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Abstract

This paper presents a novel method on building relationship between the vision features of the terrain
images and the terrain traversability which manifests the difficulty of field robot traveling across one
terrain. Vision features of the image are extracted based on color and texture. The travesability is labeled
with the relative vibration. The support vector machine regression method is adopted to build up the inner
relationship between them. In order to avoid the over-learning during training,k-fold method is used
and average mean square error is defined as the target minimized to get the optimal parameters based
on parameter space grid method. For the traveling smoothness of field robot, the original traversability
prediction is transformed to computed traversability prediction based on different initial sub-regions. The
optimal path is given by minimizing the sum of computed traversability prediction of all sub-regions in
each path. Three experiments are discussed to demonstrate the effectiveness and efficiency of the method
mentioned in this paper.
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1. Introduction

Traversability, which means the difficultly of field
robot traveling across one region, is a description
of traveling feature for one type of terrain. And
traversability prediction is a much more important
consideration for the robotics application in the field
such as planet exploration, volcano detection, search
and rescue work and so on. This prediction plays an
unreplaced role in the optimization of path planning

for the robots, and consideration of traversability
prediction is actually to guide the robots to travel in
an unstructured and dangerous terrain environment
safely.

In order to evaluate the level of difficulty asso-
ciated with the traversal of the terrain, Molino de-
velops methods for quantifying the difficulty a robot
would encounter traversing such a region of rough
terrain. Towards this, three traversability metrics de-
scribing rough terrain robot mobility are developed1.
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Seraji introduced the concept of traversability in-
dex for the first time which is used for planetary
rover 2. In paper3, the traversability measure in
a fuzzy logic approach has been developed based
on terrain qualities including roughness, slope, dis-
continuity and hardness. Furthermore, several re-
searchers develop the concepts of traversability from
other sides. Al-Milli suggests a model with the inter-
action between the vehicle and the terrain to present
the difficulty level of traveling across this terrain
and the mode is used in predicting track forces
on such terrains4. Brooks analyzes the robot’s
wheel/suspension structure and uses it to distin-
guish between different terrain the robot is travers-
ing 5. Ye suggests a traversability field histogram
method to transform a local terrain map surrounding
the robot’s momentary position into a traversabil-
ity map by extracting the slope and roughness of
a terrain patch through least-squares plane fitting6.
With the developing of embedded computers, it be-
comes possible to process the vision information
real time. Braun adopts a stereo vision based terrain
traversability estimation method for off-road mo-
bile robots. The method models surrounding ter-
rain using either sloped planes or a digital eleva-
tion model, based on the availability of suitable in-
put data7. Howard gives novel techniques for real-
time terrain characterization and assessment of ter-
rain traversability for a field mobile robot using a
vision system and artificial neural networks. The
key terrain traversability characteristics are identi-
fied as roughness, slope, discontinuity, and hard-
ness8. The group of Kim describes a novel on-line
learning method which can make predictions of the
traversability properties of complex terrain based on
autonomous training data collection which exploits
the robot’s experience in navigating its environment
to train classifiers without human intervention9 10.
For the on-line learning method, the training data
collected around the robot, and data focus on few
types of local terrains and the learning which is lack
of information may influence the performance of the
robot.

In this paper, the target is to develop the method
of building relationship between the vision features
of the terrain images and the terrain traversabil-

ity. An ability of taversability prediction with
wide knowledge background is expected, this abil-
ity would be used in the path planning and the path
optimization. The color and texture features, with
which it significantly distinguishes from others, are
extracted to form the feature set of one type of ter-
rain, and the relative vibration is used as judgment
of traveling difficulty on the terrain. The vision fea-
tures and relative vibration are received as the input
vector and label of SVM regression model which
is widely used in self-learning and artificial intelli-
gence application in engineering11 12. Getting the
trained SVM regression function, the image of the
terrain in front of field robot is linearly divided into
several sub-regions where the color and texture fea-
tures are extracted from. The traversability of ev-
ery sub-region described with relative vibration will
calculated under the SVM regression function us-
ing the vision features. We give a novel method
for path planning considering the traveling smooth-
ness of field robot, through finding the sub-region
with minimal traversability in each row. And the
optimization of this path planning depends on mini-
mizing the traversability sum of all the sub-region in
each possible path.

The rest of this paper is organized as follows: In
section 2, we give a short introduction of SVM re-
gression model. In section 3, we give the description
of vision features extraction and relative vibration.
And the method of path plan and its optimization
are given. Section 4 presents our experiment results,
and section 5 concludes the paper and suggests fu-
ture works.

2. SVM Model

Support vector machine (SVM) belongs to kernel
method family. It is also one type of neural learning
method. The purpose of developing a SVM model is
the identification of the relationship between the se-
lected features input data and result output data. The
key idea of SVM is to transfer the nonlinear problem
to some high dimensional feature space where could
find the approximate linear relationship between in-
puts and targets, through the first mapping method
based on kernel function13 14.
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2.1. SVM Regression

The intelligent systems for regression estimation can
be described as follows.

f (x) = (w ·Φ(x))+b (1)

Given the training sample points with input data
vectors and output results(xi,yi) ∈ R

n × R, i =
1,2, ...,m, a function f : Rn → R is needed to cor-
rectly predict blind examples generated from the
same underlying probability distribution as the train-
ing sample points. The general SVM regression
function take the formula wherew∈ R

n is the coef-
ficient matrix,b∈ R andΦ(·) denotes a non-linear
transformation fromRn to higher dimensional fea-
ture space. Our target is to minimize the regression
risk with the fixed value ofw andb. The optimal re-
gression function is developed with finding the min-
imum of the followings

min
1
2
‖w‖2+C

m

∑
i

(ξi +ξ ∗
i )

su ject to





yi −w ·Φ(xi)−b6 ε +ξi

w ·Φ(xi)+b−yi 6 ε +ξ ∗
i

ξi,ξ ∗
i > 0

(2)

C is balance coefficient andξi,ξ ∗
i are the slack vari-

ables representing upper and lower constants of the
system outputs. And theε-insensitiveness.

For the numerical computing, the Lagrange func-
tion is adopted to build the Lagrange function with
saddle point condition

L(w,ξi,ξ ∗
i ) =

1
2
‖w‖2+C

m

∑
i

(ξi +ξ ∗
i )

−
m

∑
i=1

αi(ε +ξi −yi +(w ·Φ(xi))+b)

−
m

∑
i=1

α∗
i (ε +ξ ∗

i −yi − (w ·Φ(xi))−b)

−
m

∑
i=1

(ηiξi +η∗
i ξ ∗

i )

(3)
The partial derivative values ofw, b, ξi , ξ ∗

i should
equal to zero. Indexed in Eq. 2, the loss function

is formulated as follow and the optimization is re-
ceived through simultaneously minimizing the re-
gression function

min
1
2

m

∑
i, j=1

(α∗
i −αi)(α∗

j −α j)(Φ(xi) ·Φ(x j))

+
m

∑
i=1

α∗
i (ε +yi)+

m

∑
i=1

αi(ε −yi)

su ject to





m

∑
i=1

(αi −αi
∗) = 0

αi ,αi
∗ ∈ [0,C]

(4)

(·) is the inner product andε is the value of insen-
sitive coefficient.αi andα∗

i are the Lagrange multi-
pliers concerned toξi andξ ∗

i . For the convex opti-
mization, we could find that

w=
m

∑
i=1

(αi −αi
∗)xi (5)

Depending on the KKT situation, theαi andαi
∗ are

equal to 0 which are referred to the sample points
in the insensitive area. And the sample pointsxi
out of insensitive area, which means thatαi 6= 0 and
αi

∗ 6= 0, are the support vectors.
And the final regression function takes the form

f (x) = ∑
i∈SV

(αi −α∗
i )(Φ(xi) ·Φ(x))+b (6)

whereSV is the set of support vectors. And the

b=
1
m

m

∑
i=1

(yi − (w ·Φ(xi))− ε) (7)

2.2. Kernel Function

Above mentionedΦ(·), in Eq. 1, denotes a non-
linear transformation fromRn to higher dimensional
feature space. However, the key point(Φ(·) ·Φ(·))
in Eq. 5 is hard to calculate its numerical solution.
Fortunately, the kernel function method is adopted
to solve this problem:k(·, ·) = (Φ(·) ·Φ(·)). So

f (x) = ∑
i∈SV

(αi −α∗
i )k(xi ,x)+b (8)
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The kernel function is the type of functions which
respect Mercer condition15. There are three com-
monly used kernels and they are
1) Polynomial kernel

k(x,y) = (x·y+1)p (9)

2) Radial basis function

k(x,y) = exp(−
‖x−y‖2

2σ2 ) (10)

3) Sigmoid function

k(x,y) = tanh(v(x·y)+c) (11)

2.3. Model Parameters

The performance of the SVM regression depends on
the model parametersC and ε , also the parameter
of kernel function. Until now, there is no precise
method to find the optimal solutions of the values
of these parameters. The common method is that
building a parameter space with all the alternative
parameters of the model and finding the optimiza-
tion in this space with the target of minimizing the
error between the output results in training points
and the calculated results of the regression function.
And the process of optimization is based on the grid
method in the parameter space.

2.4. Training and Testing

Once chosen the model parameters, all the training
data should be trained to build up the SVM regres-
sion function. In this process, the support vectors
would be picked up and the parameters concerned to
these support vectors would be fixed. After the train-
ing, the regression could give the prediction with the
test points that have the same structure with those
input vectors in training sample points. And the ac-
curacy of this prediction is defined in terms of mean
squared error (MSE) and relative mean squared error
(RSE) which are calculated as follows

MSE=
1
m

m

∑
i=1

(y∗i −yi)
2

RSE=
1
m

m

∑
i=1

(
y∗i −yi

yi
)2

(12)

where m is the number of the test points,yi is the
output result in training point andy∗i is the predic-
tion result under the regression function.

3. Traversability Prediction Method

Considering the human walking experience, the im-
age of the region in front is captured by eyes and the
“features” of this region are extracted and the deci-
sion is made based on the relationship, which has
been built former, between these “features” and the
traveling difficulty of that region. Immigrating this
method, we actually hope to find the relationship be-
tween the traversability of the ground and vision fea-
tures extracted from the image of the terrain.

3.1. Vision Features Extraction

The color and texture features are thought significant
for the images captured by the onboard camera. The
entries of the feature representation are the follow-
ing:
1) The average valuer of the red content in the im-
age.
2) The average valueg of the green content in the
image.
3) The average valueb of the blue content in the im-
age.
4) The meanm of the gray image. The feature is a
measurement of average intensity.

M = ∑
i∈H

zi p(zi) (13)

5) The standard deviationσ of the gray image. The
feature is a measurement of average contrast.

σ =
√

∑
i∈H

(zi −m)2 p(zi) (14)

6) The smoothnessR of the gray image. The fea-
ture is a measurement of the relative smoothness of
the intensity in a region , andR is 0 for a region of
constant intensity and approaches 1 for regions with
large excursions in the values of its intensity levels.

R=

∑
i∈H

(zi −m)2 p(zi)

1+ ∑
i∈H

(zi −m)2 p(zi)
(15)
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7) The third momentµ3. The feature is a mea-
surement of the skewness of a histogram.µ3 is 0
for symmetric histograms, positive by histograms
skewed to the right, about the mean, and negative
for histograms skewed to the left.

µ3 = ∑
i∈H

(zi −m)3 p(zi) (16)

8) The uniformityU. The feature is a measurement
of uniformity of intensity histogram and is the max-
imum when all the gray levels are equal.

U = ∑
i∈H

p2 (zi) (17)

9) The entropye. The feature is a measurement of
randomness for the all gray levels of the intensity
histogram.

e=− ∑
i∈H

p(zi) log2 p(zi) (18)

In Eq. 13-18,H is the intensity levels,zi is random
variable indicating intensity, andp(zi) is histogram
of the intensity levels. Using these nine features, we
create the training and test vectorv of to describe the
feature information of each image.

v =
(

r g b M σ R µ3 U e
)T
(19)

3.2. Traversability Label

For describing the traversability of the terrain where
the robot covers, standard deviations of angular ac-
celerations of roll and pitch are adopted. Shown in
Fig. 1,ϕ is the roll andθ is the pitch. So the vibra-
tion vector with the meaning of standard deviation
of angular acceleration is given as follow

L =
1
N

( √
N
∑

i=1

(
ϕ̈i − ϕ̈

)2

√
N
∑

i=1

(
θ̈i − θ̈

)2
)

(20)
whereN is sample number.

Fig. 1. The coordinate of the robot.

The traversabilityT represents the difficulty that
robot pass through the region. And the relative vi-
bration which is the relative vibration properties in
one type of terrain comparing to that on flat ground.
It is adopted as traversability label defined in the fol-
lowing form

Ti =
‖Li‖−

∥∥L f
∥∥

‖Li‖
(21)

where Ti is the traversability description ofith re-
gion,Li andL f are the vibration vectors inith region
and flat ground.‖·‖ is 2-normal function.

3.3. SVM Regression Based Prediction

In order to build up the vision feature training set,
the picture of the typical terrain is taken and the
training vector in Eq. 19 is extracted asv. And
then the field robot should travel cross the ground
of this terrain, the Inertia Measurement Unit (IMU)
on board would record the roll and pitch angular ac-
celerations data and form the traversability descrip-
tion T under Eq. 21. Repeating this process, we
should get the training points(vi ,Ti), i = 1,2, ...,m.
And the SVM regression function could be trained
using these points.
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Fig. 2. The sub-regions division.

When the field robot runs after the SVM regres-
sion function is trained, the camera located on robot
would capture the image of the ground in front. The
image should be zoomed to suitable processing size
and the noise points in image could be filtered with
Gauss basis. And then, the image is linearly divided
into K ×K sub-regions, shown in Fig. 2. Each sub-
region is the testing image unit and the vision fea-
tures are extracted under Eq. 19 and the traversabil-
ity prediction of this sub-region isT∗

i .
The general idea about the path planning sig-

nificantly is a connected line with the optimal sub-
regions which have the minimal traversability pre-
diction in each row. But based on originalT∗

i , the
optimal sub-regions may be discrete in the whole
region and that means the path would be a dramat-
ically fluctuating curve which the robot hardly fol-
lows with. Considering the traveling smoothness of
the field robot, we give a novel method for solv-
ing this problem that developing the distance coef-
ficients which values are depending on the distance
between the sub-region and the optimal sub-region
in the last row. So the optimal sub-region in(i+1)th
row is

min
j

S(i +1, j | i) ·T∗
i+1, j (22)

whereT̃i+1, j = S(i + 1, j | i)T∗
i+1, j is the computed

traversability prediction. Because of the distance
coefficients added in the system, the optimal sub-
regions could be different when we pick different
initial sub-regions. In another word, we could find
several pathes depending on different initial points,
shown in Fig. 3.

Fig. 3. The pathes from different initial points.

Contrasting these pathes, we absolutely hope
to find an optimal path with the minimal total
traversability and the optimization of path planning
is the minimizing the computed traversability pre-
diction sum of all the sub-regions in each path

min
τ∈path

[
K

∑
i=1

(min
j

S(i +1, j | i,τ) ·T∗
i+1, j)] (23)

4. Experimental Results

In the previous section, we give a novel method
for traversability prediction based on vision fea-
tures using support vector machine regression. The
experiments described in this section are used to
demonstrate the effectiveness and performance of
this method. The test platform is an field robot our-
selves designed with a HD camera and an Crossbow
VG400 Inertial Measurement Unit (IMU)16, shown
in Fig. 4, and the SVM implementation in the exper-
iments is referred to the LIBSVM software17.

Fig. 4. The field robot used in experiments.
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4.1. Data Preparing

The robot shown in Fig. 4 is requested to travel
across different terrain shown in Fig. 5.

Fig. 5. The part types of training terrain in experiments.

The camera on board takes the pictures of the ter-
rain and the IMU measures the angular acceleration
during the traveling. And the vision features are ex-
tracted and traversability label are calculated with
the above-mentioned methods. Then training points
are formed like(vi ,Ti), i ∈ 1,2, ...300. And the quan-
tity of the points is 300, parts of the training points
are shown in Table 1.

4.2. Parameters Selecting of Model

In practice, an radial basis function (RBF) kernel
with reasonable width is good initial trail. In the
experiments, the RBF kernel is considered. And
the parameters that need to been fixed areσ ,ε ,C,
and the optimal values should be searched in space
(σ ,ε ,C).

Consideringε , the insensitive value of regression
function, the lessε means more notice on the er-
ror between prediction output of regression function
and the traversability label. The continue decreas-
ing of ε will decrease the mean square error with the
increasing of support vectors even to all the training
points at last and with least MSE. But the model is
over-learned that means the new testing points out of
training points will hardly get the prediction with the
same small level MSE. In another word, the trained
regression function has a bad generalization ability.

A k-fold method is used to solve the general-
ization problem. The train points are divided into

k sub-points set which has 300/k points. Each set
is separately used as testing points and the rest is
training points set.k= 30 in our experiments. With
one parameter point(σ ,ε ,C), the regression func-
tion would be trained 30 times, and there are 30
MSE values of testing points. The average of these
MSE value is named AMSE.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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6
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Values of Epsilon
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11
x 10

−3

A
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S
E

MSE
AMSE

Fig. 6. The values of MSE and AMSE,σ = 0.007,C = 5.

The curves shown in Fig. 6 present that the MSE
decreases whenε decreases, but the AMSE is the
lowest atε = 0.03,0.04 and it increases back with
smallerε . The AMSE is better than MSE to describe
the performance of the parameter point. So the opti-
mization of parameters is to minimize the AMSE in
parameter space.

0
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0.04
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0.08
0.10

0

5

10
0.0085

0.009

0.0095

0.01

0.0105

0.011

0.0115

 

EpsilonC 

A
M

S
E

9

9.5

10

10.5

x 10
−3

Fig. 7. The values of AMSE based onC,ε, whenσ = 0.007.

Through the approximate calculation, the opti-
mal values of parameters focus on the fields that
σ ∈ [0.001,0.10], ε ∈ [0.01,0.10], C ∈ [1,10]. The
grid method, that calculating the AMSE at each
point in parameter space, is used to find the op-
timal values. The minimal AMSE is at the point
(σ ,ε ,C) = (0.007,0.03,6), the final optimal param-
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Table1. Parts of the training points.

No. M σ R µ3 U e r g b T
1 75.38 34.02 0.0175 0.5150 0.0093 6.975 91.56 69.69 62.35 0.5188
2 89.78 40.42 0.0245 0.5963 0.0078 7.240 104.70 84.37 77.11 0.5239
3 101.36 33.28 0.0167 0.4243 0.0094 6.988 119.50 94.88 85.80 0.4023
4 104.55 33.71 0.0172 0.3948 0.0091 7.019 121.44 98.72 90.76 0.3944
5 90.22 32.02 0.0156 0.3877 0.0100 6.918 110.45 83.36 72.22 0.4187
6 76.89 30.42 0.0140 0.4784 0.0113 6.787 97.28 69.67 58.53 0.4327
7 64.34 23.33 0.0083 0.1637 0.0135 6.479 83.14 58.55 46.23 0.4904
8 56.33 22.24 0.0075 0.1471 0.0143 6.400 71.19 51.79 41.34 0.5166
9 50.41 22.48 0.0077 0.2091 0.0147 6.361 63.48 45.98 36.33 0.6103
10 51.29 26.50 0.0107 0.1527 0.0112 6.642 58.19 48.48 43.31 0.7515
11 109.91 37.12 0.0208 0.3735 0.0082 7.174 132.05 102.17 92.09 0.5318
12 104.16 38.92 0.0229 0.7644 0.0086 7.163 135.43 93.65 78.58 0.5589
13 110.08 39.74 0.0237 0.8405 0.0086 7.179 140.45 99.43 84.51 0.5470
14 118.42 43.80 0.0287 1.0210 0.0077 7.320 143.57 108.50 96.09 0.5307
15 109.04 37.57 0.0212 0.6631 0.0088 7.121 135.53 99.60 84.39 0.4489
16 141.49 25.02 0.0095 -0.0765 0.0131 6.594 141.10 140.79 142.73 0.4315
17 81.93 30.04 0.0137 0.3595 0.0108 6.812 107.87 73.09 57.98 0.4569
18 76.20 35.52 0.0190 0.9659 0.0102 6.932 97.86 69.84 57.65 0.5880
19 72.30 32.45 0.0159 0.5183 0.0099 6.901 89.19 66.98 56.28 0.5967
20 62.45 28.11 0.0120 0.3810 0.0122 6.660 71.66 59.89 46.81 0.6902
... ... ... ... ... ... ... ... ... ... ....

eters, and the distribution of AMSE at this point is
shownin Fig. 7.

4.3. Prediction

With the training points and the optimal parame-
ters mentioned above, the SVM regression func-
tion is trained. We take three typical terrain for ex-
amples to present the effectiveness. The image in
front of robot is divided into 5×5. The coefficient
S(i + 1, j | i) = 1+ 0.04

∥∥Rsub(i +1, j)−R∗
sub(i)

∥∥,
whereRsub is the sub-region in division,R∗

sub is that
has the minimal traversability prediction in each row
and‖·‖ is the distance between two sub-regions.

4.3.1. Experiment 1

The first experiment is the terrain with gravel,rock
and soil. The prediction difficulty for this terrain is
to identify the gravel, rock and soil that have almost
the same color but different texture. The image of
this terrain is shown in Fig. 8.

Fig. 8. The image of the terrain in the experiment 1.

After vision features extraction, the feature vec-
tor is sent to the trained regression function as input.
The output of function, which is original traversabil-
ity prediction is shown in Fig. 9. We could find that
this prediction is just based on the nature personal-
ize of terrain without consideration of the traveling
smoothness of the field robot.
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Fig. 9. The original traversability prediction of the experi-
ment1.
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Fig. 10. TheT̃ distribution of optimal path of the experi-
ment 1.

With the method in Eq. 22, we calculate thẽT
and find the pathes based on different initial sub-
regions. And the optimal path is given under the
method in Eq. 23. ThẽT distribution of the optimal
path is shown in Fig. 10.
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Fig. 11. TheT̃ distribution of optimal path of the experi-
ment 1.

This final traversability prediction is mainly
based on the nature personalize: color and texture

of the terrain, and partly considered the traveling
smoothness of field robot. The optimal path is
shown in Fig. 11. This result almost coincides with
that is based on our former experience.

Fig. 12. The final optimal path for the experiment 1.

4.3.2. Experiment 2

Fig. 13. The image of the terrain in the experiment 2.

The terrain as the second experiment is with most
of typical obstacles such as stick, gravel,rock, ce-
ment block, soil and one piece of grass. The predic-
tion difficulty for this terrain is to identify the items
that have complex color feature and texture feature.
It is a composite testing of the method given in this
paper. The image of this terrain is shown in Fig. 12.
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Fig. 14. The original traversability prediction of the experi-
ment 2.

Extracting the vision features and forming the
feature vector, the original traversability prediction,
through the trained regression function, is given in
Fig. 13. This result is also without consideration of
traveling smoothness of field robot. We could find
that the sub-regions filled with large stick and rock
is correctly signed with large traversability predic-
tion values. The method is efficient for this complex
terrain.
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Fig. 15. TheT̃ distribution of optimal path of the experi-
ment 2.

With the methods in Eq. 22 and Eq. 23, we cal-
culate theT̃ and find the pathes based on different
initial sub-regions. And the optimal path is given.
The T̃ distribution of the optimal path is shown in
Fig. 14.

Fig. 16. The final optimal path for the experiment 2.

This final traversability prediction is also mainly
considered the nature personalize: color and tex-
ture of the terrain, and partly considered the trav-
eling smoothness of field robot. The optimal path
is shown in Fig. 15. This result basically coincides
with that is based on our former experience.

4.3.3. Experiment 3

Fig. 17. The image of the terrain in the experiment 3.

The third experiment, the terrain full of all vari-
ous sizes stick, rock and cement block. There is no
conspicuous possible optimal path based on obser-
vation. The prediction difficulty for this terrain is to
give traversability prediction based on seriously fa-
miliar color and texture features. It is a special test-
ing hoped to describe the method given in this paper
could give the more amazing result than observation
with eyes. The image of this terrain is shown in Fig.
16.
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Fig. 18. The original traversability prediction of the experi-
ment 3.

The original traversability prediction under the
trained SVM regression function is shown in Fig.
17. We could find that the sub-regions which have
little difference on observation could easily sepa-
rated from each other based on traversability predic-
tion distribution.
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Fig. 19. TheT̃ distribution of optimal path of the experi-
ment 3.

With the methods in Eq. 22 and Eq. 23, we cal-
culate theT̃ and find the pathes based on different
initial sub-regions. And the optimal path is given.
The T̃ distribution of the optimal path is shown in
Fig. 18.

Fig. 20. The final optimal path for the experiment 3.

The final optimal path is signed in Fig. 19. This
result, suggested by the method mentioned in this
paper, presents that the method based on vision fea-
tures using support vector machine regression could
well solve some problems of traversablity prediction
of the complex and unstructured terrain that is hardly
done with other methods.

4.3.4. Performance

Based on the testing results of above three experi-
ments, the performance is shown in Table 2.

Table 2. The performance of three experiments.

Experiment 1st 2nd 3rd

Height(pixels) 576 576 576
Width(pixels) 768 768 768
T̃ sum Path 1 2.418 2.693 2.872
T̃ sum Path 2 2.347 2.423 3.052
T̃ sum Path 3 2.579 2.497 3.399
T̃ sum Path 4 2.541 2.423 3.346
T̃ sum Path 5 2.153 2.254 3.481
Optimal Path 5 5 1
Features Extracted Time(s) 0.49 0.43 0.51
Prediction Time(s) 0.09 0.08 0.06

From the table, the size of the image in each ex-
periment is medium, avoiding the huge computing
with large image size and the lack of information
with small image size. ThẽT sums of the pathes
with different initial sub-regions are also shown in
table. TheT̃ sum of the optimal path has mani-
fest difference from others. The features extracted
time and prediction time present the real-time abil-
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ity. The sum of two types time is the total time that
the method cost during the whole calculating pro-
cess. The result shows us that this method given in
this paper could suggest the traversability prediction
with more than 1Hz.

5. Conclusion and Future Works

In this paper, we describe the works on building re-
lationship between the vision features of the ground
images and the terrain traversability. Immigrating
the thinking of human, we extract the vision fea-
tures as the personalize description of the terrain
based on color and texture features. The traves-
ability, which manifests the difficulty of field robot
traveling across one terrain, is labeled with the rel-
ative vibration measured with the Inertia Measure-
ment Unit. The support vector machine regression
method is adopted to build up the inner relation-
ship between them with the feature vector as input
and the traversability label as output. In order to
avoid the over-learning during the training of SVM
regression function,k-fold method is used and aver-
age mean square error is defined as the target func-
tion minimized. The optimal parameters are given
based on parameter space grid method. Consider-
ing the traveling smoothness of the field robot, the
original traversability prediction is transformed to
computed traversability prediction. The pathes with
different initial sub-regions is formed and the opti-
mal path is picked up following the minimal sum of
computed traversability prediction of all sub-regions
in this path. The three experiments are discussed to
demonstrate the effectiveness and efficiency of the
method mentioned in this paper.

Though this method is useful and efficient for the
traversability prediction, the color and texture fea-
tures are not the only features that could be used in
this prediction. We hope to do the research on other
type of vision features such as shape, shadow and
some abstract features in future. The relative vibra-
tion is a good description of traversability, and we
also hope to do lots of work to find other description
that even better. In future time, another research di-
rection will focus on shorting the feature extracted
time and prediction time and increasing the refresh

rate of traversability prediction.
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