. L.C. Jain.
(Darmstadt, Germany, 2010), pp. 98-101.

6. R. Crandall, Some Notes on Steganography, Posted on
Steganography Mailing List, Available online at
http://os.inf.tu-dresden.de/~westfeld/crandall.pdf, 1998.

7. A .Westfeld, F5: a steganographic algorithm, in Proc. 4th
Int. Conf. Information Hiding, eds. I.S. Moskowitz
(Pittsburgh, PA, USA, 2001), pp. 289-302.

8. F. Galand and Kabatiansky G, Information hiding by
coverings, in Proc. 3rd Int. Conf. IEEE Information
Theory, eds. S.W. Golomb, G. Gong, T. Helleseth and
H.Y. Song (Paris, France, 2003), pp. 151-154.

9. J. Fridrich, P. Lisonek, and D. Soukal, On steganographic
embedding efficiency, in Proc. 8th Int. Conf. Information
Hiding, eds. M. G. Nigotia. (Toronto, Canada, 2006), pp.
282–296.

10. Y.K. Gao, X.L Li and B. Yang, Employing optimal
matrix for efficient matrix embedding, in Proc. 5th Int.
Conf. Intelligent Information Hiding and Multimedia
Signal Processing, eds. E. Joelianto (Kyoto, Japan, 2009),
pp. 161-165.

11. C.L. Hou, C.C. Lu, S.C. Tsai and W.G. Tzeng, An
optimal data hiding scheme with tree-based parity check,
J.IEEE Transactions on Image Processing, 99(9)(2010)
1-7.

12. J. Fridrich and D. Soukal, Matrix embedding for large
payloads, J. IEEE Transactions on Information Forensics
Security, 1(3) (2006) 390–394.

13. J. Fridrich, M. Goljan, and D. Soukal, Wet paper codes
with improved embedding efficiency, J. IEEE
Transactions on Information Forensics Security,
1(1)(2006) 102–110.

14. J. Fridrich, T. Pevny, and J. Kodovsky, Statistically
undetectable JPEG steganography: Dead ends, challenges,
and opportunities, in Proc. 9th Int. Conf. ACM
Multimedia & Security, eds. J. Dittmann, J. Fridrich
(Dallas, TX, USA, 2007) 3-14.

15. P.A. Regalia, Cryptographic Secrecy of steganographic
matrix embedding, J. IEEE Transactions on Information
Forensics Security, 3(4) (2008) 768-791.

16. N. Shachtman, FBI: Spies Hid Secret Messages on Public
Websites, Accessed on August 22, 2012. Available
online at http://www.wired.com/dangerroom/2010/06/
alleged-spies-hid-secret-messages-on-public-websites/.

17. C. Stier, Russian spy ring hid secret messages on the web,
Accessed on August 22, 2012. Available online at
http://www.newscientist.com/article/dn19126-russian-
spy-ring-hid-secret-messages-on-the-web.html.

18. T.M. Cover, J.A. Thomas, Elements of Information
Theory. Amarica:Wiley- Interscience, 1991, 35-45.

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                      647




