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Abstract 

By simulating the self-adaptive phenomena of plants in nature, a novel evolutionary algorithm named Bean Optimization 
Algorithm (BOA) was proposed in 2008. BOA can be used for resolving complex optimization problems. As BOA is a 
new optimization algorithm, theoretical analysis of the algorithm is still very preliminary. Research on the state transfer 
process and the convergence behavior of BOA is of great significance for understanding it. In this paper, we build the 
Markov chain model of this algorithm and analyze the characters of this Markov chain. Then we analyze the transferring 
process of the bean memeplex status series and point out that the memeplex status series will enter the best status set. We 
also prove that this algorithm meets the requirement of global convergence criterion of random search algorithms. Finally 
we get the conclusion that BOA will make sure to get the global optimum. 
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1. INTRODUCTION  

Many complex self-adaptive phenomena in nature often 
give us inspiration. For example, organisms and natural 
ecosystems can solve many highly complex optimization 
problems through their own evolutions. Some scholars have 
been inspired from these natural phenomena and many 
nature-inspired optimization algorithms have been proposed 
to solve complex optimization problems. The idea of the 
novel optimization algorithms which simulates the natural 
ecosystem mechanisms is different from the idea of the 
classic optimization algorithms. Their appearances greatly 
enrich the optimization technology and bring new life and 
hope for the solution of complex optimization problems 
which are difficult to deal with by traditional optimization 
methods. 
Nature-inspired optimization algorithm refers to the 
computing technology and algorithms which based on the 
functions, characteristics and mechanism of the nature to 
solve the optimization problems, such as genetic algorithms 

(GA) [1], particle swarm optimization (PSO) [2], artificial 
fish-swarm algorithm [3], free search algorithm [4], human 
evolution model algorithm [5], group search optimization 
algorithm [6], shuffled frog leaping algorithm [17], etc. 
Because the structure of nature biology is complex and 
sophisticated, they have a high degree of adaptive capacity 
and strong collaborative capabilities both in the evolutions 
and behaviors. Through collaboration, they can get the best 
environment for survival. Therefore, most of the nature-
inspired algorithms have the character of self-organizing, 
self-adaptive and self-learning. When solving some complex 
problems which could not be solved easily by the traditional 
optimization algorithm, the nature-inspired optimization 
algorithms have its own unique advantages. 
 At present, the nature-inspired optimization algorithms 
have been used to solve complex optimization problems in 
many fields successfully, for example in task assignment [7], 
classification [8], TSP [18], cluster analysis [19], scheduling 
[20] and gene selection [9]. 
However, because the theoretical basis of nature-inspired 
optimization algorithms comes from the model of biological 
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communities in nature, the relevant mathematical analysis is 
still quite weak. This leads to many problems in the current 
study, such as: universal theoretical analysis of intelligent 
algorithms, theoretical basis of parameter settings of 
intelligent algorithms. 
In 2008, inspired by the transmission mode of seeds, a novel 
evolutionary algorithm named Bean Optimization 
Algorithm (BOA) was proposed [10], which could be used 
to solve complex optimization problems by simulating the 
adaptive phenomenon of plants in nature. BOA is the 
combination of nature evolutionary tactic and limited 
random search. It has a stable robust behavior on explored 
tests and stands out as a promising alternative to existing 
optimization methods for engineering designs or 
applications. At present, two algorithm models have been 
constructed for BOA, including piecewise function model 
and normal distribution model. BOA has been successfully 
applied in solving of TSP with ACO [11], materials 
scheduling and earthquake recovery [12] and reconstruction 
planning of China [13]. 
As BOA is a new nature-inspired optimization algorithm, 
theoretical analysis of the algorithm is still very preliminary. 
Research on the state transfer process and the convergence 
behavior of BOA is of great significance for understanding it. 
In this paper, the Markov chain model of BOA is established 
to analyze the behavior of the population state transfer 
process. Based on the model, the convergence analysis is 
carried out.  

 

2. Bean Optimization Algorithm（BOA） 

2.1. Basic idea of BOA  

As we know, there are many different modes of transmission 
of seeds in nature. For example, most of the legume explore 
scattering mode. The scattering mode can be described as the 
following. When the beans are ripe, their skin becomes dry 
and hard in the sun's radiation. Then their skin bursts. Most 
beans are ejected to the region around the plant. Also, some 
beans may move or fly far away from the plant for some 
reasons, for example, carried by wind or animals. Assume 
that all beans will then grow and develop in the region where 
they land on. There is no doubt that some beans will grow to 
be very strong and produce more beans where the region 
they land on is very fertile. On the contrary, some may soon 
be phased out because they are not suitable to grow in the 
region where they grow on. After a long time, a large 
number of beans will be gathered in the fertile region, and 
most of those beans in the infertile regions will be 

disappearing. Inspired by this phenomenon, in this paper, the 
domain of optimization problem will be treated as a land and 
the position of the target point is set in the most fertile 
position. The degree of the region's fertility is determined in 
accordance with the objective function values. It can be 
given a concrete example: when a packet of beans are 
randomly spread to the land, the probability of their growing 
vigorously and producing more offspring will be high if the 
beans fall in fertile region. If the beans fall in the barren 
region, then they may become extinct in the future. After the 
beans have evolved for several generations, there might be 
one or several plants growing in the most fertile region. In 
BOA, the evolution process is abstracted. It can be described 
as such phenomenon: in every new generation, most of the 
descendant plants emerged around several most robust parent 
plants (we call the robust parent plants father beans). 

2.2. Algorithm Design  

In BOA, individual beans are expressed with real number 
vector like 

1 2 3{ , , , . . . , }nX x x x x , 
where n is the dimension which is determined by the scale of 
problem to be resolved. The bean group is composed of a 
large number of beans. And the size of the bean group can be 
adjusted according to the practical situations. In addition, 
beans are sown to the region which is defined by the problem. 
Father beans are those beans whose fitness values are larger 
than most of others. In BOA, the number of descendant 
beans and the parameters of distribution will be set according 
to their father bean’s fitness value. That is to say the larger is 
the value of father bean’s fitness, the larger is the number of 
its descendants and the closer is the distance between them. 
Otherwise, the number of its descendants will be fewer and 
its descendants will have a more random distribution. The 
basic equation of beans is shown as follows: 

[ ], if [ ] is a father bean
[ ]

Distribution( ) f [ ] is not a father beanmb

X i X i
X i

X A X i


   ，i

    （1） 

 X[i] is the position of bean i and 
mbX  is the position of 

father bean of bean i. Parameter A can be set according to the 
range of problem to be resolved. Distribution(

mbX ) is the 

distribution function of father bean in order to get the 
positions of its descendants.  
Normal distribution is an important family of continuous 
probability distributions, which has been applied in many 
fields [14]. The importance of the normal distribution as a 
model of quantitative phenomena in the natural is due in part 
to the central limit theorem. It is far more common to 
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describe a normal distribution by its mean μ and variance 
2 . 

The probability density function in a convenient standard 
form is shown as: 

2 2( ) (2 )1
( ) , 

2
Xf X e X 

 
      .        （2） 

Many measurements, ranging from psychological to physical 
phenomena can be approximated, to varying degrees, by the 
normal distribution. While the mechanisms underlying these 
phenomena are often unknown, the use of the normal model 
can be theoretically justified by assuming that many small, 
independent effects are additively contributing to each 
observation. So in this paper, we also adopt normal 
distributions as the distribution functions of beans. The mean 
and variance of every distribution functions are set according 
to the fitness of father beans. 
In addition, the distribution of some beans does not follow 
the equation discussed above. According to the distribution 
of their father beans, they choose a random position in order 
to reinforce the global optimization performance.  
When the descendant beans finish locating, their fitness 
values will be evaluated. The beans with the most optimal 
fitness value will be selected as the candidates of next 
generation father beans. The father beans candidates should 
also satisfy the condition that the distance between every two 
father beans must be larger than the distance threshold. This 
condition assures that the father beans can have a fine 
distribution to avoid premature convergence and to enhance 
the performance of global optimization. If all the conditions 
can be satisfied, then this descendant bean can be set as the 
next generation father bean. The flow chart of father beans 
selection is shown in Fig.1. 

 

Select a bean with the optimal
fitness value as No.1 father bean

Select the bean with the optimal fitness 
value from the remnant seeds

Judge the the approximate 
degree between it and father beans been selected

（use Euclidean Distance）

Select it as a father bean

Maxmun number of father 
beans is met 

end

More than the threshold

Less than the threshold

Yes

No

start

 
 

Fig.1 the Selection of Father Beans 

According to the beans evolution equations, beans are sown 
in the radiate area of their father beans in each generation. 
Evolution will go on until the desired optimization result is 
obtained or the No.1 father bean (the optimal bean in all 
generations) does not change anymore. The flow chart of the 
Algorithm is shown in Fig.2. 

 

Population of beans 
initialization

Father beans 
selection

The termination condition of 
the algorithm is met 

End

Yes

No

Start

Population update

Calculate the fitness 
value of beans

 
 

Fig.2 the Flow Chart of BOA 
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3. BOA's Markov Model and Convergence Analysis 

3.1. Convergence criterion  

BOA is a kind of stochastic optimization algorithms. Thus, 
we can use the theory about how stochastic algorithm can 
converge to the global optimization solution with 
probability one. We use the theory which has been proved to 
be right by Solis and Wets [15]. Here, we list their main 
conclusions without proof. 
We make the following settings: A  is the feasible solution 
space. f  is The fitness function. , fA  is the optimization 

problem. D is the optimization algorithm.   is the solution 

which has been searched by the algorithm D .  If the result 

of k-th iteration is kx , the result of the next iteration is 

1 ( ,  )k kx D x   .  

The infimum of feasible solution space in the Lebesgue 
measure space is set as followings: 

inf{ | ( | ( ) ) 0}t v x f x t    A 

( )v X  is the Lebesgue measure on set B. ,MR  is the region 

contains the optimal solutions ： 

,

{ | ( ) },              is finite

{ | ( ) },                -M

x f x
R

x f x C

  


  
      

A

A


Thereinto, 0  ，C  is a large positive number. 

(Hypothesis 1) D s.t. ｛ƒ (xk)｝ 0k

  nonincreasing 

( ( , )) ( )f D x f x    A 

  ( ( , )) min{ ( ), ( )}f D x f x f  

(Hypothesis 2) Zero probability of repeatedly missing any 
positive-volume subset of S. 

 B A ， . . ( ) 0s t v B 
0

(1 ( )) 0k
k

u




  B 

B  is the σ-algebra of subset of Rn. ( )ku B  is a probability 

measure of the result of k-th iteration on set B .  
Theorem 1 (Global Search Convergence Theorem). 

Suppose ƒ measurable, nA R  measurable, (Hypothesis 

1), (Hypothesis 2), and ｛ xk ｝ 0k

  generated by the 

algorithm. Then 

,( ) 1lim k M
k

P x R


  

,( )k MP x R  is the probability that kx  belongs to Rε. 

 

3.2. The Mathematical definition of basic concepts of 
BOA  

Definition 1 (Beans’ individual states and individual state 
space) The individual states of beans are composed of the 
locations of individual bean and its father beans (they are 
denoted by ps). It is denoted by 

( , )u x ps , x A , ps A and A  is the feasible solution 

space. The set which is composed of all possible individual 
states of the beans is called individual state space. It is 
denoted by { ( , ) , , ( ) ( )}U u x ps x ps f ps f x    A A . 

Definition 2 (Population state and population state space) 
Population state, which is denoted by 

1 2( , ,..., , , )ns u u u ps pb , is composed of all the individual 

states of beans, the states of the parent beans  and the best 
individual state of the population (they are denoted by pb). 
The beans are sorted according to their fitness value in 
every iterations of BOA. Therefore, 

( ) ( ) ( ),1if pb f ps f x i n    . 
The population state space of BOA is the set of all possible 
populations. It is denoted by 

1 2{ ( , ,..., , , ) | ,1 }n iS s u u u ps pb u U i n      and n is the 
number of individual beans in a population. 

3.3. The Markov model of BOA  

Definition 3 (individual state transition of BOA) For 

iu U  and ju U   in BOA, individual state transition is 

denoted by ( )u i jT u u which means the individual state iu  

transferred to ju by one step. 

Theorem 2 In BOA, the probability of the individual state 

1u  transferred to 2u by one step which is denoted by 

1 2( ( ) )uP T u u  can be expressed as formula (5).   

Proof: Based on definition 3, we can get that: 

1 2 1 2 1 2( ( ) ) ( )* ( )up T u u p x x p ps ps                   (5) 

Based on formula (1) and formula (2) of BOA, we can get 
the formula about 

1 2( )p x x  and 
1 2( )p ps ps . 

2 2
2 1( ) (2 )

1 1 trans

1 2

1 1 trans

1
     ( ) ( ) & &        

2
( )            

1
                          ( ) ( ) & &  

| |

x ps
threshold

threshold

e f x f ps P P

P x x

f x f ps P P



 
   

  

  
 X



2 1
1 2

2 1

1 ( ) ( )
( )

( ) (

          f ps f ps
P ps ps

0          f ps f ps )  


   

                  (7) 
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In the above formula, 1 2ps   psand  are the states of their 

father beans. transP  is a random number between 0 and 1. 

thresholdP  is the threshold of population variation. Because 

ps  and i ix  are multi-dimensional data, the sign of plus and 

minus indicates the vector addition and subtraction. 
Absolute value denotes the volume of hyperspace cubic. 
That is to say, | |X  denotes the size of the state space of 

beans. 
Definition 4 (Population state transition) For 

1 2( , ,..., , )i i i is u u ps pb S,    1 2( , ,...,ps ,pb)j j j js u u S    in 

BOA, population state transition is denoted by 
( )s i jT s s which means the population state is  transferred 

to js by one step. 

Theorem 3 In BOA, the probability of the population state 

is  transferred to js by one step which is denoted by 

( ( ) )s i jP T s s  can be expressed as formula (8). 

1

( ( ) ) ( ( ) )
N

s i j u ik jk
k

P T s s P T u u


   

Proof: Because population 1 2( , ,..., , )i i i is u u ps pb  should 

transferred to population 1 2( , ,..., , )j j j js u u ps pb  by one 

step, the states of all the beans, include all the parent beans, 
should transferred to the corresponding states in js . 

According to the Population states update mechanism of 
BOA, the positions of all the beans will change at each 
iterations of the algorithm. So we can get that: 

1 1, 2 2,( ) ( ) ..., ( )u i j u i j u in jnT u u T u u T u u   

1 2 2

1

( ( ) )= ( ( ) ) ( ( ) )... ( ( ) )

                      = ( ( ) )

s i j u i u i j u iN jN

N

u ik jk
k

P T s s P T u u P T u u P T u u

P T u u


   


Concluded. 

Theorem 4 In BOA, the sequence of population state 
{ ( ) : 0}S t t   is finite homogeneous Markov chain. 

Proof: In the bean state space u, the locations x of the beans 

are finite. So the bean state space u is finite. Every 
population s is composed of n beans. The number of psi  

and pb  is obviously finite. Therefore, the population state 

space S  is finite, that is to say, the sequence of population 
state { ( ) : 0}S t t   is finite. According to Theorem 

3, ( 1) , ( )S t S t    S S , its transfer probability 

( ( ( 1)) ( ))sP T S t S t   is determined by the probability of 

individual state transition 
, 1 ,

1

( ( ) )
n

u i t i t
i

P T u u


 . Based on 

Theorem 2, the probability of individual state transition is 

determined by the locations of individual bean and its father 
beans: 

1( )t tP x x  and
1( )t tP ps ps  .

1( )t tP x x   and 

1( )t tP ps ps   are determined by 1tx  , 1tps  . So, 

1( ( ) )s t tP T S S   is only determined by the individual states 

of beans at time t-1. So the sequence of population state 
{ ( ) : 0}S t t   is finite Markov chain.  

We can see from the formula (6) and formula (7) that 

1( )t tP x x   and 
1( )t tP ps ps   are nothing to do with time 

t-1. That is to say, 
1( ( ) )u t tP T u u   has no relationship with 

time t-1. So { ( ) : 0}S t t   is homogeneous. 

So the sequence of population state { ( ) : 0}S t t   is finite 
homogeneous Markov chain. 

3.4. Convergences Analysis of BOA 

For the convenience of analysis, we first analyze the BOA 
contains only one population. So in the following analysis, 
pb ps . 

Definition 5 (the set of the optimal state of the individual) 
Let’s Suppose that pb  is the global optimal solution of the 

optimization problem , fA . The Set of the optimal state of 

the individual is { ( , ) | ( ) ( ), }B u x ps f ps f pb u U    . 

B U . 

Theorem 5 B is a closed set on the individual state space U .  

Proof: iU B  , jU B  . According to Theorem 2, 

( ( ) ) ( )* ( )u i j i j i jp T u u p x x p p p    . 

Because iU B , jU B ， according to Definition 

5, ( ) ( ) ( ) inf( ( )),j if ps f ps f pb f a a A    .According to 

formula (7), 

1
1

1

1           (ps ) (ps )
(ps ps )

0          (ps ) (ps )  
t t

t t
t t

f f
P

f f






   

.  

We can get that ( ) 0i jp p p  . That is to say 

that ( ( ) ) 0u i jp T u u  . So B is a closed set on the 

individual state space U . 
Definition 6 (Set of the optimal state of the population) 
Let’s Suppose that pb  is the global optimal solution of the 

optimization problem , fA . The Set of the optimal state of 

the population is 1 2{( , ,... ) | ,1 }n iF u u u u B i n     . 

Theorem 6  For the sequence of population 
state{ ( ) : 0}S t t  , F is a closed set on the population state 

space S .   
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Proof: is F  , js F  . According to Theorem 3,  

1

( ( ) ) ( ( ) )
N

s j i u jn in
n

P T S S P T u u


   . 

If ( )s j iT S S  is true, there must be: 

( ) , , ,1u jn in jn inT u u u B u B n N     . 

According to Theorem 5, B is a closed set on the individual 

state space U . Then ( ( ) ) 0u jn inp T u u  . That is to say, 

( ( ) ) 0s j iP T S S  . So F is a closed set on the population 

state space S . 
According to Definition 5, 

( ) ( ) ( ) inf( ( )),j if ps f ps f pb f a a A    . According to 

formula (7), 

1
1

1

1 ( ) ( )
( )

( ) (
t t

t t
t t

           f ps f ps
P ps ps

0          f ps f ps )  






   

. 

We can get that ( ) 0i jp p p  . That is to say that  

( ( ) ) 0u i jp T u u  . 

So B is a closed set on the individual state space U . 
 
Theorem 7  There is no closed set G in the population state 
space, which makes F G   . 

Proof: The apagoge will be used to prove this theorem. Let’s 
suppose that there is a closed set G in the population state 
space, which can make F G   .  

Firstly, we hypothesize ( , ,... , )i i i i iS u u u u F   , 

1 2( , ,..., , )j j j j jS u u ps ps G   , ( )if u pb , 

( ) ( )j if ps f u . l  is the transfer step. l ， 1l  ，

according to Chapman-Kolmogorov equation, the 
probability of the population state js  transferred to is by l  

steps is : 

1 1 2 1

1 1

, ... ( ( ) ) ( ( ) )... ( ( ) )
j i l

r rl

l
S S s j r s r r s r i

S S

P P T S S P T S S P T S S



 

    
S S . 

If 1l  , there must be ( ( ) )s j iP T S S  in the expression of 

,j i

l
S SP . According to the Theorem 3,  

1

( ( ) ) ( ( ) )
N

s j i u jn in
n

P T S S P T u u


   . 

 Because   i js F and s F  , that means every individuals 

transferred from current status to the optimal status. So 

1

( ( ) ) 1 0
N

u jn in
n

P T u u


   , that is to say, , 0
i j

l
S SP  . Therefore a 

contradiction occurs between the conclusion and the 
premise . So the  set G  is not a closed set. Theorem 7 is 
proved. 
 
Theorem 8 [16] Assume that there is a closed set C  in the 
Markov chain and there is no other closed set D which 
satisfies that C D   . So , 

( )         

( ) 0        

lim

lim

n j
n

n
n

P X j j C

P X j j C






  



  




Theorem 9 In BOA, when the number of iteration goes to 
infinity, the sequence of population state { ( ) : 0}S t t   must 
enter the set of the optimal state of the population. 
Proof:  according to Theorem 6, Theorem 7 and Theorem 8, 
this conclusion can be got. 
Theorem 10 BOA will converge to the global optimal 
solution with probability 1. 
Proof: In BOA, the best position in the population is 
retained at every iterations because the No.1 father bean is 
always the bean with the best fitness value. So algorithm 
satisfies the convergence condition (Hypothesis 1) in the 
convergence criterion. 
According to theorem 9, the probability that BOA can not 
find the best solution in approximate infinite search 
iterations is 0. That is to say, BOA satisfies the convergence 
condition (Hypothesis 2) in the convergence criterion.  
Therefore, according to Global Search Convergence 
Theorem (Theorem 1), BOA will converge to the global 
optimal solution with probability 1. 
In the above, we just analysis the BOA with one group. If 
groups are one more, at least the group which contains the 
No.1 parent bean can be analyzed like above. So the BOA 
with one more group will also converge to the global optimal 
solution with probability 1.  

4. Conclusions  

BOA is conceptually simple and convenient to handle a 
variety of optimization problems, which makes it 
particularly attractive for real world applications. 
In this paper, the Markov chain model of BOA is 
established and the analysis of the Markov chain is made. 
Then we prove that BOA satisfies the two convergence 
conditions of the random search algorithms and it is a global 
convergence algorithm. 
One of the most significant merits of BOA is that it provides 
an open framework to utilize research results of transmission 
mode of beans (seeds) to tackle hard optimization problems. 
After millions even billions of years of natural selection, 
adaptive behavior of plant distribution, especially in complex 
natural environments, has been verified as excellent by 
evolution. Research on the transmission mode of beans 
(seeds) provides many searching strategies to be 
incorporated into BOA for solving difficult optimization 
problems. This article is a macro-level analysis of BOA 
about the state transition conditions and convergence 

Co-published by Atlantis Press and Taylor & Francis 
                      Copyright: the authors 
                                      614



behavior, more micro-level analysis of BOA about 
population distribution by evolution need to be studied 
further in the future. 
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