
Resource-constraint Multi-project Scheduling

with Priorities and Uncertain Activity Durations

Zheng Zheng
1,2+

, Lin Shumin
2
, Guo Ze

2
, Zhu Yueni

2

1Science and Technology on Aircraft Control Laboratory, Beijing 100191, China

2School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

E-mail: zhengz@buaa.edu.cn

Abstract

Resource-constraint multi-project scheduling is one of the most important topic in the field of project management.

Most current works solve this problem based on an idea that multiple projects can be simply emerged into a

super-project in a deterministic environment, regardless of the project priority and robustness of schedules. This

paper discusses the RCMPSP with priority and formulates a discrete bi-objective decision model. A modified

NSGA-II based algorithm is presented to solve the model. Furthermore, we design systematic experiments to

investigate the interrelationship between robustness and its related project parameters, including order strength,

resource constrainedness and uncertainty level. The results demonstrate the effectiveness of the solution algorithm

and show that the three parameters indeed have evident impacts on the robustness and makespan of projects.

Key Words: Multi-Project Scheduling, Priorities, Robustness, Uncertain Activity Durations, Uncertainty

1. Introduction

Resource-constraint multi-project scheduling problem

(RCMPSP) comes from practical multi-project

environments in which a number of projects concurrently

share limited resources in precedence or other constraints.

Contemporary organizations or enterprises organize work

pervasively in multi-project environments as Payne [1]

said, “Up to 90%, by value, of all projects are carried out

in the multi-project context, and thus the impact of even a

small improvement in their management on the project

management field could be enormous”. Although

RCMPSP plays a vital role in project management, there

are not much fruits on the topic as those on single project

scheduling (i.e. resource-constraint project scheduling

problem, RCPSP). The main reason comes from its high

complexity, which is affected by many factors, such as

the huge solution space, the intensely contending for

resources, various and conflicting objectives, the

inter-project dependence and priority, the high level of

uncertainty and so on. Some of them are difficult to be

handled or considered adequately in the characterization

or the solution of the problem.

Current studies associated with RCMPSP mostly

concentrate on its solution algorithms. A RCMPSP

belongs to NP-hard problems, thus exact methods could

hardly deal with it. As a result, researchers proposed

different meta-heuristic to solve RCMPSP. Genetic

algorithms (GA) are typically used methods. Kim [2]

proposes a hybrid genetic algorithm with fuzzy logic

controller to minimize total project time and to minimize

total tardiness penalty. Yassine [3] utilizes an algorithm,

called competent GA (CGA), which enhanced traditional

GA by adding a local strategy to solve RCMPSP.

Experiments show that CGA outperforms many other

priority-rule-based heuristics. Goncalves [4] presents a

genetic algorithm based on random key representation,

and a schedule generation creating parameterized active

schedules. Other kinds of algorithms for solving

RCMPSP include priority rules based methods [5-8] and

hybrid heuristic approaches [9-11].

Although successful attempts have been made for the

solution of RCMPSP, there still remain many issues to be

investigated. First, current approaches for general

RCMPSP seem not suitable for certain practical use,

since in real-world project management, there exist

International Journal of Computational Intelligence Systems, Vol. 6, No. 3 (May, 2013), 530-547

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 530

Administrateur
Texte tapé à la machine
Received 28 May 2012

Administrateur
Texte tapé à la machine
Accepted 21 November 2012

typical scenarios in which each project has its own

priority. For example, in the task scheduling problem for

satellite testing, different tasks usually have different

priorities according to the importance degrees of test

targets (For example, satellites or systems). To model the

problems more accurately, task schedulers should adopt

priority strategies to arrange the order of executing

projects. To be specifically, projects with high priority

should get resources prior to those with low priority. We

called this problem as resource-constraint multi-project

scheduling problem with priorities (RCMPSPP). Most

existing works solve RCMPSP by emerging all projects

into a virtual big project, that is, the single project

scheduling approach. However, this approach loses its

effectiveness in RCMPSPP. If the priorities are taken into

consideration, projects cannot be emerged into a big

project as before since they are constrained by certain

orders. Second, uncertainty has not been considered

sufficiently when planning projects. Current works

usually solve the problem with the only objective of

minimizing the total project makespan, ignoring the

uncertainty of projects. In realistic dynamic environments

where the conditions often change unexpectedly with the

lapse of time, the uncertainty is the main factor that leads

to the interruption of schedule execution frequently.

According to Fox and Ringer’s survey [15], only less than

5% of the time spent in practice on scheduling is for

developing new schedules, while 95% of the time is spent

revising and maintaining schedules based on daily

progress and changing assumptions. The uncertainties

may stem from a number of possible sources. For

example, activities may take more or less time than

originally estimated, resources may become unavailable,

material may arrive behind schedule, finish times and due

dates may have to be changed, and etc [16]. A slight initial

delay may ripple spread across all the projects, and thus

results in prodigious delay because of the large network,

inter-project dependence and contending for resources,

etc.

This research intends to study the baseline schedule of

RCMPSPP with uncertain activity durations. To precisely

describe the uncertainty, we utilize the concept of

robustness, which is used to measure the ability of a

schedule to absorb uncertainty or to suppress the

propagation of disruptions to keep it stable. A baseline

schedule is utilized to serve as an estimation of the

overall project scope and a yardstick of resource

allocation, external planning, adjusting or rescheduling

afterward. It is usually established by assuming

deterministic information on resource usage and activity

durations in the light of expectations or experiences. The

more robust the baseline schedule is, the more precise the

estimation is, and the less cost of delay and adjustment of

the schedule exist in real execution. To build a robust

baseline schedule, Van De Vonder et al. [17, 18] and

Lambrechts et al. [19, 20] have developed several proactive

heuristic or meta-heuristic procedures to protect the

schedule from future interruption with a trade-off

between robustness and makespan. However, the

procedures cannot be applied to RCMPSPP directly

because the impacts of specific characteristics such as

project structures and uncertainty levels are not

considered adequately. Therefore, new procedures need

to be proposed, in which the systematical analysis of the

impacts is necessary. This is a research topic of this

paper.

According to the above analysis, the main work of this

paper is threefold. Firstly, a conceptual model for

RCMPSPP is presented, which includes two objectives to

optimize the makespan and the robustness measure

simultaneously. Secondly, a solution algorithm for

RCMPSPP is proposed, which is a bi-objective genetic

algorithm based on the NSGA-II approach. Thirdly, we

further analyze the robustness of solutions obtained from

the proposed algorithm and try to answer the following

questions: (1) What are the effects of three related project

parameters on robustness and makespan? (2) What are the

relationship between the two objectives, i.e. robustness

and makespan? These questions are important both in

practice and in theory. It can help the decision makers to

determine the right schedules when they confront the

dilemma of comprising between robustness and

makespan. What’s more, the answers can give us a view

of how parameters affect the solutions, and help

researchers adjust them more properly so as to improve

the performance of solutions.

The remainder of the paper is organized as follows.

Section 2 describes the resource-constraint multi-project

scheduling problem with priorities and its conceptual

model. Section 3 presents in detail an algorithm to solve

the RCMPSPP based on the NSGA-II approach. Section

4 shows the experiments to justify the effectiveness of the

algorithm and the impacts of parameters on its robustness

and makespan. In Section 5, results and discussion are

presented. Finally, the conclusion is given in Section 6.

2. RCMPSPP model and its analysis

2.1. Problem description and conceptual model

Resource-constraint multi-project scheduling problem

with priorities (RCMPSPP) aims at finding a schedule

that fixes start times and end times of activities, while

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 531

lenovo
打字机文本
Z. Zheng, S. M. Lin, Z. Guo, Y. N. Zhu

minimizing or maximizing one or more performance

measures. Before the introduction of the conceptual

model, parameters and constraints are presented in the

following.

 denotes the set of single projects

with different priorities.

 Project has a higher priority than project

 . If , project has precedence over

project to get resources. Nevertheless,

preemption is not allowed.

 Each project consists of interrelated

activities in set , where activities

and are dummy activities, representing the start

and the end of project respectively.

 All the projects share renewable resources in set

 , and every resource has a

constant amount of units available at any time.

 The activities are subject to two kinds of constraints:

(1) Precedence constraints. Each activity in

project cannot be scheduled until all of its

predecessor activities in set are

completed;

(2) Resource constraints. Each activity

requires units of resource during its

duration . The dummy activities require no

resources and their durations are zero, and other

activities durations are uncertain. All parameters are

non-negative.

 The start times and end times of activities are fixed,

which are

 and

 respectively.

 represents the set of

activities being processed at time instant .

Thus, the conceptual model of RCMPSPP can be

formalized as follows.

(,)

1

min () (1)

s.t. , 1,..., ; 1,..., ; (2)

, 1,... ; 1,..., ; 1,..., (3)

, 1,..., ; 1,..., (4)

0, 1,..., ; 1,..., (5)

, 1,..., (6)

t

ij ij i ij

ijk k ii j I

ij ij ij i

ij i

i i

F

s f i L j N j P

r R i L j N k K

f s d i L j N

s i L j N

i L 









   

   

   

  

 



Function vector (1) contains the objectives to optimize

the performance measure. In this paper, consists

of two objectives, the minimal robustness measure and

the shortest makespan. We will have an in-depth

discussion about them in the Section 2.2 and 2.3. Formula

(2) represents the precedence relationship between

activities. Formula (3) makes the schedule satisfy the

resource constraints at any time. Formula (4) shows the

relation between start time and end time of an activity.

Formula (5) forces the start time and end time to be

non-negative. Formula (6) imposes priority relations

between projects.

2.2 Objectives for the model

In project management, managers usually seek the

schedule that can be implemented as what is planned. In

other words, schedules are expected to be as stable as

they can, especially for short ones, because a short

schedule may cause a great adjustment cost. Hence, a

robust baseline schedule is of great importance. Many

delays or failures of project execution are attributed to the

unexpected increase of activity durations in practice.

Al-Fawzan and Haourai [21] view the deviation of activity

duration as an important factor affecting a schedule, and

develop the concept of robustness. Robustness of a

schedule means the ability to cope with small increases in

some activity durations caused by uncontrollable factors.

Van de Vonder et al. [17] further distinguish the difference

between quality robustness and solution robustness.

Quality robustness is measured in terms of project

duration, generally defined as the difference between the

planed and the realized makespan. Solution robustness is

defined as the function of the deviations between the

planned and realized start times of activities.

In multi-project scheduling, because of the large number

of activities and the propagation of delays, an increase in

duration of one single activity can lead to delays of many

activities. In this case, solution robustness is too rigorous

for measuring the stability of start times of activities,

while quality robustness is more appropriate for

multi-project scheduling. Moreover, managers usually

consider that the cost of delaying the completion times of

projects preponderates over that of deviating from start

times of the planned activities. Thus, in this paper we

mainly concentrate on the quality robustness of

RCMPSPP. Unfortunately, similar with the solution

robustness, the quality robustness is also not easy to

calculate. Theoretically, in order to calculate the

robustness, it is necessary to know a priori disruption

scenarios with their probability information and the

parameters for all possible cases. However, it is

unrealistic for the following reasons. First, these scenarios

are usually not easy to know or describe beforehand.

Second, the probability information is also not easy to

obtain. Third, even if we can obtain the scenarios, the

number is usually very huge in real-life project

management, especially in multi-project environments. In

this case, the burden of computing the robustness measure

can be very heavy due to the combinatorial nature of

project scheduling. Therefore, to measure the quality

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 532

lenovo
打字机文本
Resource-constraint Multi-project Scheduling with Priorities and Uncertain Activity Durations

robustness, a reasonable strategy is to limit the number of

disruptions in the real project execution.

According to the above discussion, an assumption is

made in this paper for the robustness measure: in every

project execution, there is only one disruption resulting

from the increase of duration of a single activity.

Herroelen et al. [22] told that this assumption actually does

not preclude more or less disturbances taking place

during project execution, while the underlying idea is that

disturbances are sufficiently sparse and spread over time

and throughout the project network. Therefore, we can

assume that the effect of one disturbance will not interact

with the effects of another. The single disruption strategy

can serve as a basis of analyzing the robustness for

general cases.

During the execution of a project, once a disruption

occurs, it is likely to cause frequently reallocation of

resources and delays of projects. Therefore, we can use

delays of projects to measure the robustness. To describe

the robustness measure more clearly, some notations are

presented first in the following.

 : the duration increment of activity in project

 , and ;

 : the delay of project caused by when

schedule is rescheduled. Note, if project starts

earlier than project i, ;

 : the latest start time of

activities of the project , except for dummy

activities;

 : the set of activities which may affect the finish

time of project in schedule , that is

 .

Based on these, the robustness measure can be

defined as

 ∑

∑

 (7)

under the condition that there is only one activity whose

duration increases unexpectedly in a project execution.

 is equal to the sum of average delays of all projects.

Obviously, the smaller the value of is, the better the

robustness is. Note that depends on the rescheduling

strategy, because different rescheduling strategies can

generate different values of .

On the other hand, a makespan is commonly viewed as

the most important performance measure. It can be

defined as

 {
} (8)

where
 denotes the finish time of the last activity N

in project i.

Now we establish two performance measures: robustness

measure (Refer to Eq.7) and makespan (Refer to

Eq.8). This forms a bi-objective conceptual model of

RCMPSPP with objectives of minimizing the makespan

measure and the robustness measure simultaneously. Due

to its NP-hard property, we use multi-objective genetic

algorithm to solve this problem in Section 3.

1

2

3

4

5

6

2,1

4,1

3,2

5,2

0,00,0

Fig.1. Sample project network

Fig.1 shows the network graph of a sample project. Each

node represents an activity. Arrows in the figure represent

the precedence relationship between activities. In the

example, there is only one type of resource whose

available capacities are 4 units. The numbers above a

node are its duration and resource requirement. Fig.2 and

Fig.3 are two different schedules to a multi-project

network, composed of two projects with the same

network as Fig.1. The priority of project 1 is higher than

project 2. The two schedules have the same makespan of

12 units. However, they may have different RM values. If

we give an increment of 1 unit to the duration of every

activity in turn and reschedule the rest of posterior

activities according to their start times in ascending order,

 of schedule 1 is ⁄ ⁄ , and ⁄

 ⁄ for schedule 2. This result illustrates that

schedule 2 is more robust than schedule 1, though they

have the same makespan.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 533

lenovo
打字机文本
Z. Zheng, S. M. Lin, Z. Guo, Y. N. Zhu

2

3

54

2

3

54

Pro 1

Pro 2

0 1 2 3 4 5 6 7 8 9 10 11 12

time

re
so

u
rc

e

Fig.2. Schedule 1 for a two-project network

2

3

5

4
2

3

5

4

Pro 1

Pro 2

0 1 2 3 4 5 6 7 8 9 10 11 12

time

re
so

u
rc

e

Fig.3. Schedule 2 for a two-project network

2.3. Project parameters affecting robustness

The schedule results are constrained by uncertainty,

precedence constraints and resource constraints.

Meanwhile, for the same group of projects, different

schedules may result in different robustness. Thus, to

express the strength of the three constraints that can

influence robustness indirectly, we introduce

corresponding typical parameters in the following.

(i) Uncertainty Level

The definition of above implies that the robustness

relates to . In some sense, measures the

uncertainty existing in durations of activities. To the

uniform description, we define the uncertainty level as

follows.

 (9)

Although for activities may be different, the

uncertainty level of activities can be the same.

The uncertainty of project may spread across all the

projects. It is caused by the constraints between activities

that determine the resistance of project to the uncertainty

(i.e. robustness). In a RCMPSPP, activities face two kinds

of constraints: precedence constraints and resource

constraints, which depend on activity characteristics and

resource characteristics, respectively. Concerning the

constraints, it is improper to ignore order strength and

resource constrainedness, since they are essential factors

that influence the constraints most.

(ii) Order strength

Order strength, denoted as OS, measures the complexity

of the project network topology[23]. It is formulated as

(-1) / 2

pr
n

OS
n n

 (10)

where npr is the number of precedence relations, including

the transitive ones, and denotes the

theoretical maximum number of precedence relations.

(iii) Resource constrainedness

Resource constrainedness, denoted as RC, measures the

levels of resource availability [23]. It is defined as

 ̅

 (11)

where denotes the total availability of renewable

resource type , ̅ denotes the average quantity of

resource type required, formulated as

1 1

1, 0
,

 0, 0

n n
ik

k ik

i i ik

r
r r m m

r 


 







 

In order to show the impact of these two parameters, a toy

case with three projects is given here with its basic

information shown in Table 1.

Table 1. Basic information of projects

Basic Information Project 1 Project 2 Project 3

No. of activities 10 10 10

No. of resource

type
4 4 4

Network structure Network 1 Network 1 Network 2

Resource

requirement
Requirement 1 Requirement 2 Requirement 1

In Table 1, the activity number and resource type of each

project is fixed. Project 1 and Project 2 have the same

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 534

lenovo
打字机文本
Resource-constraint Multi-project Scheduling with Priorities and Uncertain Activity Durations

network structure but different requirement. Project 1 and

Project 3 with the same requirement have different

network structures. The scheduling results are shown in

Fig.4 to Fig.6. It is evident that different network

structures and resource requirements lead to completely

different schedules (the makespans of each projects are

27, 56 and 36). Besides, the robustness of projects also

varies from each other. Therefore, the makespan and

robustness are quite dependent on network structures and

resource requirements.

Fig.4. Schedule of Project 1(OS=0.3 RC=0.3)

Fig.5 Schedule of Project 2(OS=0.3 RC=0.7)

Fig.6 Schedule of Project 3(OS=0.7 RC=0.3)

3. A NSGA-II based solution algorithm for

RCMPSPP

For multi-objective optimal problems, evolutionary

algorithm (EA) is regarded as one of the most effective

solution algorithms. Many EAs are proposed and studied

in the last decades. Among them, NSGA-II [24] is one of

the most well-known and efficient approaches. In this

research, a NSGA-II based algorithm is proposed to solve

the bi-objective model of RCMPSPP, achieving the

proximity of Pareto optimal solutions. Fig. 7 shows the

basic structure of NSGA-II based approach. Both the size

of initial population and its offspring population

are . The combined population of size is

sorted out into according to different

non-domination ranks of solutions in . The

crowding-distance is used here to get an estimation of the

density of solutions with the same non-domination rank.

Define the crowded-comparison-operator as

 if and only if or (

).

The next generation is derived from the best

solutions in . is generated from by binary

tournament selection, crossover and mutation. In

tournament selection, is used to compare solutions.

Obviously, NSGA-II holds the elite strategy through the

combination of two populations to increase its

performance. In the following, we will introduce the

approach in detail by three parts.

NSGA-II based solution algorithm

Create initial population , and its offspring population

 by genetic operators;

 , ;

While not satisfy the stop criteria

 ;

 Fast-non-dominated-sort() ;

 and ;

While

Crowding-distance-assignment() ;

 ;

 ;

End While

Sort in descending order using operator ;

 [] ;

Generate from by genetic operators ;

 ;

End While

Fig.7 The basic structure of NSGA-II based solution algorithm

3.1. Chromosome representation

Each chromosome is encoded as an activity sequence and

divided into several segments. Every segment represents

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 535

lenovo
打字机文本
Z. Zheng, S. M. Lin, Z. Guo, Y. N. Zhu

a set of activities belonging to the same project, and there

is no overlap among them. The positions of segments in

the chromosome stand for their priorities. A chromosome

of projects with priorities in descending order can be

encoded as follows:

 ⏟

 ⏟

Here, we assume that the activity sequence is a

precedence feasible permutation, and {
}

 for .

According to this representation, if we decode the

chromosome from left to right, it can just satisfy the

precedence of activities and the priority relationship of

projects. Moreover, this form of encoding can remarkably

reduce the searching space compared with merging all

projects into a super-project, because it limits the range of

permutation of activities in their own segments.

The initial population should be diverse enough to reduce

the probability of falling into local optimum. It could be

generated at random, according to priority rules, or by

combining both of them. However, the priority

relationship of projects and the precedence constraints of

activities in the same project should be maintained. The

initial population is generated according to the following

criteria:

(i) Fix the dummy start activity of project 1 in the first

position;

(ii) Activities are selected from the feasible set of

activities whose predecessors have been fixed in the

chromosome. The selection can be at random or

through priority rules;

(iii) When a dummy end activity is fixed, the dummy

start activity of the next project is the next activity.

3.2. Schedule generation procedure

A schedule generation procedure is to construct schedules

from chromosomes. In this paper, we propose a procedure

fit for the encoding in section 3.1 to generate active

schedules. An active schedule is a feasible one in which

an activity cannot start earlier if others do not delay. The

basic idea of this procedure is that the activities

represented by a chromosome are scheduled at their

earliest times (ET) in turn from left to right under

resource constraints, and once a dummy start activity is

encountered, its start time is fixed to zero. This means

that every project starts at zero. This strategy is called as

ET strategy in the following. Clearly, the schedule

generation procedure can satisfy the priority relationship

among projects. Before the description of the procedure,

we propose a property of ET strategy at first.

Property 1: According to ET strategy, the activities

except dummy start activities can only start at the finish

times of other activities.

Proof. We can prove the property with apagoge. Assume

that an activity of a feasible schedule starts at time ,

but other activities don’t finish at . Then we can derive

that none activities would start or finish during the

interval , where

 { | }

In other words, the remaining amount of each type of

resources does not change during this time interval until

activity starts. This reveals that the amounts of

remaining resources during [is no less than those at

time instant when the amounts are enough for activity

 . So activity can start earlier at time . This

contradicts ET strategy. □

Fig.8 illustrates the pseudo-code of the schedule

generation procedure. Let be the time sequence in

ascending order, and the th element. is composed

of finish times of all activities scheduled at present.

Therefore, the start time of an activity can be selected

from . An activity can start at if and only if it

satisfies resource and precedence constraints during

[].

Schedule generation procedure

While

 ;

While

Compute the latest finish time of predecessors

of , i.e. { | };

Locate the position of in ;

While not satisfy resource requirement of in

[]

 ;

End While

 ;

If

 () ;

Sort in ascending order;

EndIf

 ;

End While

 ;

End While

Fig.8 Schedule generation procedure

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 536

lenovo
打字机文本
Resource-constraint Multi-project Scheduling with Priorities and Uncertain Activity Durations

The proposed schedule generation procedure is an

injection from chromosomes to schedules, that is, each

chromosome corresponds to a unique schedule.

Nevertheless, the encoding forms a multivalued mapping

from schedules to chromosomes. A schedule may be

encoded by more than one chromosome. The multivalued

mapping actually relates to resource levels and

complexity of projects network in project scheduling.

Generally, if resources are scarce and the complexity of

multi-project network is high, the multivalued mapping

approximates to injection. Besides, multivalued

phenomenon is more conspicuous with the increasing of

resources and decreasing of network complexity. This

phenomenon probably can have impacts on the efficiency

of genetic operators, especially mutation, because it may

lead genetic operations to take the same results.

3.3. Genetic operators

Genetic operators are applied in EAs to produce new

populations and improve the quality of solutions. To

survive the fittest, a selection operator is designed to

determine which individuals can reproduce offspring, and

which should die out. A crossover operator is the main

way of creating new individuals from those selected

parents individuals. In addition, a mutation operator is

used to introduce randomness into evolution of EAs to

increase searching areas, avoiding to fall into local

optimum. In the following, the operators used in

NSGA-II based algorithm will be introduced in detail.

3.3.1 Selection and Mutation

In NSGA-II, there are two selection operations in every

single run. The first is to select from combined

population . The best individuals will be directly

copied to . It is called as elite strategy. This strategy

can improve the quality of solutions from generation to

generation. The second is to select from . The

2-tournament selection mechanism is adopted this time.

Two individuals are selected randomly from the

population , and the better one is preserved by

comparing them using crowded-comparison-operator .

The selection pressure of the 2-tournament mechanism is

relatively light, and this is helpful to increase the diversity

of a population.

The mutation is used to avoid premature convergence of

the population usually with very small probability at each

generation. The mutation of an activity selected is

performed as follows. At first, determine the position

of its nearest predecessor and the position of its

nearest successor. Then a random integer

is generated as the position the activity is inserted in. The

activity mutated cannot be dummy activity. Obviously,

the mutation does not break the precedence and priority

relationship as well.

3.3.2 Crossover

The crossover operator is similar to the traditional

one-point crossover with the difference that a virtual

precedence relationship is set between the dummy end

activity and the dummy start activity of the next project.

This virtual precedence relationship ensures the priority

relations among projects cannot be broken when the

crossover is carried out. Assume two individuals are

selected for the crossover, which are

 (

)

and

 (

).

The process of crossover is as follows: First, a random

integer ∑

 is generated as the position

in the chromosome for crossover. Parental Chromosome

 and can produce their filial generation, a

daughter and a son, through crossover at the position .

The first genes of the son directly come from the

first genes of , and provides the rest genes

keeping their relative order unchanged.

 ⏟

where

 {

 }

 .

The daughter can be generated with the same way,

 ⏟

where

 {

 }

 .

Sönke Hartmann [25] has proved that the one-point

crossover keeps the offspring precedence feasible as for

the single project network encoding. The following

theorem ensures that this property maintains for the

encoding presented in section 4.1.

Theorem 1 If adding the virtual precedence relationship

to adjacent dummy activities in priority encoding, the

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 537

lenovo
打字机文本
Z. Zheng, S. M. Lin, Z. Guo, Y. N. Zhu

precedence and priority relationships cannot be broken

by the one-point crossover.

Proof. Because all the projects are catenated by the

virtual precedence relationship like one project, where the

priority encoding can be viewed as the encoding proposed

by Sönke Hartmann [25]. Therefore, the priority encoding

can also keep the offspring precedence relationship

(including the virtual precedence relationship) unchanged.

On the other hand, since the virtual precedence

relationship is unchanged, the order of the projects in the

chromosome is unchanged, that is, the priority

relationship of the offspring maintains. □

4. Experiments

In this section, we will take experiments to test the

effectiveness of NSGA-II based algorithm. Furthermore,

it will focus on exploring the impacts of three parameters

(OS, RC and UL) on the approximate Pareto optimal set

gotten by NSGA-II based algorithm. Experimental

instances and setups will be introduced in Section 4.1.

The effectiveness of NSGA-II based algorithm is tested in

Section 4.2. From Section 4.3 to 4.5, the analysis focus

on three aspects:

(i) The impacts of UL on robustness. Obviously, the

makespan has no relation with UL (refer to Section

4.3) .

(ii) The impacts of OS and RC on robustness and

makespan, which are the objectives of the model

constructed in Section 3 (refer to Section 4.4).

(iii) The relationship between the two objectives:

robustness and makespan (refer to Section 4.5).

4.1. Experiment setups

In this section, we will describe the setup of experiments.

In this field, several network generators for project

scheduling problems have been developed[26-29]. The

often-used instances in the project scheduling problem

library PSPLIB have been generated using ProGen[26],

which takes into account network topology and

resource-related characteristics. In this paper, we use the

RanGen software developed by Demeulemeester et al. [27,

28] to generate experimental instances. The reason is that

it can generate strongly random instances that span the

full range of problem complexity. Besides, it uses a

non-superfluous reliable set of complexity measures,

which have been used in former studies and shows its

clear and strong relation to the hardness of

resource-constrained project scheduling problems. It

guarantees the network instance with pre-specified values

of the number of activities, order strength (OS) and

resource constrainedness (RC), which are also the main

considered factors in this research.

The process of experiments be used in the following

subsections is introduced briefly as follows.

Step 1: Set the number of activities to be 90, which

belongs to three projects averagely. The priorities

of the projects are descending from the first one to

the last.

Step 2: From OS=0.1 to1 by 0.1

From RC=0.1 to 1 by 0.1

Step 2.1: Generate 100 multi-projects on

the setting of OS and RC by

RanGen;

(Note, each multi-projects is

composed of 90 activities

belonging to three projects

averagely.)

Step 2.2: Denote the set of the 50

multi-projects as ;

Step 2.3: Use NSGA-II based algorithm

to calculate the schedules for

each multi-project;

Step 2.4: Denote as the set of

makespans of all multi-projects

calculated by Eq.8;

Step 2.5: For UL=0.1 to 0.9 by 0.2

Calculate the robustness

measure RM for the

schedule of each instance

under the uncertainty level

represented by UL.

End

End

End

In the process, each set actually determines a

class of instances. The priorities of the projects in an

instance are descending from the first one to the last.

Without loss of generality, set the resource

constrainedness for all resource types with the same value,

and is substituted by in the following. Note

that the resource availability for each type is equal to that

of the project composing the multi-project instance.

For the sake of efficiency, we set the population size and

the number of generations to be 50 and 1000 respectively,

to guarantee the algorithm can provide solutions of high

quality within reasonable time. To offset the redundancy

of decoding chromosomes, the crossover and mutation

rate should be higher than the traditional set [24].

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 538

lenovo
打字机文本
Resource-constraint Multi-project Scheduling with Priorities and Uncertain Activity Durations

Therefore, we set the crossover and mutation rate to be

1.0 and 0.06.

4.2. Effectiveness of NSGA-II based Algorithm

According to the process of experiments, there are totally

104 instances according to different RC and OS. NSGA-II

based algorithm is used to generate schedules for the

instances. For the schedule of each instance, its

robustness under different uncertainty levels is calculated.

All the results show that NSGA-II based algorithm is

effective and efficient. Fig.9 and Fig.10 show typical

distributions of makespan and robustness under different

settings of RC and OS respectively. In the subfigures of

Fig.9 and Fig.10, X axis represents makespan (a) or RM

(b) and Y axis represents the frequencies. Each histogram

illustrates the frequency of instances with a makespan or

RM under a setting of RC and OS. High values of

frequency represent corresponding makespan or RM are

more likely to obtain in the real schedule process. For the

save of space, we only present the results in the case of

UL=0.5 in two situations. For cases with small values of

OS or RC, the distributions are quite similar with that of

Fig.9. For other cases, most distributions are similar with

Fig.10. The statistical distributions of makespan and

robustness under different settings of RC and OS are

listed in the appendix of this paper.

Fig.9 and Fig 10 show that our algorithm obtains

solutions with large range of makespan and RM. This

kind of distribution guarantees the diversity of the results,

so that project managers can choose schedules according

to their preference. In addition, stable schedules are

successfully generated, especially when conflict is not

strong (OS < 0.7 or RC < 0.7). The NSGA-II algorithm

can also obtain relatively low value of makespan and RM

even in strong conflict cases. In the next subsections, we

will compute the average value of every frequency

histogram to reflect the trend of variation of makespan

and RM versus UL, OS and RC.

Fig.9 Distribution of makespan and RM when OS = 0.1 and RC = 0.1

Fig.10 Distribution of makespan and RM when OS = 0.9 and RC = 0.9

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 539

lenovo
打字机文本
Z. Zheng, S. M. Lin, Z. Guo, Y. N. Zhu

4.3. Impacts of UL on robustness

In this section, the impacts of UL on the robustness will

be discussed. We compute the average value of RM for

every frequency histogram in Fig.10 with different UL,

OS and RC respectively. The average values represent the

average RM of solutions belonging to the same class.

Fig.11(a)-(e) show the relationship between the average

value and parameters of UL, OS and RC. The results

indicate that the UL almost linearly affects the average

RM of a class for all combinations of OS and RC. The

higher the UL the worse the robustness is. The feature

offers us a rule to estimate the robustness performance of

schedules under different ULs: when the UL increases,

the RM increases almost linearly accordingly. Based on

the rule, we can discuss the impact of OS and RC on

solutions while ignoring the impact of UL. Therefore, it is

fixed to 0.3 in Sections 5.2-5.4.

4.4. Impacts of RC and OS on makespan

Makespan is generally viewed as one of the most

important issues considered in project scheduling. The

stock charts in Fig.12 and Fig.13 show the relationship

between makespan and parameters of RC and OS. For

different combinations of RC and OS, although the

makespan of a class of networks distributes in a range, the

overall trend of the makespan (the dash lines) increases

with RC and OS.

To get a full overview, we combine the trend lines of

Fig.12 and Fig.13 into Fig.14. From Fig.14(a), we can see

that the increasing rate of the makespan with RC varies in

different intervals. The makespan increases faster in the

case of than . Especially, If

 , the makespan is almost constant. The

increasing rate of makespan versus RC is about 650 for

all values of OS when RC is smaller than 0.7. Fig.14(b)

clearly shows the relationship between the makespan and

OS. The makespan increases with OS, and the increase

rate is small. Especially, the increase rate is so small that

it is close to zero when . This means the OS

plays a supporting role in affecting the makespan

compared with RC.

(a) OS=0.1 (b) OS=0.3 (c) OS=0.5

(d) OS=0.7 (e) OS=0.9

Fig.11 The impact of UL on the robustness

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 540

lenovo
打字机文本
Resource-constraint Multi-project Scheduling with Priorities and Uncertain Activity Durations

(a) OS=0.1 (b) OS =0.3 (b) OS =0.5

(d) OS =0.7 (e) OS =0.9

Fig.12 The impact of RC on the makespan

(a) RC=0.1 (b) RC =0.3 (b) RC =0.5

(d) RC =0.7 (e) RC =0.9

Fig.13 The impact of OS on the makespan

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 541

lenovo
打字机文本
Z. Zheng, S. M. Lin, Z. Guo, Y. N. Zhu

(a) (b)

Fig.14 The impacts of RC and OS on the makespan

4.5. Impacts of RC and OS on the robustness

The stock charts in Fig.15 and Fig.16 show the impacts of

RC and OS on the robustness. In addition, we combine

the trend lines into Fig.17. From the figures, we can

conclude that: for different combinations of RC and OS,

although the robustness of a class of networks distributes

in a range, the overall trend of the robustness (the dash

lines) increases with RC and OS. When the resource is

ample or the complex of the network is low, the

robustness of schedules will be high.

The results depicted in Fig.17(a) show that, RM is about

twice of RC when . It also can be seen from

Fig.17(b) that RM changes slightly for all values of OS.

That is to say, in general, there exist evident changes of

RM as RC increases until RC reaches a threshold. Hence,

it can be concluded that the robustness is remarkably

impacted by the resource parameter while it is nearly

indifferent with OS.

(a) OS=0.1 (b) OS =0.3 (b) OS =0.5

(d) OS =0.7 (e) OS =0.9

Fig.15 The impact of RC on the RM

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 542

lenovo
打字机文本
Resource-constraint Multi-project Scheduling with Priorities and Uncertain Activity Durations

(a) RC=0.1 (b) RC =0.3 (b) RC =0.5

(d) RC =0.7 (e) RC =0.9

Fig.16 The impact of OS on the RM

(a) (b)

Fig.17 The impacts of RC and OS on the RM

4.6. Relationship between robustness and makespan

To explore the relationship between makespan and

robustness, we first present the following notions to

measure the increasing rate of robustness.

For the jth solution in the ith solution set belonging to a

class of networks, the increasing rate of robustness is

defined as:

where and are the values of RM and

makespan of solution in solution set respectively. In

this research, we suppose that the solutions in each

solution set are sorted according to the makespan in

ascending order (Note, it amounts to that ranks in

descending order simultaneously). In this case, is

always positive. If a solution set contains only one

element, set .

Based on these, the average increasing rate of robustness

for each class of instances is defined as:

 ̅

∑

∑

where is the number of solution sets (instances)

belonging to the same class, and is the number of

solutions of the solution set .

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 543

lenovo
打字机文本
Z. Zheng, S. M. Lin, Z. Guo, Y. N. Zhu

 ̅ reflects the relationship between robustness and

makespan of solutions. If

 ̅ is greater than a threshold,

the robustness fast increases as the makespan becomes

longer and longer. Therefore, it is advantageous to choose

the schedule with long makespan. If the robustness

increases slowly, the schedule with long makespan may

be not favorable. The threshold is related with the

preference of decision makers. As a result, if the decision

makers prefer a robust schedule, a lower threshold is

suggested.

Fig.18 shows the impact of RC and OS on the increasing

rate of robustness when . For each value of ,

the common characteristic of the curves is that the

average increasing rate reaches the maximum point when

 is about 0.2. When is greater than 0.7, the

average increasing rate is even close to zero. Obviously,

 has the same impact on the average increasing rate of

robustness for different class of instances. No matter the

resource is extremely sufficient or scarce, the robustness

increases slowly with the increase of makespan.

Especially, when the resource is scarce (), there

exist little differences on robustness between solutions

under the same set. That is to say, in this case schedules

with relatively long makespan could hardly enhance

robustness, compared with those with short makespan.

The reason may lie in the fact that when resource is ample,

all activities tend to be scheduled in parallel. When

resource is scarce, they tend to execute serially. In both

situations, the differences of makespan and robustness of

schedules in the same solution set incline to disappear.

Fig.18 Impacts of RC and OS on 

5. Results and Discussion

In general, the results of the experiments can be

concluded as follows:

(i) Generally, projects with larger makespan have better

robustness especially when resource is ample.

Reasonable sacrifice of makespan usually offers

more stable schedule. This improvement of

robustness is remarkably when the level of

uncertainty is high. Thus, a decision maker should

choose an appropriate schedule instead of pursuing

an absolutely shortest makespan according to

different project environments.

(ii) As a key factor, the resource constrainedness affects

both the makspan and robustness evidently. If the

resource is ample, the makespan increases sharply as

the amount of resource growing up. However, such

impact becomes slight when the resource is relatively

scarce. Similar laws can also be observed between

the resource and the robustness. With the help of

these observations, a decision maker can estimate the

number of additional resource precisely based on the

original amount of resources.

(iii) The impact of uncertainty on the robustness is

approximately a linear relationship. In realistic

dynamic project environment, the decision maker can

estimate the performance of robustness by the

uncertainty level to take measures upon uncertainty.

(iv) The effects of the order strength on the performance

of scheduling are not as obvious as the uncertainty

levels and resource constrainedness.

6. Conclusion

This paper mainly explores the modeling and solution of

a new resource-constraint multi-project scheduling with

priorities and uncertain activity durations. The robustness

measure of the problem is another focus of this paper.

Experiments are designed to testify the effectiveness of

the proposed solution algorithm, and the impacts of

uncertainty (UL), resource (RC) and network structure

(OS) on the objectives of RCMPSPP are explored with

experiments. Main contributions of this paper can be

concluded as follows:

(i) A resource-constraint multi-project scheduling

problems (RCMPSPP) with priority and uncertain

activity durations is presented;

(ii) A bi-objective model for the problems and its

solution algorithm are proposed;

(iii) A kind of robustness measure for RCMPSPP is

presented and its related project parameters are

given;

(iv) The impacts of the parameters on RCMPSPP are

explored. The obtained experimental conclusions can

be utilized as guidelines for practical applications.

In the future, we will extend our discussion on distributed

multi-project scheduling problem and develop new

solution algorithms to deal with it. Besides, the

robustness analysis will also be extended to the

distributed problem.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 544

lenovo
打字机文本
Resource-constraint Multi-project Scheduling with Priorities and Uncertain Activity Durations

Reference
1. Payne, J.H., 1995. Management of multiple simultaneous

projects: a state-of-the- art review. International Journal of

Project Management, 13 (3), 163–168.

2. Kim K.W., Yun Y.S., Yoon J.M., Gen M., Yamazaki G.,

2005. Hybrid genetic algorithm with adaptive abilities for

resource-constrained multiple project scheduling.

Computers in Industry, 56, 143–160.

3. Yassine A.A., Meier C., Browning T.R., 2007.

Multi-Project Scheduling using Competent Genetic

Algorithms, University of Illinois Department of Industrial

& Enterprise Systems Engineering (IESE) Working Paper.

4. Goncalves J.F., Mendes J.J.M., Resende M.G.C., 2008. A

genetic algorithm for the resource constrained multi-project

scheduling problem, European Journal of Operational

Research, 189, 1171–1190.

5. Lova, A., Tormos, P., 2001. Analysis of scheduling

schemes and heuristic rules performance in

resource-constrained multi-project scheduling. Annals of

Operations Research, 102 (1–4), 263–286.

6. Lova, A., Tormos, P., 2002. Combining random sampling

and backward-forward heuristics for resource-constrained

multi-project scheduling. In: Proceedings of the Eight

International Workshop on Project Management and

Scheduling, Valencia, Spain, April, 244–248.

7. Lova, A., Maroto, C., Tormos, P., 2000. A multi-criteria

heuristic method to improve resource allocation in

multi-project scheduling. European Journal of Operational

Research, 127, 408–424.

8. Browning T.R., Yassine A.A., 2010. Resource-constrained

multi-project scheduling: Priority rule performance

revisited, International Journal of Production Economics,

126, 212–228.

9. Mobini M., Mobini Z., Rabbani M., 2011. An artificial

immune algorithm for the project scheduling problem

under resource constraints, Applied Soft Computing

Journal, 11(2), 1975-1982.

10. Ziarati K., Akbari R., Zeighami V., 2011. On the

performance of bee algorithms for resource-constrained

project scheduling problem, Applied Soft Computing

Journal, 11(4), 3720-3733.

11. Caniėls M.C.J. Bakens R.J.J.M, 2012. The effects of

Project Management Information Systems on decision

making in a multi project environment, 30, 162-175.

12. Scholl D.K.A., 2009. A heuristic solution framework for

the resource constrained (multi-)project scheduling

problem with sequence-dependent transfer times, European

Journal of Operational Research, 197, 492–508.

13. Leus R., 2003. The generation of stable project plans. PhD

thesis, Department of Applied Economics, Katholieke

Universiteit Leuven, Belgium.

14. Hansa E.W., Herroelenb W., Leusb R., Wullink G., 2007.

A hierarchical approach to multi-project planning under

uncertainty, Omega, 35, 563 – 577.

15. Fox B.R., Ringer M., 1995. Planning and scheduling

benchmarks, Homepage (March 6, 1995) posted at

ftp://ftp.neosoft.com/pub/users/b/benchmrx/homepage.html

.

16. Herroelen W., Leus R., 2005. Project scheduling under

uncertainty: Survey and research potentials, European

Journal of Operational Research, 165, 289–306.

17. Van de Vonder S., Demeulemeester E., Herroelen W., Leus

R., 2005. The use of buffers in project management: The

trade-off between stability and makespan, International

Journal of Production Economics, 97, 227–240.

18. Van de Vonder S., Demeulemeester E., Herroelen W.,

2008. Proactive heuristic procedures for robust project

scheduling: An experimental analysis, European Journal of

Operational Research, 189, 723–733.

19. Lambrechts O., Demeulemeester E., Herroelen W., 2007.

A tabu search procedure for developing robust predictive

project schedules. International Journal of Production

Economics, 111 (2), 496–508.

20. Lambrechts O., Demeulemeester E., Herroelen W., 2008.

Proactive and reactive strategies for resource-constrained

project scheduling with uncertain resource availabilities.

Journal of Scheduling, 11 (2), 121–36.

21. Al-Fawzana M.A., Haouari M., 2005. A bi-objective model

for robust resource-constrained project scheduling.

International Journal of Production Economics, 96, 175–

187.

22. Herroelen W., Leus R., 2004. The construction of stable

project baseline schedules. European Journal of

Operational Research, 156, 550–565.

23. Mastor A.A., 1970. An experimental investigation and

comparative evaluation of production line balancing

techniques. Management Science, 16(11), 728-746.

24. Deb K., Pratap A., Agarwal S., Meyarivan T., 2002. A Fast

and Elitist Multiobjective Genetic Algorithm: NSGA-II.

IEEE Trans. On Evolutionary Computation, 6 (2), 182–

197.

25. Hartmann S., 1998. A Competitive Genetic Algorithm for

Resource-Constrained Project Scheduling, Naval Research

Logistics, 45, 733–750.

26. Kolisch R., Sprecher A., Drexl A., 1995. Characterization

and generation of a general class of resource-constrained

project scheduling problems. Management Science, 41,

1693–1703.

27. Demeulemeester E., Vanhoucke M., Herroelen W., 2003.

RanGen: A random network generator for

activity-on-the-node networks. Journal of Scheduling, 6,

17–38.

28. Demeulemeester E., Dodin B., Herroelen W., 1993. A

random activity network generator. Oper. Res., 41, 972–

980.

29. Agrawal M.K., Elmaghraby S.E., Herroelen W., 1996.

DAGEN: a generator of testsets for project activity nets.

European Journal of Operational Research, 90, 376–382.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 545

lenovo
插入号
Acknowledgement
This paper is partially supported by the National Nature Science Foundation of China (NO. 60904066).

lenovo
打字机文本
Z. Zheng, S. M. Lin, Z. Guo, Y. N. Zhu

Appendix A. Distribution of makespan and RM

RC

OS
0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

Fig.19 Distribution of makespan under different settings of RC and OS

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 546

lenovo
打字机文本
Resource-constraint Multi-project Scheduling with Priorities and Uncertain Activity Durations

RC

OS
0.1 0.3 0.5 0.7 0.9

0.1

0.3

0.5

0.7

0.9

Fig.20 Distribution of RM under different settings of RC and OS

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 547

lenovo
打字机文本
Z. Zheng, S. M. Lin, Z. Guo, Y. N. Zhu

