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Abstract

This paper identifies a new paradigm of prediction,Agile Predictionof ongoing temporal sequences,
which achieves an acceptable accuracy just by the historical subsequences as short as possible and as close
to the predicted time point as possible. To address agile prediction, a new concept,Dominative Random
Subsequence(DRS for short), is first introduced to capture the local influence and local regularity of the
subsequences that are decisive to the future of an ongoing temporal sequence. DRS mining algorithm,
MDRS, and its optimal implementation OptMDRS, are also presented. In MDRS and OptMDRS, DRSs
are organized as a suffix tree, DRS-Tree, to facilitate the retrieval. Next, this paper proposes an agile
prediction algorithm, AgilePredict, to make accurate predictions based the DRS that is closest to the
predicted time point. Finally, the results of the extensive experiments conducted on synthetic and real
data sets show that our proposed method is feasible and efficient for agile prediction.
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1. Introduction

Recently, temporal sequences have been constantly
emerging with different forms in a large range of
applications, such as location-based service (trajec-
tories), disease diagnosis (medical records), online
recommender system (click streams) and intrusion
detecting system (trace of system calls), etc. In such
applications, it plays a valuable role to timely pre-
dict the coming elements of an ongoing temporal
sequence with an acceptable accuracy and based on
the historical data as short as possible and as close to

the predicted time point as possible, since it makes
these applications interact with users (or environ-
ment) more smartly and more promptly. For ex-
ample, if the next location of a moving person can
be predicted accurately and timely, it is possible to
provide more targeted information of traffic and rec-
ommend the practically optimal route in time. In
disease diagnosis, timely predicting the prognosis of
disease by as few examinations as possible is always
desired for the improvement of cure rate and survival
rate. In intrusion detecting systems, predicting the
next system call without delay by as short history of
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system calls as possible is crucial to discern an at-
tack and act promptly before the losses. At last, in
online recommender systems, it is desired to predict
the products of interest to a user based on his/her
browsing history as short as possible.

In this paper, the prediction with an acceptable
accuracy and based on the historical subsequences
as short as possible and as close as possible to the
predicted time point is identified as a new paradigm
of prediction, Agile Prediction, for its feature of
agility which makes it different from the traditional
predictions on three aspects: (1) the accuracy should
be high enough to be acceptable; (2) the length of the
historical subsequences should be short enough to
save the computing time; (3) the distance of the his-
torical subsequence to predicted time point should
be also short enough to ensure the timeliness of pre-
diction.

Despite a few of methodologies aiming at the
prediction of temporal sequences have been pro-
posed recent years, they often require the whole or
nearly whole history of the ongoing sequence as
input before an accurate prediction can be made,
which makes them not always suitable for the agile
prediction due to the following challenges:

• It is impractical to examine the whole history in
some settings, especially under space constraints,
e.g., streaming environment where only a small
piece of history can be saved in memory at any-
time.

• Even the whole historical data are available, to
check every historical element is time-consuming.

• The whole historical data often contain noise,
which leads to the risk of over-fitting.

• Agile prediction requires a tradeoff among the ac-
curacy, the length of the historical subsequences,
and the distance of the historical subsequences to
the predicted time point, since longer the histori-
cal subsequences, higher the prediction accuracy,
worse the agility.

This paper exploits a novel approach to over-
come the above challenges. Our idea is inspired
by the observation thatnot all the historical time
points are equally important for the future of an on-
going temporal sequence. For example, people’s life

can be segmented into a various of stages in which
only few stages are critical to his/her future because
different choices made at these critical stages fate-
fully bring a different life. As another example, the
future trajectory of a moving object is also depen-
dent on few critical time points at which the posi-
tions of the object shape the future of the trajectory.
So, instead of extracting the features consisting of
concrete elements, like such as sequential patterns,
we focus our attention on the critical time points in
the history of an ongoing temporal sequence. We
call the subsequence consisting of the critical time
pointsDominative Random Subsequence(DRS for
brevity). Specifically, DRSs have the following two
temporal effects that distinguish them from the ordi-
nary subsequences:

• Local influence: The coming elements of an ongo-
ing sequence are significantly determined by the
elements occurring at the time points of the closest
DRS, or in other words, the future time points are
highly dependent upon the closest DRS to them.

• Local regularity: Only few of different patterns of
the elements occur at a DRS, which means that the
element patterns occurring at a DRS are far less
random than those at other time points. In addi-
tion, higher the local regularity, shorter the DRS,
which is a nice property of DRS we will prove in
Section 3.

DRS is suitable for agile prediction due to its
temporal effects. The local influence enables us to
make an accurate prediction just based on the ele-
ments at the closest DRS instead of the whole his-
tory, while the local regularity ensures the length of
DRS is moderate.

Note that a DRS is just a sequence consisting of
critical time points at which the elements are influ-
ential and regular, rather than the concrete element
patterns themselves. A time point can be modeled
as a random variableX taking values (i.e. concrete
element) from an alphabetΣΣΣ, and correspondingly
a sequence of time points fromi to j can be mod-
eled as a random sequenceXXX jjj

iii = 〈Xi,Xi+1, ...,Xj〉.
So, DRSs are essentially nothing but some particu-
lar random sequences whose influence and regular-
ity are greater than the floor thresholds specified in
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advance. The following example gives a further il-
lustration of DRS.

Table 1. Example Set of Temporal Sequences

X1 X2 X3 X4 X5 X6 X7 X8

f x aaa bbb ccc d e g
a u aaa bbb ccc d e h
q x aaa bbb ccc d g p
f u aaa bbb www f g h
b n uuu vvv www x y j
c r uuu vvv www x y e
c t uuu vvv www x y f
b n uuu vvv www f q k

Example 1. Table 1 is a training set comprising
8 temporal sequences with length of 8. It is not hard
to find out thatXXX5

3 may be a DRS because (1) the
elements occurring atXXX5

3 is decisive to the next two
time pointsXXX7

6, and (2) the number of different pat-
terns atXXX5

3 is only 3, which is quite small compared
with the total amount of sequences. For example,
the pattern〈d,e〉 would be much more likely to oc-
cur atXXX7

6 if the pattern〈a,b,c〉 occurs atXXX5
3, while the

pattern〈x,y〉 is most likely when the pattern〈u,v,w〉
occurs atXXX5

3. Additionally, it is obvious that every
subsequence ofXXX5

3, e.g. XXX4
3, is also a DRS. Hence,

if we want to predict the coming elements atXXX7
6, we

just need to check the elements at theXXX5
3 instead of

the whole historyXXX5
1.

In this paper, we fulfill the agile prediction of
an ongoing temporal sequence through two stages.
At the offline stage, the DRSs are mined from the
training set of temporal sequences. At the online
stage, the coming elements of an ongoing sequence
are predicted just according to the elements occur-
ring at the closest DRS.

In summary, the main contributions of this paper
are as follows:

• A new temporal pattern,Dominative Random
Subsequence, is introduced to capture the tempo-
ral effects (i.e. the local influence and the local
regularity) of temporal subsequences.

• A DRS mining algorithm, MDRS (Mining DRS),
is proposed. MDRS outputs the discovered DRSs
organized as a DRS-Tree, a suffix tree structure
proposed by this paper to facilitate the retrieval

of the DRS closest to the time point to be pre-
dicted. Additionally, to break through the perfor-
mance bottleneck, the optimal implementation of
MDRS, OptMDRS, is also presented.

• An agile prediction algorithm, AgilePredict, is
proposed. AgilePredict is based on the DRS clos-
est to the time point to be predicted, and thus the
agility is guaranteed since the DRS is local influ-
ential and regular and with a short length relative
to the length of the whole history of a temporal
sequence.

• Extensive experiments conducted on synthetic
and real data sets verifies the feasibility and ef-
fectiveness of our proposed method.

In the rest of this paper, we detail our methods
for the discovery of DRSs and the agile prediction
based on DRSs. Section 2 gives a brief review of the
related work. Section 3 first investigates the mea-
sures of the influence and the regularity of a ran-
dom sequence, then introduces the concepts of DRS
and DRS-Tree. Section 4 presents the algorithm of
mining DRSs. Section 5 proposes the agile predic-
tion algorithm based on DRSs. Section 6 verifies
our proposed methods by extensive experiments. Fi-
nally, we conclude this paper in section 7.

2. Related Work

This section first briefly reviews three domains rel-
evant to our work, sequential pattern mining, se-
quence classification and early prediction of se-
quences, then points out the difference between our
work and the related work.

Sequential Pattern Mining The goal of sequen-
tial pattern mining is to discover the frequently oc-
curring ordered elements or subsequences as pat-
terns [1]. There have been several typical algorithms
including GSP [2], PrefixSpan [3], Spam [4], Spade
[5] and SeqIndex [6]. Additionally, the sequence
alignment has been investigated as the extention of
sequence analysis [7, 8]. All the existing algorithms
can only deal with a sequence as a whole.

Sequence classificationSequence classification
is an extensively studied problem. Some sequence
classifiers are built based on frequent sequential pat-
terns. Karwathet al. [9] propose an algorithm
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to build the sequence classifier which takes the
frequent patterns as input features. Tseng [10]
proposes a Classify-By-Sequence (CBS) algorithm
combining sequential pattern mining and classifica-
tion. Exarchoset al. [11] combine sequential pattern
mining and classification followed by an optimiza-
tion algorithm with a higher accuracy than CBS.
Some other sequence classifiers are built with artifi-
cial neural networks (ANN) [12, 13]. Wuet al. [12]
map the sequences into vectors ofk-gram frequen-
cies which are used as the input of ANN. Maet
al. [13] use ANN to classify an UCI data set, E.Coli
Promoter. In bioinformatics, some methods are pro-
posed for the prediction of outer membrane proteins
from protein sequences by the combination of the
support vector machines (SVM) and feature selec-
tion [14–16].

Early Prediction for SequencesAlonso et al.
[17] introduce the concept of early prediction. In
[17], early prediction is achieved through the lin-
ear combination of features, which can tolerate the
miss of some features but suffers the deterioration
of accuracy. Xinget al. [18] reduce the problem of
early prediction to the balance between the earliness
and the accuracy of prediction, and propose a fea-
ture based method for temporal symbolic sequences,
which takes a parameterp0 of the expected accuracy
as the input specified beforehand, and minimizes the
length of the prefix that the classifier must check be-
fore a accurate prediction can be made. The method
proposed by [18], however, strongly depends on the
selection of concrete features. Yanget al. [19] in-
vestigate the kinetic regularity of information move-
ment in early predictable sequences and utilize it as
the criterion to learn the minimum number of pre-
ceding elements that are enough to make an accurate
early prediction of an ongoing sequence.

Our work differs from the existing work on the
following two aspects:

(1) No matter traditional classification or early pre-
diction of sequences, they are all prefix based.
Particularly, the whole sequence required by tra-
ditional sequence classification is a special pre-
fix, i.e. the sequence itself. Although early
prediction emphasizes the shortness of the se-
quence history, it is still prefix based since the

required historical subsequence is from the very
beginning element. In contrast with the exist-
ing work, agile prediction is based on the closest
and shortest historical subsequence which can
begin from any time point, since agile predic-
tion emphasizes the agility.

(2) In this paper, the agile prediction is imple-
mented by utilizing DRSs and consequently is
independent of the features (patterns) consisting
of concrete elements, since a DRS is just a piece
of random sequence consisting of random vari-
ables which has the temporal effects of local in-
fluence and local regularity. In contrast, the ex-
isting work utilizes the concrete patterns like se-
quential patterns, as the features, and overlooks
the temporal effects of time points, which re-
sults in the unsuitability of the existing work to
agile prediction.

3. Dominative Random Subsequence

In this section, we first define the measures of the
regularity and the influence of a random sequence,
and then introduce the concepts of DRS and DRS-
Tree.

3.1. Regularity and Influence

As mentioned before, a time point and a sequence of
time points can be modeled as a random variable and
a random sequence respectively, so we first present
the measures of the regularity and the influence of a
random sequence in this section. Before we get into
the details, we formally define some notations. A
random variable is denoted byX, or Xi if we want to
emphasize the temporal order, where the subscript is
the index of time point. A random sequence is de-
noted byXXX j

i , which means〈Xi,Xi+1, ...,Xj〉, where
i 6 j. Particularly,XXXn

1 can be shortened asXXXn. Ad-
ditionally, if we don’t care the begin and end time
points, a random sequence is also denoted by a bold
capital letter such asXXX, YYY. The values ofX, Xi and
XXX j

i are denoted byx, xi , andxxx j
i = 〈xi ,xi+1, ...,x j 〉 re-

spectively. XXXv
u ⊆ XXX j

i meansXXXv
u is a subsequence of

XXX j
i , wherei 6 u6 v6 j. Particularly, the set of the

suffixes ofXXX j
i is denoted bySuff(XXX j

i ). The alphabet
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is denoted byΣΣΣ, and a sequence set is denoted byΘΘΘ.
As mentioned earlier, the regularity of a random

sequence can be intuitively evaluated by its entropy,
which leads to the following definition:

Definition 1. Regularity. The regularity of a given
random sequenceXXX j

i , denoted byReg(XXX j
i ), is de-

fined as the reciprocal of its entropy, i.e.Reg(XXX j
i ) =

1/H(XXX j
i ), whereH(XXX j

i )is the entropy ofXXX j
i .

It is obvious that less the number of different val-
ues ofXXX j

i , less the randomness ofXXX j
i , and greater the

regularity ofXXX j
i . Additionally, any subsequence of

a regular random sequence is also regular, which is
ensured by the proposition below:

Proposition 1. Given a random sequence XXX j
i ,

for any random sequence XXXv
u such that XXXv

u ⊆

XXX j
i , Reg(XXXv

u) > Reg(XXX j
i ). Conversely, XXXv

u ⊆ XXX j
i

if Reg(XXXv
u) > Reg(XXX j

i ) and either [u,v] ⊆ [i, j] or
[i, j]⊆ [u,v].

Proof. Let XXX = 〈XXXu−1
i ,XXX j

v+1〉, then according to

the chain rule of entropy [20],H(XXX j
i ) = H(XXXv

u) +
H(XXX|XXXv

u). Since the nonnegativity of entropy [20],
we haveH(XXX j

i ) > H(XXXv
u). So, by Definition 1, we

getReg(XXXv
u) > Reg(XXX j

i ). Conversely, ifReg(XXXv
u) >

Reg(XXX j
i ), we haveH(XXX j

i )> H(XXXv
u). So, ifXXX j

j ⊂ XXXv
u,

thenH(XXXv
u)> H(XXX j

i ) since conditioning reduces the
entropy [20], which contradicts the known. Hence
XXXv

u⊆ XXX j
i holds true.

Note that Proposition 1 implies that greater the
regularity, shorter the random sequence. So we can
limit the length of random sequences by limiting the
minimal regularity of them, as we will do in the next
subsection.

Now we consider the measure of influence. In
the context of this paper, influence means a deci-
sive effect to the future imposed by the elements at
a historical random subsequence, which results in
the reduction of the uncertainty of future elements
conditioned on the elements at the historical random
sequence. So, it is natural to use the amount of the
reduced uncertainty of the future time point to mea-
sure the influence on a future time point imposed by
a random sequence , which is formulated by the fol-
lowing definition:

Definition 2. Point Influence. Given a random se-
quenceXXX j

i , its influence on the futurekth time point
is defined asPInf(XXX j

i ,k) = H(Xj+k)−H(Xj+k|XXX
j
i ).

In Definition 2, the uncertainty ofXj+k without
knowing XXX j

i is evaluated by the entropyH(Xj+k),
while the uncertainty after knowingXXX j

i is evaluated
by the conditional entropyH(Xj+k|XXX

j
i ). Since the

conditioning reduces the entropy [20], the differ-
ence betweenH(Xj+k) and H(Xj+k|XXX

j
i ) appropri-

ately quantifies the reduction of the uncertainty and
consequently quantifies the influence onXj+k im-
posed byXXX j

i . Note that the definition of influence
is mathematically similar with mutual information
betweenXj+k andXXX j

i . However, the physical impli-
cation is different. The definition of influence em-
phasizes the temporal order fromXXX j

i to Xj+k. So,
H(XXX j

i )−H(XXX j
i |Xj+k), which means time can come

back, is illegal and makes no sense for the measure
of influence.

The overall influence on the futurek consecutive
time points is measured by the average of thek point
influences, which is defined as follow:

Definition 3. Average Influence. Given a random
sequenceXXX j

i , its average influence on the futurek
consecutive time points is defined asInf(XXX j

i ,k) =

∑k
l=1 PInf(XXX j

i , l)/k.

In the rest of this paper, we use ”influence” to
mean the average influence by default. Intuitively,
longer history has greater influence, which is exactly
another important property of a random sequence as
stated by Proposition 2:

Proposition 2. Given random sequence XXX j
i , for

its any suffix XXX j
i+n, n> 0, Inf(XXX j

i ,k) > Inf(XXX j
i+n,k)

holds true for any positive integer k.

Proof. At first, H(Xj+k|XXX
j
i )6 H(Xj+k|XXX

j
i+n) holds

because conditional variables reduce the entropy
[20]. Then according to Definition 2, we get
PInf(XXX j

i , l) > PInf(XXX j
i+n, l) for any l ∈ [1,k], and

∑k
l=1 PInf(XXX j

i , l)> ∑k
l=1 PInf(XXX j

i+n, l). So, according

to Definition 3,Inf(XXX j
i ,k)> Inf(XXX j

i+n,k).
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3.2. DRS and DRS-Tree

As introduced in Section 1, DRSs are just some se-
quences of critical time points of which the patterns
of elements are decisive to the future elements. Be-
fore we formulate this idea in this section, it is worth
noting the following two points. First, the length
of DRSs should be limited to a reasonable range so
as to rule out the random sequences that are trivial
and meaningless for agile prediction. For example,
the random sequence consisting of the whole histor-
ical time points is likely a DRS but not conducive
because the agile prediction requires as few histor-
ical elements as possible. Second, ideally, we pre-
fer the DRSs whose lengths are as short as possible
and influences are as great as possible. These, how-
ever, are two conflicting objectives since Proposition
2 tells us that shorter the DRS, less the influence of
it. So, it is necessary to make a tradeoff between
the length of DRS and the strength of its influence.
With the above considerations in mind, we get the
following definition:

Definition 4. DRS. A random sequenceXXX j
i de-

fined on a given sequence setΘΘΘ is an (α ,β ,γ)-DRS
if Reg(XXX j

i ) > γ and for anyk 6 α , Inf(XXX j
i ,k) > β

while for anyk > α , Inf(XXX j
i ,k) < β , whereα ,β ,γ

are the floor thresholds of reach, influence and reg-
ularity respectively. All the DRSs ofΘΘΘ form a DRS
setΠΠΠΘ(α ,β ,γ).

In Definition 4,α is the farthest point of the fu-
ture points ofXXX j

i at which the influence ofXXX j
i is not

less thanβ . At the same time, to rule out the triv-
ial random sequence, the length of a DRS is limited
implicitly by the constraint that the regularity ofXXX j

i
must be not less than a predefined thresholdγ . Note
that the first condition works because greater the reg-
ularity, shorter the random subsequence, as stated by
Proposition 1.

In addition, Proposition 2 tells us that longer the
suffix of a random sequence, greater the influence.
So, to facilitate the discovery of the DRSs with the
influence reach as far as possible under the con-
straints of Definition 4, we organize the DRSs of a
given sequence set as a suffix tree, which is defined
as follow:

Definition 5. DRS-Tree. The DRS-Tree of a given
DRS setΠΠΠΘ(α ,β ,γ) is a tree with the following
characteristics:

(1) The root represents an empty sequence.
(2) The non-root nodes correspond one-to-one with

the DRSs inΠΠΠΘ(α ,β ,γ). Each node is labeled
by a tuple (XXXN, k) whereXXXN is the DRS corre-
sponding to the nodeN andk is the reach of the
influence ofXXXN.

(3) NodeA is the parent of NodeB if and only if
XXXA ∈ Suff(XXXB).

Since the nodes of a DRS-Tree correspond one-
to-one with the DRSs inΠΠΠΘ(α ,β ,γ), we also equiv-
alently denote a DRS-Tree byΠΠΠΘ(α ,β ,γ) in the
rest of this paper. Besides, for the sake of brevity,
we also represent a node of DRS-Tree by its corre-
sponding DRS. Figure 1 shows the DRS-Tree cor-
responding to the DRSs setΠΠΠΘ(2,1,1) of example
1.

(<X3>,2) (<X4,X5>,2)

(<X3,X4,X5>,2)

root

Fig. 1. The DRS-Tree of Example 1.

DRS-Tree has an important property that the
DRSs corresponding to leaves are different from
each other, as stated in the following proposition:

Proposition 3. For any two leaves XXX j
i and XXXq

p,
j 6= q.

Proof. If j = q, then eitherXXX j
i ∈ Suff(XXXq

p) or

XXXq
p ∈ Suff(XXX j

i ). So according to Definition 5,XXX j
i is

either one of the ancestors or one of the descendants
of XXXq

p, and consequently it is impossible that they
are leaves at the same time.
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4. Mining DRSs

Algorithm 1: MDRS(ΘΘΘ,α ,β ,γ)
Input : The set ofm-length sequences,ΘΘΘ; The

thresholds,α ,β ,γ ;
Output : ΠΠΠΘ(α ,β ,γ);

1 Initialize the candidate set
ΩΩΩ = {〈Xi〉|16 i 6 m−α ,andReg(〈Xi〉)> γ};

2 Initialize the root node ofΠΠΠΘ(α ,β ,γ);
3 while Inf(XXX,τ)> β do
4 Pick randomly a candidateXXX from ΩΩΩ;
5 τ ←− α ;
6 while Inf(XXX,τ)> β do
7 τ←− τ +1;
8 end
9 if τ > α then

10 Add (XXX,τ−1) to ΠΠΠΘ(α ,β ,γ);
11 end
12 RemoveXXX from ΩΩΩ;

13 XXX
′
←− 1-SE ofXXX;

14 if Reg(XXX
′
)> γ then

15 Add XXX
′
to ΩΩΩ;

16 end
17 end

This section outlines the algorithmic procedure
of mining DRSs from a given temporal sequence set.
The algorithm is based on the concept ofsuffix ex-
tentionwhich is defined as follow:

Definition 6. Suffix Extension. Random sequence
XXX is an-Suffix Extension(shortened asn-SE) of ran-
dom sequenceXXX

′
if XXX

′
is a suffix ofXXX andXXX remains

n elements afterXXX
′
is removed.

As shown in Algorithm 1, MDRS is rather
straightforward. At first, it initializes the candidate
set ΩΩΩ with the random sequences whose length is
one and regularity is greater than the thresholdγ .
Then, in a while loop (line 3 to 17), each random
sequence inΩΩΩ is tested on the minimal reach thresh-
old of the influence (line 9). If a candidate satisfies
the condition, its corresponding node is added into
the result DRS-Tree (line 10). Once a candidate has
been checked, it is removed from the candidate set
whether it is a DRS or not. After one candidate is

removed, its 1-SE, however, is put intoΩΩΩ as a new
candidate if the 1-SE is greater than the floor thresh-
old of the regularity (line 14, 15). Note that when the
inner while loop (line 6 to 8) terminates, the value of
τ is one greater than the farthest reach of the candi-
dates that have been checked, so the farthest reach is
τ−1 when the corresponding node is added into the
result (line 10).

The correctness of MDRS is guaranteed by the
following proposition:

Proposition 4. Given the sequence setΘΘΘ and the
floor thresholds(α ,β ,γ), MDRS discovers all the
(α ,β ,γ)-DRSs ofΘΘΘ when it terminates.

Proof. Let XXX = 〈Xi,Xi+1, . . . ,Xi+k〉 ∈ ΠΠΠΘ(α ,β ,γ).
According to the definition of DRS (Definition 3),
Reg(XXX) > γ . By the Proposition 1,Reg(〈Xi+k〉) >
Reg(XXX), and consequentlyReg(〈Xi+k〉) > γ , which
results in that〈Xi+k〉 is an inevitable candidate (line
1). LetSSSj be thej-SE of〈Xi+k〉, where 16 j 6 k, so
XXX = SSSk. According to Proposition 1 again, we have
Reg(〈Xi+k〉) > Reg(SSS1) > · · · > Reg(XXX = SSSk) > γ ,
thereforeXXX is also inevitably put intoΩΩΩ (line 14,
15). So, whenXXX is selected fromΩΩΩ by the outer
while loop, its corresponding node is inevitably
added into the result (line 10) in that it is a DRS
(our assumption ofXXX ∈ ΠΠΠΘ(α ,β ,γ)). SinceXXX rep-
resents any DRS inΠΠΠΘ(α ,β ,γ), so the conclusion
of the proposition holds true.

Intuitively, the frequent invokes of the functions
Regand Inf will incur high computational overhead,
since the computation of the entropy or conditional
entropy of each suffix extension (generated at line
13) requires traversing its sequence from very begin-
ning every time, rather than in incremental fashion.
This makes the performance of MDRS is mainly de-
pendent upon the length of sequence. In the imple-
mentation of MDRS, we utilize theRooted Count
Tree(shortened as RCT) [21] to compute the entropy
of a random sequence. In such case, the temporal
complexity of MDRS isO(nm3) wheren is the num-
ber of sequences andm is the length of a sequence,
as confirmed by the following proposition:

Proposition 5. GivenΘΘΘ consisting of n sequences
of m-length, the temporal complexity of MDRS is of
O(nm3) if utilizing RCT to compute the entropy of a
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random sequence.

Proof. In the worst case, every suffix extension of
each random sequence will be put into the candidate
setΩΩΩ. So the possible number of random sequences
to be processed, and consequently the number of
the execution times of the outer while loop (line 3-
17), are both(m−α)(m−α −1)/2 (the number of
edges of the complete graph where nodes consist of
Xi, i = 1,2, . . . ,m−α). On the other hand, the tem-
poral complexity ofRegand Inf is O(n(m−α)) if
the entropy is computed with RCT. So, the overall
temporal complexity isO(n(m−α)× (m−α)(m−
α−1)/2) = O(nm3).

According to Proposition 5, the running time of
MDRS is linear with the data sizen when the se-
quence lengthm is fixed, and is proportional to the
cube of the sequence length when the data set size is
fixed. So it is clear that the efficient process of long
sequence is the performance bottleneck of MDRS.

In order to break through the performance bottle-
neck and make the running time acceptable in prac-
tice, we implement an optimal version of MDRS,
OptMDRS. If the length of sequence ofΘΘΘ is too long
(the threshold is set to 50 in our experiments), Opt-
MDRS will start a preprocess to split each of the se-
quences into shorter pieces of equal length not less
than 10, before invoking MDRS. In this preprocess,
the relative temporal order in the random sequences
will be kept. The performance tests of MDRS and
OptMDRS are detailed in Section 6.

5. Agile Prediction Based on DRS

As we have demonstrated, DRS is born for the agile
prediction of an ongoing temporal sequence. The
most significant contribution of DRS is to enable
the prediction of an ongoing temporal sequence to
be made only based on the historical elements oc-
curring at the time points of the DRS that is clos-
est to the time point being predicted, rather than all
the historical elements. Here the agile prediction of
an ongoing temporal sequence can be formulated as
follow:

Agile Prediction: Given ΠΠΠΘ(α ,β ,γ) and the
history of an ongoing temporal sequencexxx, xxxk

1 =
〈x1,x2, · · · ,xk〉, computing thex̂k+1 as the predic-

tion of the next elementxk+1, by the history piece
xxx j

i (1 6 i 6 j 6 k), whose lengthj − i + 1 and dis-
tance to current time pointk− j are both as short as
possible.

Our DRS based approach to fulfill the agile pre-
diction can be outlined as follows:

(1) At first, we retrieve the DRSXXX j
i (16 i 6 j 6 k)

that is closest tok and with shortest length (i.e.
the differencek− j and j − i are both mini-
mal compared with other DRSs) from the given
DRS-Tree. It should be noted that only one DRS
can be found since thej of each branch is dif-
ferent from each other, as a corollary of Propo-
sition 4.

(2) Once the DRSXXX j
i is found, we examine the sub-

sequencexxx j
i , i.e. a sequence of elements occur-

ring at time points fromi to j.

(3) Then the subsequences{sssj
i } that are most sim-

ilar to xxx j
i are retrieved from the given sequence

setΘΘΘ.
(4) Since there may be more than one instance in
{sssj

i }, the prediction̂xk+1 is set to thesk+1 with
the highest frequency.

Here the key issue is how to measure the similar-
ity between two temporal subsequences. Since the
subsequences participating the comparison are re-
trieved according to the hint of the DRS, it is natural
and logical to take into account the temporal prop-
erty that the element at the time point closer tok has
a bigger say in the measure of the similarity. We call
such similarity measureTemporal Similarity, which
is defined as follow:

Definition 7. Temporal Similarity . The Tempo-
ral Similarity between sequencesxxx j

i and sssj
i is de-

fined asSim(xxx j
i ,sss

j
i ) = ∑ j

r=i ψ(xr ,sr ), whereψ(xr ,sr)
is defined asψ(xr ,sr) = 2r−i if xr = sr , or otherwise
ψ(xr ,sr) = 0.

By integrating the above ideas and the tempo-
ral similarity, the algorithm for the agile prediction
of an ongoing temporal sequence is shown in Algo-
rithm 2.
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Algorithm 2: AgilePredict(ΠΠΠΘ(α ,β ,γ),xxxk
1)

Input : The DRS-Tree,ΠΠΠΘ(α ,β ,γ); The
history of the ongoing sequence,xxxk

1;
Output : x̂k+1;

1 Search the DRSXXX j
i such thatk− j and j− i

are both minimal;

2 Search the subsequences{sssj
i } from ΘΘΘ such

thatsssj
i = argmaxsssj

i
Sim(xxx j

i ,sss
j
i );

3 x̂k+1←− argmaxsk+1
P(sk+1|{sss

j
i })

6. Experiments and Analysis

In this section, we present the experiments con-
ducted on synthetic and real data sets to verify our
methods. The experiments include three parts. At
first, to validate our proposed theory about the reg-
ularity and the influence of random sequences, it is
observed that how the regularity changes with the in-
crease of the length of a random sequence and how
the influence changes with the increase of the length
of the history. Then, we locate the performance bot-
tleneck of the algorithm MDRS and test the effi-
ciency of OptMDRS. At last, we verify the agility
of our proposed prediction algorithm AgilePredict
by comparing with other classical algorithms for se-
quence prediction.

All the experiments are conducted on a PC with
Intel Core I7 CPU 2.0G HZ and 4 GB main mem-
ory. The operating system is MAC OS X 10.7. All
the algorithms are implemented in C with the com-
piler GCC 4.2.

6.1. Data Sets

SYNTHETIC: We generate a synthetic data set,
SYN1, which is comprised of 100K sequences with
length of 20. Additionally, to evaluate the perfor-
mance of MDRS and OptMDRS, we also generate
several other synthetic data sets of different size or
with different sequence length.

SPLICE: SPLICE is a gene sequence data set
available at UCI machine learning repository [22].
SPLICE contains 3,160 sequences and each se-
quence consists of 60 sequential nucleotide ele-

ments.
BSM: BSM is a set of system call traces

recorded by an intrusion detecting system developed
by MIT AI Lab [23]. BSM contains 71,760 traces
and is normalized so that each trace consists of 100
system calls.

6.2. Test of Regularity and Influence

In this subsection we observe how the regularity of a
random sequence changes with the increasing length
and how the influence changes with the increasing
length of the history.
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Fig. 2. Reg(XXXk
1)(16 k6 10).

Figure 2 shows the curves of regularity of the
random sequenceXXXk

1 defined onSYN1, SPLICE
andBSM respectively, where the value ofk is from 1
to 10 in order. We can see from Figure 2 that the reg-
ularity is decreasing with the increase ofk, whether
XXXk

1 is defined on the synthetic data set or on the real
data sets, as we argued in Proposition 1.

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

0 1 2 3 4 5 6 7 8 9 10 

Influence 

i 

SYN1 

SPLICE 

BSM 

Fig. 3. Inf(XXX10
i ,1)(16 i 6 10).

Figure 3 shows the influenceInf(XXX10
i ,1) of the
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random sequenceXXX10
i defined on SYN1, SPLICE

and BSM respectively, where the value ofi is from
1 to 10 in order. As shown in Figure 3, the influence
is decreasing with the increase ofi. Since smalleri
indicates shorter history, the result shown in Figure
3 verifies the conclusion of Proposition 2, i.e. longer
the history, greater the influence.

6.3. Performance Tests of MDRS and OptMDRS

In this subsection, we compare the performance of
the algorithm MDRS with that of the optimal imple-
mentation OptMDRS on synthetic data sets.

0 

3 

6 

9 

12 

15 

18 

21 

24 

0 25 50 75 100 125 150 175 200 

Time (s) 

Data Size (100k) 

MDRS 

OptMDRS 

Fig. 4. Performance with increasing data set size.

We first run the MDRS and OptMDRS over the
synthetic data sets of different size but with fixed
sequence length 30, with the parameters of(α =
3,β = 0.4,γ = 0.2). As we can see from Figure
4, the running time of either MDRS or OptMDRS
is approximately linear with the data size. Addi-
tionally, the running time of OptMDRS is slightly
greater than that of MDRS at every data point, since
OptMDRS has extra overhead incurred by the pre-
process of sequence split which enlarges the size of
data set.

We next run MDRS and OptMDRS over the syn-
thetic data sets with different sequence lengths but of
same size 100K, with the parameter set same as last
experiment. We can find from Figure 5 that the run-
ning time of the original implementation of MDRS
remarkably increases with the increase of sequence
length. OptMDRS, in contrast, plays very well in
that its running time is not only significantly less
than MDRS’s, but also linear with the length of se-
quence. In such case, the extra overhead the prepro-
cess of OptMDRS incurs is negligible comparing to

the performance improvement the preprocess offers.
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Fig. 5. Performance with increasing sequence length.

By comparing Figure 5 with Figure 4, it can be
deduced that the performance of MDRS is mainly
restricted by the sequence length rather than by the
size of data set. This result is in line with the anal-
ysis in Section 4. It verifies that the running time
of MDRS is linear with the data sizen when the se-
quence lengthm is fixed, and is proportional to the
cube of the sequence length when the data set size is
fixed, as Proposition 5 states. In addition, the good
performance of OptMDRS on data sets with long se-
quence length indicates that splitting sequences into
shorter segments, as the preprocess in OptMDRS, is
an effective step to break through the performance
bottleneck.

6.4. Tests of Agility of Prediction

In this subsection, we compare the agility among our
DRS based prediction algorithm AgilePredict, the
representative early sequence prediction algorithm
GSDT [18] and the classical classification algorithm
ID3 [24].

As we have emphasized, the agility requires the
balance of the three indexes: (1) the accuracy of pre-
diction; (2) the length of the history based on which
the prediction can be made; (3) the distance of the
history to the time point to be predicted. Ideally,
agile prediction of temporal sequences achieves an
acceptable accuracy with the history as short as pos-
sible and as close as possible.

We conduct the experiments to obtain the above
three indexes of the competitors on SYN1, BSM and
SPLICE respectively. We randomly choose 80% of
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Fig. 6. Agility comparison: accuracy.
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Fig. 7. Agility comparison: history length.
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Fig. 8. Agility comparison: distance to predicted time point.

each data set as the training data and the remaining
20% as the testing data. The parameter settings are
listed in the following table, where the parameters
of AgilePredict are set according to the experimen-
tal results described in Subsection 6.2, and the pa-
rameters of GSDT are set as advised by [18]. Note
that ID3 needs no parameters.

Table 2. Parameter settings

SYN1 BSM SPLICE
α = 3 α = 3 α = 3

AgilePredict β = 0.2 β = 2 β = 1
γ = 0.1 γ = 0.2 γ = 0.15
p0 = 0.95 p0 = 0.95 p0 = 0.9

GSDT s0 = 0.1 s0 = 0.1 s0 = 0.1
ω = 3 ω = 3 ω = 8

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                     483



Ning Yang, Changjie Tang

6.4.1. Accuracy

At first, we compare the prediction accuracies of Ag-
ilePredict, GSDT and ID3. The outcomes are shown
in Figure 6, where the horizontal axisk is the time
point being predicted (same as the horizontal axises
in Figure 7 and Figure 8).

As shown in Figure 6 (a) and (b), AgilePredict
and GSDT both have high accuracies on SYN1 and
BSM, no matter what value thek is. By closer ob-
servation, the accuracy of AgilePredict is slightly
higher than that of GSDT in most values ofk on
SYN1 and BSM. This result suggests that an ac-
ceptable accuracy of prediction of ongoing temporal
sequences can be achieved just by DRSs instead of
longer history. Meanwhile, the result also suggests
that our proposed measure of the temporal similarity
between two sequences is practicable for the agile
prediction, since it takes into account the temporal
weight of different time points, i.e. the similarity at
the time point closer to the time point to be predicted
has higher weight than that at other time points, as
mentioned in Section 5.

Figure 6 (c), however, shows that the accura-
cies of the tested algorithms decrease to various de-
grees on SPLICE, but the accuracy of AgilePredict
is lower than that of GSDT, even ID3. By com-
paring Figure 6 (c) with (a) and (b) and consider-
ing the theoretical analysis in the preceding sections,
we can conclude that the major cause of this result
is that AgilePredict is good at the real temporal se-
quences like SYN1 and BSM, rather than gene se-
quences like SPLICE or sequences of other types,
even the latter ones are also ordered. Particularly,
our proposed measure of temporal similarity works
only on the sequences that truly have the temporal
property that closer the point, bigger the say in the
measure of the similarity. In contrast with AgilePre-
dict, GSDT essentially is a decision tree algorithm
improved for general sequences, so GSDT is more
suitable for non-temporal sequences than for tempo-
ral sequences, and AgilePredict is more competitive
on temporal sequences.

At last, it can be observed that no matter which
data set ID3 runs on, its accuracy is lower than Ag-
ilePredict or GSDT. This is because that ID3 was
originally designed for attributed data, and conse-

quently it is not suitable for sequence data whether
it is temporal or not.

6.4.2. Length of history

Figure 7 shows the lengths of the histories used by
the tested algorithms to make predictions in Figure
6. We can observe from Figure 7 that the lengths of
the histories used by AgilePredict are shorter than
that of the histories used by the competitors. In
particular, this advantage becomes more remarkable
with the increase ofk (greaterk means the time point
to be predicted is farther from the beginning of the
sequence).

The reason is that AgilePredict is based on the
historical elements occurring at the DRS whose
length is indirectly restricted by the minimal thresh-
old of the local regularity (as a result of Proposition
1), while GSDT and ID3 are prefix based, and con-
sequently, GSDT and ID3 require longer prefixes to
reach an acceptable accuracy. The result shown in
Figure 7 also verifies our hypothesis introduced in
Section 1, i.e. not all the time points are equally
important for the future of an ongoing temporal se-
quence, but only few locally influential and regular
segments of a sequence are critical.

6.4.3. Distance to predicted time point

As mentioned before, the distance of the history to
the time point to be predicted is another important
factor for the success ofAgile Prediction. Generally,
shorter the distance, better the agility.

Figure 8 shows the distances of the histories
used by the tested algorithms on SYN1, BSM and
SPLICE respectively. We can find out that the DRSs
that AgilePredict uses to make predictions are at the
distances no more than 2 to various values ofk,
which is superior to the results of GSDT. Addition-
ally, it is should be noted that although the distances
of the prefixes used by ID3 are always 1, it is triv-
ial and makes nonsense for agile prediction because
ID3 always use the prefixes from the very beginning
to k−1.
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6.4.4. Summary

Figure 6, Figure 7 and Figure 8 clearly show that our
proposed DRS based algorithm, AgilePredict, can
obtain superior accuracy on real temporal sequences
just using the elements occurring at the time points
of the DRS closest to the predicted time point, which
indicates that AgilePredict is feasible for agile pre-
diction of ongoing temporal sequences.

7. Conclusions

In this paper, we identify a new paradigm of predic-
tion of temporal sequences,Agile Prediction, which
makes predictions with an acceptable accuracy by
the historical segments as short as possible and as
close as possible to the predicted time point. To ful-
fill agile prediction, a new temporal concept, Domi-
native Random Subsequence (DRS), is proposed to
capture the local temporal effects of temporal sub-
sequences, i.e. the local influence and local reg-
ularity. Several mathematical properties of DRS
and DRS’s influence and regularity are investigated,
which forms the foundation of our proposed agile
prediction algorithm. We also present a DRS mining
algorithm, MDRS, with the temporal complexity of
O(nm3), and its optimal implementation OptMDRS.
In MDRS and OptMDRS, DRSs are organized as a
suffix tree, DRS-Tree, which facilitates the retrieval
of the DRS that is closest to the time point to be
predicted. A DRS based algorithm for agile predic-
tion, AgilePredict, is proposed. AgilePredict mea-
sures the similarity between the target subsequence
and the subsequences at a DRS by using our pro-
posed measure of temporal similarity which gives
the closer time point higher weight. At last, the re-
sults of the extensive experiments conducted on syn-
thetic and real data sets verify the practicability of
our proposed theory and show that our proposed al-
gorithms are effective and efficient.

Although we made a good start in agile predic-
tion, the problem is still far from being well solved.
As part of future work, we plan to develop more ac-
curate algorithms targeted at the temporal data with
different temporal characteristics and the algorithms
on numerical sequences such as continuous time se-
ries.
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