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Abstract

In some cases, the relationship between an object set X and an attribute set Y is set up by means of a fuzzy
context sequence. A particular case of this situation appears when we want to study the evolution of an
L-fuzzy context in time.
In this work, we analyze these situations. First we introduce the fuzzy context sequence definition and
remind the main results about OWA operators. With the aid of these operators, we propose an exhaustive
study of the different contexts values of the sequence using some new relations.
In the second part, we also study the fuzzy context sequences establishing tendencies and temporal pat-
terns.
Finally, we illustrate all the results by means of examples.
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1. Introduction

The L-Fuzzy Concept Analysis analyzes the infor-
mation from an L-fuzzy context by means of the L-
fuzzy concepts. These L-fuzzy contexts are tuples
(L,X ,Y,R), with L a complete lattice, X and Y sets
of objects and attributes, and R ∈ LX×Y an L-fuzzy
relation between the objects and the attributes.

In some situations, we have several relations
between the object set X and the attribute set Y,
making up what we are going to say a fuzzy context
sequence. When this sequence represents an evo-
lution in time we can be more ambitious and try to

predict future tendencies besides studying past be-
haviors. The study of this fuzzy context sequences
will be the main target of this work.

We take as starting point a sequence formed by
the L-fuzzy contexts (L,X ,Y,Ri)i∈I, with I ⊆ N a fi-
nite set, where X and Y are the sets of objects and
attributes respectively, and Ri represents the ith re-
lation between the objects of X and the attributes of
Y .

The final goal is the study of the fuzzy context se-
quence and the derived information by the L-fuzzy
concepts. To do this, we analyze two different sit-

International Journal of Computational Intelligence Systems, Vol. 6, No. 3 (May, 2013), 518-529

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                     518

Administrateur
Texte tapé à la machine
Received 25 May 2012

Administrateur
Texte tapé à la machine
Accepted 11 January 2013

Administrateur
Texte tapé à la machine



C.Alcalde, A.Burusco, R.Fuentes-González

uations: in the first one, we study the values that
emphasize in the L-fuzzy contexts regardless of the
context in which they are, and in the second one, it is
important to maintain the order of the contexts since
they represent an evolution in time.

In this second case, it will be of special interest
the study of the evolution of the attributes by means
of the search of patterns. Works in this line to ana-
lyze the course of time in a Formal context can be
found in 1,2,3.

In 2,3 K.E. Wolff defines the Temporal Concept
Analysis where a Conceptual Time System is intro-
duced such that the state and phase spaces are de-
fined as concept lattices which represent the mean-
ing of the states with respect to the chosen time
description. On the other hand, the authors define
the hidden evolution patterns in 1,4 using temporal
matching in the case of Formal Concept Analysis.

In this paper, we show a new method for L-Fuzzy
Contexts with quantitative data that allows the detec-
tion of some kind of regularity.

There are many applications of this technique.
For instance, we can think of a fuzzy context se-
quence that shows the monthly sports articles sales
in certain shops throughout a period of time. This
study will allow to establish tendencies and patterns
on which we can base to make decisions.

Firstly, we will see some important results in the
L-Fuzzy Concept Analysis.

2. L-fuzzy contexts

The Formal Concept Analysis of R. Wille 5 extracts
information from a binary table that represents a
Formal context (X ,Y,R) with X and Y finite sets of
objects and attributes respectively and R ⊆ X ×Y .
The hidden information consists of pairs (A,B) with
A ⊆ X and B ⊆ Y , called Formal concepts, verify-
ing A∗ = B and B∗ = A, where (·)∗ is a derivation
operator that associates the attributes related to the
elements of A to every object set A, and the objects
related to the attributes of B to every attribute set
B. These Formal Concepts can be interpreted as a
group of objects A that shares the attributes of B.

In previous works 7,8 we have defined the L-
fuzzy contexts (L,X ,Y,R), with L a complete lattice,

X and Y sets of objects and attributes respectively
and R ∈ LX×Y a fuzzy relation between the objects
and the attributes. This is an extension of Wille’s
Formal contexts to the fuzzy case when we want to
study the relations between the objects and the at-
tributes with values in a complete lattice L, instead
of binary values.

In our case, to work with these L-fuzzy contexts,
we have defined the derivation operators 1 and 2
given by means of these expressions:
∀A ∈ LX ,∀B ∈ LY

A1(y) = inf
x∈X
{I (A(x),R(x,y))}

B2(x) = inf
y∈Y
{I (B(y),R(x,y))}

with I a fuzzy implication operator defined in the
lattice (L,6).

Some authors use a residuated implication opera-
tor in their definitions of derivation operators 11,13,16.

The information stored in the context is visu-
alized by means of the L-fuzzy concepts that are
pairs (M,M1) ∈ (LX ,LY ) with M ∈ f ix(ϕ), set of
fixed points of the operator ϕ , being defined from
the derivation operators 1 and 2 as ϕ(M) = (M1)2 =
M12. These pairs, whose first and second compo-
nents are said to be the fuzzy extension and inten-
sion respectively, represent a group of objects that
share a group of attributes in a fuzzy way.

Using the usual order relation between fuzzy
sets, that is,

∀M,N ∈ LX , M 6 N⇐⇒M(x)6 N(x) ∀x ∈ X ,

we define the set L = {(M,M1)/M ∈ f ix(ϕ)} with
the order relation � defined as:
∀(M,M1),(N,N1) ∈L ,

(M,M1)� (N,N1) if M 6 N( or N1 6 M1)

As ϕ is an order preserving operator, by the the-
orem of Tarski 6, the set f ix(ϕ) is a complete lattice
and then (L ,�) is also a complete lattice that is said
to be 7,8 the L-fuzzy concept lattice.

On the other hand, given A ∈ LX , (or B ∈ LY ) we
can obtain the associated L-fuzzy concept applying
twice the derivation operators. In the case of using a
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residuated implication, as we do in this work, the as-
sociated L-fuzzy concept is (A12,A1) (or (B2,B21)).

Other important results about this theory are in
9,10,11,12,13,14,15,16.

3. Fuzzy context sequences

In this section we are interested in the study of the
fuzzy context sequences. We are going to see the
formal definition:

Definition 1. A fuzzy context sequence is a tuple
(L,X ,Y,Ri)i∈I with L = [0,1] a complete lattice, X
and Y sets of objects and attributes respectively and
Ri ∈ LX×Y ,∀i ∈ I, with I ⊆ N a finite set.

In the case that we want to define a new L-fuzzy
context that summarizes the information of the dif-
ferent contexts of the sequence, we have to aggre-
gate the observations of the relations Ri. Thus, we
can use the average (with or without weight), obtain
the intervals whose lower bound is the minimum of
the observations and the upper one the maximum of
them, obtaining an interval-valued L-fuzzy context,
or working with multivalued contexts. We have de-
veloped these ideas in previous works 17,18.

The use of weighted averages 19,20 to summarize
the information stored in the different relations al-
lows us to associate different weights to the L-fuzzy
contexts highlighting some of them. Thus, the new
relation R is defined as:

R(x,y) = ∑
i∈I

wi.Ri(x,y),∀x ∈ X ,y ∈ Y

verifying, as is required by the definition, that
∑
i∈I

wi = 1, ∀(wi)i∈I ,

However, it is possible that some observations of
an L-fuzzy context of the sequence are interesting
whereas others not so much. For instance, as we
studied in 21, the used methods for obtaining the L-
fuzzy concepts do not give good results when we
have very low values in some relations.

On the other hand, to study similar situations by
means of multivalued contexts in 17 we used multi-
sets and expertons. In that case, all the observations
were analyzed globally without the establishment of

different studies based on different exigency levels.
This is one of the new contributions of this work.

Let us see the following example.

Example 1. Let (L,X ,Y,Ri)i∈I be a fuzzy context
sequence that represents the sales of sports articles
(X) in some establishments (Y ) throughout a period
of time (I), and we want to study the places where
the main sales hold taking into account that there are
seasonal sporting goods (for instance skies, bathing
suits) and of a certain zone (it is more possible to
sale skies in Colorado than in Florida).

In this case, the weighted average model is not
valid since it is very difficult to associate a weight to
an L-fuzzy context (in some months more bath suits
are sold whereas, in others, skies are).

To analyze this situation, it could be interesting
the use of the OWA22,23 operators with the most of
the weights near the largest values. In this way, we
give more relevance to the largest observations, in-
dependently of the moment when they have taken
place and, on the other hand, we would avoid some
small values in the resulting relations (that can give
problems in the calculation of the L-fuzzy concepts
as has been already studied in 21).

These are the definitions of these operators given
by Yager 22:

Definition 2. A mapping F from Ln −→ L,
where L = [0,1] is called an OWA operator of
dimension n if associated with F is a weighting
n-tuple W = (w1,w2 . . .wn) such that wi ∈[0,1]
and ∑

16i6n
wi = 1, where F(a1,a2, . . .an) = w1.b1 +

w2.b2 + · · ·+wn.bn, with bi the ith largest element
in the collection a1,a2, . . .an.

There are two particular cases of special interest:
W∗ defined by the weighting n-tuple with wn = 1

and w j = 0,∀ j 6= n, and W ∗ defined by the weighting
n-tuple such that w1 = 1 and w j = 0,∀ j 6= 1.

It is proved that F∗(a1,a2, . . .an) = min j(a j) and
F∗(a1,a2, . . .an) = max j(a j). These operators are
said to be and and or, respectively.

In order to do a more general study of the fuzzy
context sequence, we are interested in the use of op-
erators close to or. To measure this proximity we
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can use the orness degree definition given by 22:

Definition 3. Let F be an OWA aggregation opera-
tor with an n-tuple of weights W = (w1,w2, . . .wn).
The orness degree associated with this operator is
defined as:

orness(W ) = (1/n−1)
n

∑
i=1

((n− i).wi)

Example 2. If we take the n-tuple of weights
W = (1,0,0, . . .0), then orness(W ) = 1, and if
W = (0,0,0, . . .1), then orness(W ) = 0.

Modifying the weights of these OWA operators
we can go from the minimum (for all) to the maxi-
mum (exists) although neither of the bounds are the
most interesting in our opinion because both rep-
resent a biased information. Really, by means of
these OWA operators, we are representing quanti-
fiers (most, at least the half, etc.)

Returning to the initial situation and using these
OWA operators, we can give the following definition
that summarizes the information stored in the fuzzy
context sequence:

Definition 4. Let (L,X ,Y,Ri)i∈I be the fuzzy con-
text sequence and F an OWA aggregation operator.
We can define an L-fuzzy relation RF that aggregates
the information of the different L-fuzzy contexts, in
the case that we want to study the largest values, by
means of this expression:

RF(x,y) =F(R1(x,y),R2(x,y) . . .R|I|(x,y)) =

=w1.b1 +w2.b2 + · · ·+w|I|.b|I|,

∀x ∈ X ,y ∈ Y

where W = (w1,w2, . . .w|I|) is the weighting tuple
associated with F .

There are two special interesting cases:

• W verifying that orness(W ) is larger than a thresh-
old that we want to establish.

• W such that wi = 1/k, if i 6 k and wi = 0, if i > k.
That is, the average of the k largest values (with
k ∈ N,k 6 |I|)

In the next section we apply these OWA opera-
tors to the L-fuzzy contexts to study the values that
stand out in the L-fuzzy contexts and to analyze ten-
dencies when the sequence represents the evolution
in time.

3.1. The fuzzy context sequence general study

For a more exhaustive study of the fuzzy context se-
quence, we can define |I| relations associated with
the different demand levels using OWA operators
where the weighting tuple W has just one non-null
value wk = 1, for a certain k 6 |I|.

Definition 5. Given a fuzzy context sequence
(L,X ,Y,Ri)i∈I with X and Y sets of objects and at-
tributes respectively and Ri ∈ LX×Y ,∀i∈ I, and given
a certain k∈N,k 6 |I|, we define the relation R(k) us-
ing an OWA operator Fk with the weighting tuple W
such that wk = 1 and wi = 0,∀i 6= k.

RFk(x,y) = Fk(R1(x,y),R2(x,y) . . .R|I|(x,y)),

∀x ∈ X ,y ∈ Y.

To simplify the following notations, we will denote
by R(k) this relation RFk .

Another way to express this definition is:

R(k)(x,y) = minJk
xy

where Jk
xy is the set formed by the k largest values

associated with the pair (x,y) in the Ri relations.
In this way, we are saying that there are at least k

observations larger than or equal to the values of the
relation R(k). So, this relation measures the degree
in which x is at least k times related to y.

We have chosen the minimum OWA operator in
this definition, but it could be possible to use another
one if we want to be less demanding.

Example 3. We come back to the fuzzy context se-
quence (L,X ,Y,Ri)i∈I of Example 1 that represents
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the sports articles sales X = {x1,x2,x3} in some es-
tablishment Y = {y1,y2,y3} during a period of time.
In the following relations Ri, i ∈ I, that have values
in L = [0,1], the percentage of product sales in each
establishment based on the stock during the last 5
months are gathered.

R1 =

 0.7 1 0.8
0 0.1 0.1
0 0.1 0

R2 =

 1 0.8 1
0.2 0.4 0.1
0 0 0.2



R3 =

 1 1 1
0.6 0.5 0.7
0 0.1 0.2

R4 =

 0.5 0.4 0.6
0.1 0.5 0.3
0.6 0.8 0.8



R5 =

 0.1 0 0
0 0.1 0

0.8 1 0.9


First, by means of the L-Fuzzy Concept Analy-

sis, we want to study in what establishments there
are greater sales of each product without mattering
when the sale has been carried out.

As we have expressed before, there are seasonal
sporting goods that are sold in certain periods of
time and not in others (skies, bathing suits . . . ).
Therefore, try to summarize the information of the
family of L-fuzzy concepts by means of the aver-
age, for instance, would not give good results (if a
product is only sold during a pair of months in the
year, the average with the other months would give
a value close to 0 and we would not obtain good re-
sults applying the L-Fuzzy Concept Analysis).

On the other hand, if we fix the demand level for
instance to k = 2 and use Definition 5, then we have
the following relation:

R(2) =

 1 1 1
0.2 0.5 0.3
0.6 0.8 0.8


Now, we take the L-fuzzy context (L,X ,Y,R(2)) and
obtain the L-fuzzy concepts associated with the crisp
singletons {x1} and {x3} using the Lukasiewicz im-
plication operator (I (a,b) = min(1,1−a+b)):

{x1} −→ ({x1/1,x2/0.2,x3/0.6},{y1/1,y2/1,y3/1})
{x3} −→ ({x1/1,x2/0.5,x3/1},{y1/0.6,y2/0.8,y3/0.8})

In this case, we can say that article x1 has been
successfully sold in the three establishments, at least
during two months, and that there are, at least in two
months, high sales of articles x1 and x3, more in the
establishments y2 and y3.

As the chosen implication operator is the
Lukasiewicz one, the membership degree of the
fuzzy intension of the L-fuzzy concepts is coincident
with the rows of the L-fuzzy relation. This coinci-
dence does not hold when we are using a different
implication operator. Moreover, in all the cases we
obtain a more complete information by means of the
fuzzy extension.

Analogously, we can take other different k levels.

In particular, the computation of the L-fuzzy
concepts associated with R(1) allows to analyze in
what stores the main sales of each article during a
month (independent of the month) have taken place.
If we take relation R(k)with k > 1 we are relaxing the
exigency taking the k greater sales for our study.

These studies allow us to ignore the small values
of the relations (the sales of a non-seasonal sport-
ing goods are close to 0) since, in this case, if we
take the average of the relations, the results will be
biased.

The observation of these L-fuzzy concepts gives
the idea for the following propositions:

Proposition 1. Consider k ∈ N, with k 6 |I|.
If (A,B) is an L-fuzzy concept of the L-fuzzy con-
text (L,X ,Y,R(k)), then ∀h ∈ N,h 6 k, there exists
an L-fuzzy concept (C,D) of the L-fuzzy context
(L,X ,Y,R(h)) such that A 6C and B 6 D.

Proof. If k = h, then it is obvious.
Otherwise, when h < k, R(k)(x,y) 6

R(h)(x,y) ∀(x,y) ∈ X×Y. That is, R(k) 6 R(h).
Thus, the L-fuzzy set B derived from A in
(L,X ,Y,R(k)) is a subset of the L-fuzzy set D de-
rived from A in (L,X ,Y,R(h)). Therefore, B 6 D.

Now, we derive again D in (L,X ,Y,R(h)), obtain-
ing the set C (C=D2) and, applying the properties
of this closure operator formed by the composition
of the derivation operators 11: A 6 A12 = D2 = C.
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Therefore, the other inequality also holds. More-
over, it is obvious that if we use a residuated implica-
tion operator the obtained pair (C,D) is an L-fuzzy
concept.

The following result sets up relations between
the L-fuzzy concepts associated with the same start-
ing set (see section 2) in the different L-fuzzy con-
texts.

Proposition 2. Consider k,h ∈N, with k,h 6 |I| and
consider A ∈ LX . (Ak,Bk) and (Ah,Bh) are the L-
fuzzy concepts associated with A in the L-fuzzy con-
texts (L,X ,Y,R(k)) and (L,X ,Y,R(h)) respectively. If
k 6 h then Bk > Bh.

Moreover, if I is a residuated implication oper-
ator and the set A is the crisp singleton {xi}:

A(x) =

{
1 if x = xi

0 otherwise

then, Ak(xi) = Ah(xi) = 1.
A similar result is obtained taking as a starting

point an L-fuzzy set of attributes B ∈ LY .

Proof. Consider A ∈ LX . Unfolding the fuzzy ex-
tensions of both L-fuzzy concepts, and taking into
account that a fuzzy implication operator is increas-
ing on its second argument:

Bk(y) = inf
x∈X
{I (A(x),R(k)(x,y))}

> inf
x∈X
{I (A(x),R(h)(x,y))}= Bh(y)

This result holds for every A and for every impli-
cation operator.

On the other hand, if we take a crisp singleton:

A(x) =

{
1 if x = xi

0 otherwise

and a residuated implication, then the membership
degree of xi in the fuzzy extension of the L-fuzzy
concepts is equal to 1:

Bk(y) = inf
x∈X
{I (A(x),R(k)(x,y))}= R(k)(xi,y)

Ak(x) = inf
y∈Y
{I (Bk(y),R(k)(x,y))}

= inf
y∈Y
{I (R(k)(xi,y),R(k)(x,y))}.

Therefore, Ak(xi) = 1.

Similarly, the result for the other L-fuzzy set can
be proved.

However, the inequality Ak 6 Ah does not al-
ways hold, as can be seen if we come back to the
previous example and we compare the fuzzy ex-
tension A(x) = {x1/1,x2/0,x3/0} of the derived L-
fuzzy concept in the L-fuzzy contexts (L,X ,Y,R(2))
and (L,X ,Y,R(4)) :

In (L,X ,Y,R(2)), the result is A2 =
{x1/1,x2/0.2,x3/0.6} whereas in (L,X ,Y,R(4)) we
get A4 = {x1/1,x2/0.5,x3/0.5}.
In the following section, we introduce the variable
time in our study.

3.2. Temporal analysis of the fuzzy context
sequence

Fixed k ∈ I, and a pair (x,y), with x ∈ X and y ∈ Y,
Definition 5 uses the minimum of the k largest obser-
vations Ri(x,y), i ∈ I, of the fuzzy context sequence,
but does not allow to make an analysis of their evo-
lution in time.

In this section, we approach this subject by
means of studies that analyze tendencies as well as
patterns.

3.2.1. Temporal trends

The following definition takes the minimum value of
the relations between each object and each attribute
from an instant h.

Definition 6. Let (L,X ,Y,Ri)i∈I be a fuzzy context
sequence with X and Y sets of objects and attributes
respectively and Ri ∈ LX×Y . We define an L-fuzzy
relation R(h) (with the notation adopted in Definition
5), using an OWA operator F with a weighting tuple
W of dimension k = |I|−h+1 with wk = 1 the only
non-null value:

R(h)
(x,y) = F(Rh(x,y),Rh+1(x,y) . . .R|I|(x,y)),

∀x ∈ X ,y ∈ Y.
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In other words:

R(h)
(x,y) = min

i>h
{Ri(x,y)},∀x ∈ X ,y ∈ Y

As in the previous section, instead of the mini-
mum (that is very demanding) we can take the max-
imum, the average or other aggregation operators
changing the weighting tuple W of the OWA oper-
ator.

Example 4. If we come back to the previous exam-
ple and we want to study tendencies of the sequence,
we can take a value h and analyze the L-fuzzy con-
cepts.

For instance, if h = 4, we have the L-fuzzy rela-
tion:

R(4)
=

 0.1 0 0
0 0.1 0

0.6 0.8 0.8


and, taking as L-fuzzy context (L,X ,Y,R(4)

) and
using the Lukasiewicz implication to obtain the L-
fuzzy concepts associated with the crisp singletons,
we have the following results:

{x1} −→ ({x1/1,x2/0.9,x3/1},{y1/0.1,y2/0,y3/0})
{x2} −→ ({x1/0.9,x2/1,x3/1},{y1/0,y2/0.1,y3/0})
{x3} −→ ({x1/0.2,x2/0.2,x3/1},{y1/0.6,y2/0.8,y3/0.8})

We can say that the future tendency is that only
article x3 will have good sales in all the establish-
ments whereas x1 and x2 will not be sold much and
always associated with x3, the first one in the estab-
lishment y1 essentially, and the second one in y2.

Obviously, the smaller is the value of h, the safer
will be the prediction that we do.

Moreover, we can establish comparisons be-
tween the different L-fuzzy concepts obtained from
the different relations R(i)

,∀i ∈ I.

Proposition 3. Consider A ∈ LX . Let (Ak
,Bk

) and
(Ah

,Bh
) be the L-fuzzy concepts associated with A in

the L-fuzzy contexts (L,X ,Y,R(k)
) and (L,X ,Y,R(h)

)

respectively, with k,h 6 |I|. If k 6 h then Bk
6 Bh.

Moreover, if we use a residuated implication op-
erator I and a crisp singleton A, then

Ak
(xi) = Ah

(xi) = 1

with xi the element of X where the crisp singleton A
takes value 1.

A similar result is obtained taking as a starting
point an L-fuzzy set of attributes B ∈ LY .

Proof. Similar to Proposition 2 taking into account
that, in this case, if k 6 h then R(k)

6 R(h)
.

The meaning of this result is that if we look at
the fuzzy intensions obtained for the different L-
fuzzy contexts of the sequence, then they form a
non-decreasing chain ∀y ∈ Y.

Example 5. In our example, the L-fuzzy con-
cepts obtained taking as a starting point the crisp
singleton {x3} in the L-fuzzy contexts (L,X ,Y,R(4)

)

and (L,X ,Y,R(5)
), using the Lukasiewicz implica-

tion operator, are:

R(4) : ({x1/0.2,x2/0.2,x3/1},{y1/0.6,y2/0.8,y3/0.9})

R(5) : ({x1/0,x2/0.1,x3/1},{y1/0.8,y2/1,y3/0.9})

verifying the previous proposition.

On the other hand, since if an object and an at-
tribute are related from instant h, they are related
at least |I| − h+ 1 times, hence a similar result be-
tween the L-fuzzy concepts obtained using Defini-
tion 5 and 6 can be seen.

Proposition 4. If we take as starting point A ∈ LX ,

then for any h ∈ I, the fuzzy intension Bh of the
L-fuzzy concept (Ah

,Bh
) obtained in (L,X ,Y,R(h)

)
is included in the fuzzy intension Bk of the L-fuzzy
concept (Ak,Bk) obtained in (L,X ,Y,R(k)) with k =
|I|−h+1. That is,

Bh
(y)6 Bk(y), ∀y ∈ Y

We have also a similar result from B ∈ LY .

Proof. Immediate using the previous proposition
proof and the inequality R(h)

6 R(k) with k = |I| −
h+1.
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Example 6. If we take h = 4 and k = 2, and the L-
fuzzy contexts (L,X ,Y,R(4)

) and (L,X ,Y,R(2)), then
taking as a starting point the object x1 and using the
Lukasiewicz implication operator, the following L-
fuzzy concepts are obtained:

R(4) : ({x1/1,x2/0.9,x3/1},{y1/0.1,y2/0,y3/0})
R(2) : ({x1/1,x2/0.2,x3/0.6},{y1/1,y2/1,y3/1})

And the previous proposition holds.

An important result is the one that allows the
study of the attributes associated with some ele-
ments of X from an instant h in two different ways:

Theorem 5. Given A a crisp subset of X, and I a
residuated implication.

The fuzzy intension Bh ∈ LY of the L-fuzzy con-
cept derived from A in (L,X ,Y,R(h)

) is equal to
the intersection of the fuzzy intensions Bi of the
L-fuzzy concepts obtained in the L-fuzzy contexts
(L,X ,Y,Ri) with i > h. That is,

Bh
(y) = min

i>h
Bi(y), ∀y ∈ Y

Proof. If we use a residuated implication operator
I , then we have that ∀y ∈ Y :

Bh
(y)= inf

x∈X
{I (A(x),R(h)

(x,y))}= min
x∈X/A(x)=1

R(h)
(x,y)

By the definition of Rh
(x,y) we can say that:

Bh
(y) = min

x∈X/A(x)=1
{min

i>h
{Ri(x,y)}}=

=min
i>h
{ min

x∈X/A(x)=1
{Ri(x,y)}}= min

i>h
Bi(y).

This result can be generalized replacing the min-
imum by any OWA operator in the proposition and
in the definition of the relations R(h)

.

Remark 1. This proposal justifies the utility of
the defined relations R(h) since allows the study
of the attributes associated with some objects from
an instant h looking only at the L-fuzzy context
(L,X ,Y,R(h)

) instead of all the L-fuzzy contexts of
the sequence.

3.2.2. Temporal patterns

In this section, we want to study temporal patterns
in the sense of 1 to identify the evolution of a set of
contexts with time.

Our interest is the study of tendencies of the at-
tributes with respect to one or several objects by
means of new definitions (these attributes do not
necessarily share those objects in a certain L-fuzzy
concept).

We will also use here residuated implication op-
erators in the calculus of the L-fuzzy concepts asso-
ciated with determined objects.

We are going to see a first definition.

Definition 7. Consider x0 ∈ X and A ∈ LX the sin-
gleton {x0}. Consider (Ai,Bi) the L-fuzzy concepts
associated with A in the fuzzy context sequence
(L,X ,Y,Ri) with i ∈ I.

The attribute set whose membership degrees
in the different L-fuzzy concepts (Ai,Bi) are non-
decreasing, ∀i ∈ I, is said to be Trend(x0) :

Trend(x0) = {y ∈ Y /Bi(y)6 Bi+1(y),∀i < |I|}

Example 7. If we come back to Example 3 and
obtain the fuzzy intensions of the L-fuzzy concepts
derived from x1,x2 and x3, then we have:

Trend(x1) = /0
Trend(x2) = /0
Trend(x3) = {y1,y3}
This is a very demanding definition but it allows

to establish patterns with a high degree of fulfill-
ment.

We can extend this definition to any crisp subset
of X :

Definition 8. For all Z ⊆ X , we define:

Trend(Z) = {y ∈ Y /Bxi(y)6 Bxi+1(y),∀i < |I|,∀x ∈ Z}

where Bxi is the fuzzy intension of the L-fuzzy con-
cept obtained taking the crisp singleton associated
with x ∈ Z in the L-fuzzy context (L,X ,Y,Ri).
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As a particular case, we have the set Trend(X)
for which the following result is provided:

Proposition 6. It is verified that Trend(X) = Y if
and only if the L-fuzzy relations R(k) and R(h) de-
fined in Definitions 5 and 6, and Rh given in the
fuzzy context sequence definition, are coincident for
all k,h ∈ I such that k = |I|−h+1.

Proof. If ∀y ∈ Y, it is verified that y ∈
Trend(x)∀x ∈ X , then this means that ∀y ∈ Y,∀x ∈
X ,Bxi(y) 6 Bxi+1(y),∀i < |I| where Bxi is the fuzzy
intension of the L-fuzzy context derived from the
crisp singleton associated with x ∈ X in the L-fuzzy
context (L,X ,Y,Ri).

This is equivalent to
Ri(x,y) 6 Ri+1(x,y),∀x ∈ X ,∀y ∈ Y,∀i < |I| ⇐⇒
R(k)(x,y) = R|I|−k+1(x,y) = min

i>h
{R(x,y)}=

= R(h)
(x,y).

Remark 2. This is a particular but very interesting
case for some practical situations. In our example,
as the L-fuzzy contexts store sales, then we are say-
ing that the sales are always increasing.

In most of the cases, this result only holds for
some values of x and y.

As particular cases, we have Trend(x0) = Y and
Trend(X) = y0. In the first case, all the L-fuzzy re-
lations of the sequences are non-decreasing for row
x0, that is, the membership degrees of the attributes
are non-decreasing for all the L-fuzzy concepts as-
sociated with x0 in the different L-fuzzy contexts of
the sequence. In the second case, the same is veri-
fied for attribute y0.

Next, by means of the following result, we prove
that if the attributes are Trend, then the membership
degrees of the L-fuzzy concepts obtained from Ri

and R(i) are coincident for a crisp singleton. This
result does not hold if the attributes are not Trend,
therefore, the study of the L-fuzzy relations R(i)

when we want to study future tendencies will be
very important in that case.

Proposition 7. Given x0 ∈ X and A ∈ LX the sin-

gleton {x0}. Consider (Ai,Bi) and (Ai
,Bi

),∀i ∈ I,
the L-fuzzy concepts associated with A in the L-fuzzy
contexts (L,X ,Y,Ri) and (L,X ,Y,R(i)

), respectively.
The attribute y ∈ Trend(x0) if and only if Bi(y) =
Bi
(y),∀i < |I|.

Proof. =⇒] If y ∈ Trend(x0), then Bi(y) 6
Bi+1(y),∀i < |I|. Moreover Bi(y) = Ri(x0,y),∀i ∈ I
then, we can say that Ri(x0,y)6 Ri+1(x0,y),∀i < |I|.
So, ∀i ∈ I, Bi

(y) = R(i)
(x0,y) = min

k>i
{Rk(x0,y)} =

Ri(x0,y) = Bi(y).
⇐=] If Bi(y) = Bi

(y),∀i < |I|, as by defini-
tion Bi

(y) = R(i)
(x0,y) and the L-fuzzy relations

R(i)
(x0,y)6 R(i+1)

(x0,y),∀i ∈ |I|, we can prove that
Bi(y)6 Bi+1(y),∀i < |I|. Therefore, y ∈ Trend(x0).

As we can see in the following example, the
equality does not hold if y /∈ Trend(x0).

Example 8. If we take, for instance, x3 and we cal-
culate the fuzzy intensions of the L-fuzzy concepts
for the different L-fuzzy relations Ri, i∈ I, we obtain
the following results:

B1 = {y1/0,y2/0.1,y3/0}
B2 = {y1/0,y2/0,y3/0.2}
B3 = {y1/0,y2/0.1,y3/0.2}
B4 = {y1/0.6,y2/0.8,y3/0.8}
B5 = {y1/0.8,y2/1,y3/0.9}

In this case, y1 and y3 are Trend attributes for x3
whereas y2 not.

Now, if we obtain the fuzzy intensions in the L-
fuzzy contexts associated with the L-fuzzy relations
R(i) we have:

B1
= {y1/0,y2/0,y3/0}

B2
= {y1/0,y2/0,y3/0.2}

B3
= {y1/0,y2/0.1,y3/0.2}

B4
= {y1/0.6,y2/0.8,y3/0.8}

B5
= {y1/0.8,y2/1,y3/0.9}

We can see that

Bi(y1) = Bi
(y1),Bi(y3) = Bi

(y3),∀i < |I|,
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but B1(y2) 6= B1
(y2).

In same cases, for instance when |I| is very large,
a partial study throughout a time interval can be in-
teresting:

Definition 9. Consider x0 ∈ X and i1, i2 ∈ I such
that i1 6 i2.

Trend[i1,i2](x0) = {y∈Y /Bi(y)6 Bi+1(y),∀i, i1 6 i < i2}

That is, this is the set of attributes whose mem-
bership degrees are non-decreasing in the fuzzy in-
tensions of the L-fuzzy concepts derived from the
L-fuzzy contexts (L,X ,Y,Ri), with i1 6 i 6 i2.

Example 9. If we fix [i1, i2] = [1,3] in the previous
example, we have:

Trend[1,3](x1) = {y1,y3}
Trend[1,3](x2) = {y1,y2,y3}
Trend[1,3](x3) = {y1,y3}

Therefore:
Trend[1,3](x1,x2,x3) = {y1,y3}

As a consequence of Proposition 7 we can estab-
lish the following corollary:

Corollary 8. Given x0 ∈ X and A ∈ LX the singleton
{x0}. Consider (Ai,Bi) and (Ai

,Bi
),∀i∈ I, i1 6 i6 i2

the L-fuzzy concepts associated with A in the L-fuzzy
contexts (L,X ,Y,Ri) and (L,X ,Y,R(i)

), respectively.
The attribute y ∈ Trend[i1,i2](x0) if and only if

Bi(y) = Bi
(y),∀i ∈ I, i1 6 i < i2.

The intervals where i2 = |I| are of special inter-
est since we are studying future tendencies in that
case, what will allow to establish a relationship with
relations R(i)

.
As the definition of Trend is very demanding, we

can give a second one:

Definition 10. Consider x0 ∈ X and A ∈ LX the sin-
gleton {x0}. Let (Ai,Bi) be the L-fuzzy concepts
associated with A in the fuzzy context sequence
(L,X ,Y,Ri) with i ∈ I :

Persistent(x0) = {y ∈ Y /Bi(y)> B1(y),∀i,1 < i 6 |I|}

is the set of attributes whose membership degrees in
the fuzzy intensions of the L-fuzzy concepts (Ai,Bi)

with i ∈ I are bigger than or equal to the values of
the L-fuzzy concept (A1,B1).

In the same conditions:

Transient(x0) = {y ∈ Y/y /∈ Persistent(x0)}.

Example 10. In our example:
Persistent(x1) = /0, Transient(x1) = {y1,y2,y3}
Persistent(x2) = {y1,y2}, Transient(x2) = {y3}
Persistent(x3) = {y1,y3}, Transient(x3) = {y2}

As can be seen, the main difference between
Trend and Persistent for this example is in object x2
(we remind that Trend(x2) = /0). That is, there is no
establishment with increasing sales although these
sales are bigger than the ones of the first month.

With this definition, Propositions 6 and 7 are not
necessarily verified, as can be seen in the following
example:

Example 11. Let us suppose that we have a fuzzy
context sequence (L,X ,Y,Ri) with i = 1,2,3 associ-
ated with the L-fuzzy relations:

R1 =

(
0.3 0.2
0.8 0.5

)
R2 =

(
0.5 0.4
0.8 0.6

)

R3 =

(
0.4 0.9
1 0.7

)
In this case, we can say that Persistent(X) =Y since
the fuzzy intensions of the L-fuzzy concepts associ-
ated with x1 and x2 in R2 and R3 are bigger than or
equal to the R1 ones. However, if we take R(2) and
R(2), we have the following result:

R(2)
=

(
0.4 0.4
0.8 0.6

)
R(2) =

(
0.4 0.4
0.8 0.6

)
that is, they are not equal to R2. Therefore, the
Persistent definition does not verify Proposition 6.

Neither Proposition 7 is fulfilled as we are going
to see:

Consider A = {x1/1,x2/0}. Let B2 =

{y1/0.5,y2/0.4} and B(2)
= {y1/0.4,y2/0.4} be the

fuzzy intensions of the L-fuzzy concepts associ-
ated with A in the L-fuzzy contexts (L,X ,Y,R2)
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and (L,X ,Y,R(2)
). Then, y1 ∈ Persistent(x1) but

B2(y1) 6= B(2)
(y1).

Also in this case we can establish definitions in a
certain interval:

Definition 11. Consider x0 ∈ X and i1, i2 ∈ I such
that i1 6 i2.

Persistent[i1,i2](x0)= {y∈Y /Bi(y)>Bi1(y),∀i, i1 < i6 i2}

The Persistent definition is related to Definitions
5 and 6, verifying the following result:

Proposition 9. Given i0 ∈ I, Persistent[i0,|I|](X) =Y,

if and only if the L-fuzzy relations R(k) and R(i0) de-
fined in 5 and 6 and Ri0 given in the fuzzy context se-
quence definition, are coincident for k = |I|− i0+1.

Proof. If ∀y ∈ Y, y ∈ Persistent[i0,|I|](x)∀x ∈ X ,
then ∀y ∈ Y,∀x ∈ X ,Bxi(y)6 Bxi0

(y),∀i < |I|, i > i0,
where Bxi is the fuzzy intension of the L-fuzzy con-
cept derived from the crisp singleton associated with
x ∈ X in the L-fuzzy context (L,X ,Y,Ri).

That is equivalent to Ri(x,y) > Ri0(x,y),∀x ∈
X ,∀y ∈ Y,∀i ∈ |I|, i > i0 ⇐⇒ given k = |I| − i0 +
1,R(k)(x,y) = R|I|−k+1(x,y) = Ri0 = min

i>i0
{R(x,y)}=

R(i0)(x,y).

In particular, when i0 = 1 we have that
Persistent(X) = Y ⇐⇒ R(|I|) = R(1)

= R1.

Finally, we have to say that neither in the defi-
nition of Trend(x0) nor in the Persistent(x0) one, a
high membership degree (close to 1) for the attribute
in the L-fuzzy concepts is demanded, which would
assure somehow that this is an attribute associated
with the object x0.

4. Conclusions and future work

In this work, we have used OWA operators to study
the fuzzy context sequence and the derived informa-
tion by means of the L-fuzzy contexts.

After that, we have studied tendencies and pat-
terns that we find when the sequence represents the
evolution in the course of time of an L-fuzzy con-
text. In the future we want to study if there are more
suitable fuzzy definitions for this situation.

On the other hand, these L-fuzzy contexts that
evolve with time can be generalize if we study L-
fuzzy contexts where the observations are other L-
fuzzy contexts. This is the task that we will study in
the future.

Finally we will try to apply these results to the
interval-valued fuzzy context sequences.
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