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Abstract 

Tap changing operations of multiple transformers at a substation is a complex problem due to issues in controlling the 
parallel operations of the transformers involved, differences in manufacturer’s design and inaccuracy of the measures. In 
earlier work Artificial Neural Network (ANN) based tap changer controller has been developed to overcome these 
difficulties and improved results have been shown for systems based on two parallel transformers. This paper aims to 
improve the previously proposed ANN controller configuration to suit for multiple transformers. This new configuration 
of ANN controller uses ensemble technique and illustrates the operational efficiency. In particular, it has been shown that 
the ANN controller designed for two parallel transformers in this new technique will operate for multiple transformers. 
This means that if additional transformers (more than two) are installed in a substation to cope up with increased load, 
the ANN controller needs not to be redesigned/replaced. 

 

Keywords: ANN, Tap-changer, Ensemble, Transformers. 

1. Introduction 

In power transmission and distribution system, 
transformers with built-in on load tap changing 
mechanism play a vital role in maintaining voltage level 
by changing their tap position. In order to avoid 
complete failure of supply for any fault of one line or 
transformers, distribution transformers are arranged to 
operate in parallel using circuit breakers. This parallel 
operation of transformers has many other advantages 
such as maintenance and major repair works. In this 
paper, the transformers in the substation are assumed to 
be operating always in parallel. With the increasing 
demand of the electricity, substations are frequently 
upgraded.  This upgrading process usually requires the 
replacement or modification of many existing control 
circuits and devices to adjust with the new machinery. 
Also, the adjustment needs to cope with the variations 

of models due to different manufacturers. ANN based 
tap changer controller was developed Islam et al. (2005) 
to overcome the difficulties of existing controllers (E. T. 
Jauch, 2001, Okanik et al., 1999, J. H. Harlow, 1996, 
Thornley and Hiscock, 2001) in complex substation 
configuration. In the related earlier works (Islam, 2006, 
Islam et al., 2005) efficacy of ANN learning algorithm 
to address the issues, arising in regards to tape changer 
control, have been demonstrated. But, the focuses of 
these works have been on systems consisting of two 
transformers. This paper presents a new ANN based 
tap-changer control for more complex systems, 
consisting of multiple transformers. We show that the 
developed approach effectively deals with the complex 
tap changer operations for multiple transformers. So the 
new ANN based tap controller can be used to replace 
the hardware based circuits. Also the new controller 
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allows the flexibility of adding transformers to meet the 
increasing load demand without any replacement. 
 
The rest of the paper is organized as follows. Section 2 
briefly conveys the previous work. Section 3 highlights 
the structure of ANN based tap changer. Section 4 then 
discusses on the data used in our experiments, with the 
next section (Section 5) presenting the experimental 
results and discussion. Section 6 highlights the model 
selection and some implications of using tap controller 
with increased number of transformers. Section 7 
contains recommended changes in initial design of tap 
controller. Section 8 concludes the paper.  

2. Previous Relevant Work 

ANN has been used in applications of various domains 
including industrial operation (Saha et al., 1998), 
manufacturing (Kamruzzaman et al., 2006) healthcare 
(Begg and Kamruzzaman, 2003), and finance 
(Kamruzzaman and Sarker, 2003). The use of ANN in 
tap changer control was initiated by a research 
undertaken by the first author (Islam, 2006). Structural 
design which is known as the architecture of an ANN 
consists of neurons at the input layer, hidden layer and 
output layers with interconnections between the neurons 
in the different layers. Fig. 1 shows an artificial neural 
network for seven input variables, four hidden and 
single output neurons. 
 
 

Fig. 1: An Artificial Neural Network for seven input 
variables, four hidden and one output neurons 

Interconnections own weights that manipulate the data 
in the calculation from input through hidden units to 
output. The learning process for updating the weights of 
the interconnections for particular application is 
performed by learning algorithm. 
A set of existing ANN learning algorithms like 
Bayesian Regularization back propagation (BRBP) 
(Foresee and Hagan, 1997) , Scaled Conjugate Gradient 
(SCG) (Moller, 1993), and Cascade-correlation (CC) 
(Fahlman and C. Lebiere, 1990) learning algorithms 
were chosen due to their recognized good performance 
in wide range of applications (Bishop, 1995a).  
 
Among these algorithms in back propagation the 
weights and biases are adjusted by negative of the 
gradient descends to minimize performance function. 
SCG uses some variation techniques such as conjugate 
gradient. The cascade correlation algorithm, during 
training process, adds hidden unit one at a time and tries 
to minimize residual error and maximize the correlation 
between the new unit's output and the residual error 
signal of the network. 
 
Input variables were selected based on well understood 
factors influencing the tap changer control (Beckwith 
Electric Co, 1999, Harlow, 1996). These were the power 
system measuring components such as voltage level, 
reactive powers, real power, power factor, circulating 
current and the status of circuit breakers involved in 
transformers’ parallel operation (Islam et al., 2004a). 
Real world data was obtained from an Australian 
electric supply company. The measurements were 
recorded under normal operating conditions. Some of 
the data, that were hardly available from the power 
supply company, were mathematically derived from the 
power network parameters supplied by the company 
(Islam et al., 2004a, Islam et al., 2003). 
 
 In regards to performance this paper identifies the best 
performance of model on the basis of the highest 
number of recognition or minimum number of 
misrecognition (False response) where MSE and STD 
exhibit reasonable lower values from test data.  So, out 
of multiple trials, the best performance for ANN trained 
by the BRBP was 98.41% correct recognition, while 
that for ANN trained using SCG was 98.3% correct 
recognition (Islam et al., 2004a). Both of these results 
were achieved for ANN architecture with 4 hidden 
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units. For ANN trained using cascade-correlation 
algorithm, the best performance was 98.9% correct 
recognition (Islam et al., 2004b).  
During training CC algorithm builds network 
architecture from smallest (one hidden unit) to a 
required size as well as updates the weights to provide 
correct outputs. It is found that the best performing 
ANN, trained using CC algorithm, created architecture 
consisting 4 hidden units and it did not converge (i.e. 
fails to improve the correlation scores) at less than that 
number of hidden units. 
 
Since the distribution transformers in power system play 
a vital role in voltage regulation and system stability, it 
is always necessary to have better performance in tap 
changing operation. With this view, modification of 
cascade-correlated learning algorithm was proposed in 
(Islam et al., 2005, Islam, 2006) where learning took 
places by minimizing an objective function that 
minimizes the squared error at the output, smoothes the 
weights and maximizes the correlation co-efficient 
between new unit's output and the residual error signal.    
ANN, trained using this new algorithm, improved the 
best performance to 0% misrecognition (100% correct 
recognition) with the achievement of architecture size of 
2 hidden units, less than the previously existing 
algorithms (Islam, 2006).  
 
All these stated experiments and developments were 
carried out concentrating on two parallel transformers 
only and avoided the complicacy in training ANN when 
multiple transformers are considered. In this 
contribution, we propose an extension to these previous 
developments and focus on the situations when more 
than two transformers are added in the substation. 

3. Proposed ANN Based Transformer Tap 
Changer Control 

A single line diagram of four transformers, operating in 
parallel and using the proposed ANN based tap 
controller, is shown in Fig. 2. The ANN based tap 
controllers receive signals from the power system and 
decide about the tap raise, tap lower and tap hold. The 
decision is then conveyed to the tap changing 
mechanism using a relay for execution of the tap 
changer operations. The proposed ANN based controller 

can be implemented in two ways. It can be implemented 
in hardware or as a software program.  

Algorithms are used to train the ANN model i.e. 
architecture and weights of the interconnections. 
Performance of the algorithms is measured how far they 
could update the weights of the architecture to provide 
the correct outputs of the unseen input data. Once it is 
finalized the model (i.e., weights, biases, nodes and 
other parameters) can be embedded as chips or used as 
software in the computer.  
 

 

Fig. 2: Single line diagram of four transformers in substation 
with ANN based tap changing controller 

For implementation in a hardware system neural 
network needs the support of inter processing 
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communication and memory devices along with the 
function of individual processing elements. In this 
perspective a Very Large Scale Integration (VLSI) 
Processor with input/output device, Erasable 
Programmable Read Only Memory (EPROM), that 
contains executable instructions and an operating 
system on a single board can be used to implement an 
ANN module. Fig. 3 shows the schematic diagram of 
such a microprocessor control ANN device.   
 

Figure 3: Schematic diagram of on-line chip for ANN 
tap changer controller 

Input signals obtained from the power system through 
analogue transducer can be collected onto a single high-
speed line using a multiplexer and fed into the analogue 
to a digital converter. The digital information from the 
analogue digital converter is then fed into the 
microprocessor through the input port. The operating 
software program controls the activation of the ports to 
intake signals, runs the neural network module, and 
delivers the microprocessor’s results. The analogue 
control signal is obtained at the output in the reverse 
manner of the input signal and finally conveyed to the 
tap changer operating mechanism. In this method of 
implementation any new advances in ANN simulation 
algorithm can be implemented by erasing and 
reprogramming the EPROM. Alternately, a configured 
ANN architecture, the computed weights and node 
transfer function can be directly implemented in a VLSI 
chip with built in microprocessor units.  This type of 
control can only be used for fixed functionality that that 
means the implemented, weights and node’s function on 
chip cannot be changed which needs replacement if an 
upgrading is required in the system. 
More detail about implementation of the ANN model 
into hardware and software uses are beyond the scope of 

this paper. This paper mainly deal with the development 
of configuring the ANN model (architecture and 
weights determination) to provide better results .i.e. 
accurate outputs for unseen test data and technical 
analysis to support the improvement occurred. 
 
In power systems, a centralized control system termed 
as SCADA (Mavrin et al., 1999) is used for control and 
data acquisition. The system allows the ease of using 
software based system through a set of application 
servers. This proposed design of control system can also 
be used in SCADA system as software based 
implementation in its server. But, huge number of 
distribution transformers tap changer is controlled 
locally for voltage regulation in distribution substations. 
So, we propose a design change in the tap changer 
control system that uses hardware based ANN 
implementation at the local substations.  
 
Naturally, if ANN based tap controller is implemented 
as hardware, then the replacement will add some cost. 
The more the numbers of substations need to be 
upgraded, the more the cost will be added. However, if 
careful steps are taken into consideration during the 
initial implementation design, replacement of the 
hardware implemented ANN based controller can be 
avoided even when the number of transformers is 
increased. This is where the key contribution of this 
work comes in. We investigate an ANN based tap 
changer control system, that even if being trained on 
two transformers, can readily be used for three or even 
more transformers. 

4. Data 

The power network, transformer details, and load data 
variations supplied by Australian Electric Supply 
Company are used for this experiment with the number 
of operating transformers being up to four in parallel. 
Each of the 150 MVA transformers has 10 tap positions 
and is capable of 17.55% voltage variation at a step of 
4.29kV. The transformer percentage variation is from 
14.9% to 22.7%. Although transformers are loaded 
lightly (below their capacity), the maximum load of 300 
MVA per transformer is considered in data generation. 
Data consists of numerical values of voltage level, 
circuit breaker status, real power and reactive power of 
the individual transformers, as well as, total real power 
and reactive power of the transformers operating in 

A
na

lo
gu

e 
C

on
tro

l 
A

na
lo

gu
e 

Tr
an

sd
uc

e r
 

M
ul

tip
le

xe
r 

M
ul

tip
le

xe
r 

D
ig

ita
l t

o 
A

na
lo

gu
e 

Co
nv

er
te

r 

A
na

lo
gu

e 
to

 D
ig

ita
l 

C
on

ve
rte

r 

O
ut

pu
t P

or
t 

In
pu

t P
or

t 

Memory 

ROM Operating 
System 

M
ic

ro
pr

oc
es

so
r 

U
ni

t 

EP
R

O
M

 

Co-published by Atlantis Press and Taylor & Francis 
                         Copyright: the authors 
                                         588



 
 
 

ANN controller for tap changing operation of multiple transformers 
 

 

parallel and the circulating currents when the tap 
position differs between transformers. Numerical values 
of these variables at a particular moment are grouped to 
form a vector ‘x’. Data set is formed by a set of vector 
‘x’ in such a way that it covers all possible variations of 
the voltage levels, circulating currents for tap position 
differences, real and reactive power variations, and 
circuit breaker status. 

Three such data sets are produced considering parallel 
operations of two transformers, three transformers and 
four transformers. They are named as DM2Tx, DM3Tx, 
and DM4Tx respectively. Each of the data set has three 
types of data for three operations of transformer tap: tap 
raise, tap hold and tap lower. In the produced data sets, 
each of these types is associated with a target vector as 
follows. 

t1= [-1, 1, 1] tap raise 
t2= [1, 1, -1] tap lower 
t3= [1, -1, 1] tap hold 

Each of the data sets (DM2Tx, DM3Tx, and DM4Tx) is 
divided into two subsets: one for training and another 
for testing. Stratified sampling (Arvo, 1995, Stehman, 
1996) is used to generate the training and test subsets 
from the types of raise, lower and hold. 

5. Experiments, Results and Discussion  

ANN classification process is applied on the produced 
data. In this target association, the output of the ANN 
has three neurons. For a particular tap operation, the 
value of a neuron will be ‘-1’, while the other neurons’ 
values will be ‘1’ (i.e., values corresponding to the 
target vectors assigned in the dataset). The neuron with 
the value of ‘-1’ will guide the tap changing operations. 
For instance, if a test data, presented to the trained 
ANN, triggers the first output neuron value to be ‘-1’ 
(or close to ‘-1’), a signal is transmitted to a certain 
relay that operates the tap changing mechanism for 
raising the position.  Similarly, if third output neuron 
has the value of ‘-1’ (or close to ‘-1’), signal is 
transmitted to another relay that operates the mechanism 
to lower the tap position. In the same way, if the second 
neuron, has the value of ‘-1’ (or close to ‘-1’), it will 
guide the relay that locks the circuit to keep tap in the 
same position.  

During training, the ANN connection weights are setup 
in such a way that the respective type of data provides 

the ‘-1’ (or close to ‘-1’) value to the relevant neuron. 
Three models are built up from training the three data 
sets (representing the different number of transformers 
in operations). Modified Cascade Correlation algorithm 
(MCC), developed particularly for the tap changer 
control (Islam et al., 2004b, Islam, 2006), is used to 
train the models. Since the algorithm is an efficient 
trainer of the ANN model for tap changer control, 15% 
of the data are used for training and the rest are used for 
testing.  

Requirement of training data is completely solution-
dependent. The most important point of selecting 
training data in this project is that the sample of the 
training data set should cover operations of the tap 
changer within the entire tap position range to maintain 
the correct voltage level. This has been ensured in 
selecting the 15% of the training data set. So, more than 
those 15% were not necessary and were not taken to 
maintain minimum training time. 

For each of the transformer settings, thirty trials are 
performed to produce a series of 30 trained ANNs. The 
produced models are labeled as follows. 

• M2Tx represents the series of models trained with 

DM2Tx (two transformers in operation).  

• M3Tx represents the series of models trained with 

DM3Txt (three transformers in operation). 

• M4Tx represents the series of models trained with 

DM4Tx (four transformers in operation). 

MCC algorithm, automatically determines the number 
of hidden units and architecture of the ANN during 
training. Table 1 shows the numbers of hidden units at 
ANN learning convergence for the 30 trials in our 
experiments.   
 

Table 1: The numbers of hidden units (HU) at ANN 
training convergence for the 30 trials 

Model 
series 

HU2 HU3 HU4 HU5 HU6 HU7 

M2Tx  22 3 1 1 1 2 
M3Tx 19 2 2 1 1 5 
M4Tx 11 5 1 3 3 7 

Among the models created by MCC algorithm with less 
than seven hidden units in 30 runs met the set criteria 
based on the objective function and ended the training. 
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ANN. ANN ensemble is formed by combining two or 
more different trial outcomes (models) as in Fig. 11.   
 

 
Fig. 11 An ensemble of n numbers of trained ANNs 

 
The effectiveness of the formed ensembles depends on 
how these models are chosen ((Ed.), 1999). In reference 
to the Fig. 11, which shows an ensemble of n numbers 
of trained ANNs, let the output (ye) of the ensemble is 
taken as the average of the ANN members’ outputs as 
expressed in (1). 

( ) ( )xx ∑=
n

i
ie y

n
y 1

 (1) 

where n represents the number of trained ANNs, 
yi(x) is the output of ith trained ANNs where i=1, 
2,…, n.  In that case, error due to ensemble is 
given as 
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where ε [.] denotes the expectation and Eavg is the 
average error of the ANN members. Equation (2) 
explains that the sum of square error of the ensemble 
ANNs is reduced by n when the output is determined by 
averaging the output of member ANNs. As per the 

Cauchy’s inequality, as shown in Equation (3), the 
averaging process guarantees not to increase the error. 

 

∑∑ ≤⎟
⎠

⎞
⎜
⎝

⎛ n

i
i

n

i
i ene 2

2

 (3) 

Hence, the ensemble error is less or qual than the 
average error in members as in Equation 4. 
Ee ≤ Eavg  (4) 

 
In this experiment, the ensemble based control model is 
formed by the best and average models as members and 
the above averaging process is applied.  
 
Results for test data sets DM3Tx (three transformers in 
parallel) and DM4Tx (four transformers in parallel), as 
well as DM2Tx (two transformers in parallel), are 
shown in Table 4. The first two columns show the 
performance for best (member 1) and average model 
(member 2), while the last column shows the outcome 
for ensemble.  

Table 4: Percentage of false responses by Ensemble model 
(M2Tx) when number transformers are increased 
 
Number  of 
transformers 
operating in 
Parallel 

Percent of false responses  

Ensemble 
member 1 
(M2Tx) 

Ensemble 
member 2 
(M2Tx) 

Ensemble 
Model 
(M2Tx) 

2 0.0 0.13 0 
3 0.06 0.56 0 
4 0.07 0.92 0 

The results show that the ensemble improves 
performance by the reduction of false responses even 
with the increase of number of transformers. Thus, the 
same model (originally designed for two transformers) 
can be used for three or four transformers and allow 
easy upgrade of the substation. 

8. Conclusions  

In this paper, the performances of ANN models trained 
by existing famous algorithms and newly developed 
Modified Cascade Correlation algorithm for two to four 
numbers of transformers in parallel operation have been 
investigated.  The paper also studied the limitations of 
parallel operation when transformers are increased to 
upgrade substation to take more loads but the tap 
changing controllers remained unchanged.  The paper 

ANN1

ANN2

ANNn

I
N
P
U
T
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U
T
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...

Co-published by Atlantis Press and Taylor & Francis 
                         Copyright: the authors 
                                         593



 
 
 
Md Fakhrul Islam; Amanullah Maung Than Oo 
 
has developed an ensemble scheme and shows that the 
ANN based controller, configured following this 
scheme for two parallel transformers, will be suitable 
for multiple transformers in parallel operation. This 
means that installation of new transformers in 
substations, to meet increasing load demand in future, is 
possible without replacing the ANN based tap 
controller.  
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