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Abstract

The multi-attribute group decision making (MAGDM) problem has received considerable attention in the
decision analysis field and fruitful achievements have been reported in the literature. This paper focuses
on the MAGDM in which the subjective absolute judgement on alternatives with respect to evaluating
attributes are represented by fuzzy numbers. This paper employs the consensus degree to measure the
agreement level of a MAGDM solution and develops a new measure degree–departure degree to evalu-
ate how far the decision makers from their initial decision preferences. Based on these two conflicting
measure degrees, the decision process of MAGDM is modelled as a multi-objective optimization prob-
lem. A decision support model (DSM) for MAGDM is proposed. The proposed DSM, incorporating five
implementing phases, aims at obtaining acceptable decision solution(s) by solving the multi-objective
optimization problem and conducting an interactive procedure with decision makers. In case study, this
paper takes the alternative selection problem about hydroelectric project to illustrate the phases and pro-
cedure of the proposed DSM.

Keywords: multi-attribute group decision making, multi-objective optimization, consensus degree, depar-
ture degree, decision support model.

1. Introduction

With the increase of complexity, most decision
making problems involve multiple decision maker-
s (DMs) and multiple evaluating attributes. Such
kind of problems are referred to as Multi-Attribute
Group Decision Making (MAGDM) problems.The

MAGDM has been extensively studied and applied
in various areas and practices1,2,3,4,5,6. Despite di-
versity of decision approaches used, the MAGDM
mainly focuses on two aspects:(1) evaluating alter-
natives with respect to the multiple attributes and (2)
obtaining the group (collective) decision result.

The evaluation process for the attribute weight-
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s and for the performance ratings of the alternatives
on attributes may involve two types of judgemen-
t: comparative judgement and absolute judgemen-
t 7,8. In decision process, comparative judgements
may be used to compare the relative importance of e-
valuating attributes and to compare the performance
of each alternative with that of other alternatives on
each evaluating attribute with relative measuremen-
t, while absolute judgements are commonly used to
rate the alternatives individually with respect to each
evaluating attribute with an absolute measurement s-
cale 8. Because of the limitation on knowledge, skill
and experience related to the problem domain, it is
difficult for the DMs to precisely evaluate the alter-
natives with respect to all evaluating attributes. In-
stead, DMs may express their preferences by impre-
cise formats, such as value ranges, linguistic vari-
ables and fuzzy numbers 9. Considerable efforts
have been attached to the MAGDM with inaccurate
or incomplete information and many approaches to
solve this problem have been reported in the existing
literature 11,10,5,12,13,14,15,16,17,18,19.

In MAGDM, DMs usually come from different
specialty fields, thus have different knowledge struc-
tures and levels, experiences and personalities. As a
result, DMs often have diverse opinions. In such a
case, it is important to obtain a group satisfactory
solution which is the most acceptable by the group
of individuals as a whole 6. In order to obtain the
most satisfactory group solution, consensus of the
group decision solution is employed to identify the
agreement level amongst all DMs. Consensus is de-
fined as a state of mutual agreement among mem-
bers of a group where all opinions have been heard
and addressed to the satisfaction of the group 10.
A consensus reaching process is a dynamic and it-
erative process composed by several rounds where
the experts express, discuss, and modify their pref-
erences 19. How to obtain the maximum consensus
for the given problem is a hot issue which has been
received considerable attention in recent years, and
various approaches and methods have been devel-
oped to achieve this aim 11,13,20,17,21,22,19,23.

However, in practical group decision making,
pursuing of maximum consensus degree of group
solution may be not the whole story. In some kind-

s of group decision making problems, DMs usual-
ly stand for different stakeholders. The solution of
MAGDM is often achieved by compromises and ne-
gotiations through an interactive and iterative proce-
dure 24, and this process is implemented by changing
the DMs’ opinions and preferences according to the
decision result in each round until the stop criteria
are achieved 17,19. Thus, the final decision solution
may depart from the most preferable one for each D-
M. The DM(s) losing in the negotiation process may
be influential enough to sabotage the compromise
solution and prevent its implementation 25. This
case is especially true for the decision making on
considerably complex projects. For example, in the
alternative selection of a huge hydroelectric project,
the DMs may include stakeholders who stand for the
perspectives of economy, environment, society, mil-
itary, political and so on. The stakeholder(s) losing
in the compromise process may refuse to accept the
selected alternative and then prevent its execution or
request to develop new alternatives. A real case to
illustrate this situation is that the indigenous group-
s in Brazil’s Amazon rain forest were trying to halt
the construction of a huge hydroelectric project 26.

Thus, a satisfactory solution of a MAGDM
should not only have a great consensus degree, but
also keep the DMs’ initial preference as much as
possible. To do that, this paper employs two mea-
surements for the collective decision solution for the
MAGDM: consensus degree and departure degree.
The former is used to measure the agreement lev-
el of the collective decision solution amongst al-
l DMs and the latter reflects how far the individu-
al DM departs from his/her most preferable value.
It is clear that consensus degree and departure de-
gree are conflicting to a certain extend. So the deci-
sion process of MAGDM itself is a multi-objective
optimization problem which aims at pursuing the
decision solutions with a higher consensus degree
and a lower departure degree. This paper develops
a decision support model (DSM) for the MAGDM
which incorporates the multi-objective optimization
process to obtain the Pareto-optimal group decision
solutions with simultaneous consideration of the two
degree measurements. Additionally, the proposed
DSM employs the concept of proximity measures to
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evaluate the distances between the DMs’ individual
preferences and the group one 13,17,19. The prox-
imity measures can be used to generate the advices
about which DM(s) need to change their preference
values in the iterative compromise process.

The rest of the paper is set out as follows. In
Section 2, we describe the MAGDM problem in
which the absolute judgement given by DMS is rep-
resented as triangular fuzzy number. In Section 3,
we present the proposed decision support model for
the MAGDM addressed in this paper. The multi-
objective optimization model is developed in this
section. A case study about selection of alternatives
for hydroelectric project is given in Section 4. Final-
ly we drive our conclusions in the last section.

2. Preliminary

2.1. Problem Description

As aforementioned, the evaluation in MAGDM in-
cludes comparative judgement and absolute judge-
ment. In this paper, we restrict our research on ab-
solute judgement in which DMs express their as-
sessments about the performance of alternatives in
grades on a numerical scale. With absolute judge-
ment, DMs can rate the performance of an alterna-
tive, independent of other alternatives 8. Due to the
complexity of the problem setting and the limitation
on DMs’ expertise, the evaluation process is intrin-
sically imprecise.

Linguistic terms have been found intuitively easy
to use in expressing the imprecision of the DMs’ e-
valuation 27,28,8. Fuzzy set theory is employed in ex-
isting studies and applications to characterize each
linguistic term by a fuzzy number for representing
its approximate value 13,29,17,19. In this research, we
assume that the evaluating value of each attribute
given by DMs can be represented as a triangular
fuzzy number 30, expressed as a triple (a,b,c) with
its membership function defined as

µA(x) =


(x−a)/(b−a), a 6 x 6 b,
(c− x)/(c−b), b 6 x 6 c,
0, otherwise,

(1)

where b is the most possible value of the fuzzy num-

ber A, a and c are respectively the lower and upper
bounds, used to reflect the fuzziness of the subjec-
tive evaluation.

In the fuzzy linguistic group decision making
problem, an important issue to analyze is the “gran-
ularity of uncertainty”, i.e., the cardinality of the lin-
guistic term set 19. The granularity of linguistic term
set should be small enough so as not to impose use-
less precision levels on the users but large enough to
allow a discrimination of the assessments in a limit-
ed number of degrees 19. So we identify the 1-9 ratio
scale as the standard numerical scale of evaluating
value. For example, in the evaluation of a hydroelec-
tric project alternatives with respect to the attribute
“the importance on prevention of flood”: 1=not im-
portant, 3=not very important, 5=important, 7=very
important, 9=extremely important. The 1-9 ratio s-
cale has been proven to be an effective measurement
scale for reflecting the qualitative information of a
decision problem 31. Thus, in Eq.(1), a, b and c are
defined in the interval [0,10], and a 6 b 6 c. Then,
the MAGDM with fuzzy absolute judgement can be
described as follows.

There is a finite set of alternatives, X =
{x1,x2, · · · ,xn}(n > 2), and a group of DMs (expert-
s) who stand for the different stakeholders of the de-
cision problem, E = {e1,e2, · · · ,em}(m > 2). Each
DM ek provides his/her evaluation on X with respec-
t to a set of attributes C = {c1,c2, · · · ,cq}(q > 2).
The weight vectors ω = {ω1,ω2, · · · ,ωm} and λ =
{λ1,λ2, · · · ,λq} respectively represent the weight-
s of DMs and evaluation attributes, and satisfying
∑

m
i=1 ωi = 1(ωi > 0) and ∑

q
j=1 λ j = 1(λ j > 0).

Let Ak =(ak
i j)n×q be a numerical decision matrix,

where ak
i j is an evaluation value given by the DM

ek ∈ E for the alternative xi ∈ X with respect to the
attribute c j ∈C. Evaluation value ak

i j is represented

as a triangular fuzzy number (aklower
i j ,akmost

i j ,akupper
i j ),

where akmost
i j indicates the most preferable value giv-

en by a DM, aklower
i j and akupper

i j are the lower and upper
bounds of the evaluation value, which can be accept-
ed by the DM.

The satisfactory solution of group decision mak-
ing problem is often achieved by an interactive and
iterative process. In real implementation, this inter-
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active process is time and resource intensive, i.e., the
DMs come from different fields and are geographi-
cally distributed, therefore it will take days or week-
s to hold a round of discussion with all DMs. So
it is important to reduce the number of discussion
rounds, while obtaining the satisfactory decision so-
lution. To do that, we develop a computer-aided
decision support model (DSM) in which a multi-
objective optimization process is employed to ob-
tain the more satisfactory decision solution(s). We
assume that there is an upper level decision maker
who is responsible for processing the decision in-
formation collected from all DMs, holding discus-
sion with all DMs, and selecting the final decision if
more than one satisfactory decision solution exists.
For example, in China, the State Council plays such
a role in the construction of a huge hydroelectric
project. In the DSM, if the decision solution is not
satisfactory, the upper decision maker can adjust the
most preferable evaluation value of a DM within the
upper and lower bounds. The decision matrices af-
ter adjustments are denoted as Âk = (âk

i j)n×q, where

âk
i j = (aklower

i jk , âkmost
i jk ,akupper

i jk ). If there is still not any
satisfactory decision solution after the adjustmen-
t process, this dilemma as well as advices will be
reported to DMs and they will be suggested change
their evaluation values. When DMs accept the ad-
vices and change their evaluation values, the deci-
sion information is recollected and decision process
is continued until the stopping criteria are reached.

3. Decision Support Model for MAGDM

Real important decisions are often difficult to make.
To alleviate such difficulty it would be necessary
and desirable to use some kind of decision sup-
port 17. The aim of this paper is to develop a de-
cision support model (DSM) for MAGDM based
on a multi-objective optimization process where t-
wo types of measurements—consensus degree and
departure degree are taken as the optimization ob-
jectives. The framework of the proposed DSM for
MAGDM is presented in Figure 1. The DSM begin-
s with collecting and processing decision informa-
tion. Based on the input information, consensus and
departure degrees will be calculated. If it exists so-

lution which satisfies the preset threshold values of
the two degrees, the final selection process is imple-
mented to identify the final solution(s). Otherwise,
the multi-optimization process will be activated to
search other solutions which are expected to satisfy
the threshold conditions. If there is still no such sat-
isfied solution, an interactive procedure with DM-
s will be carried out to guide some DMs to adjust
their decision preferences. The whole procedure is
repeated till satisfied solutions are obtained. Specifi-
cally, the DSM for MAGDM develops its activity in
five phases as follows.

1) Preliminary process of decision information.
In this phase, the decision matrices are processed.
Firstly, in order to facilitate the comparison of all el-
ements in the decision matrices, the evaluation val-
ues about cost attributes are converted to the values
about benefit attributes. Then the decision matrices
are normalized if necessary.

2) Computation of consensus degree and depar-
ture degree. In this phase, consensus degree and
departure degree are computed. To do that, a sim-
ilarity measure is defined to calculate the coinci-
dence amongst DMs’ opinions or preferences and
the membership function of triangular fuzzy num-
ber is used to measure the coincidence between one
decision solution and the DMs’ initial decision pref-
erences. The threshold values of consensus degree
and departure degree are predefined, denoted as η

and γ respectively. If the consensus degree is lower
than threshold or the departure degree is greater than
threshold, the decision solution is considered as un-
acceptable. It is clear that in the first round compu-
tation, the departure degree is equal to 0. However,
we are aware of that presetting appropriate thresh-
old values is not an easy task. The threshold values
will depend on the problem domain. When the con-
sequences of the decision to be made are of utmost
importance, the threshold of consensus should be set
as high as possible, usually greater than 0.8. On the
contrary, in cases where the consequences are not so
serious, it is reasonable to set the threshold value of
consensus as close as 0.519. Similarly, the thresh-
old value of departure degree should be set as low
as possible if the consequences are very importan-
t. In our research, we assume that the decisions are
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Figure 1: Framework of the proposed decision support model for MAGDM

serious and of high importance. For the sake of sim-
plicity in case study, we respectively set the values
of η and γ as 0.85 and 0.15.

3) Obtaining the Pareto optimal decision solu-
tions via a multi-objective optimization process. If
the two measure degrees of decision solutions sat-
isfy the predefined acceptance conditions, then the
DSM goes to phase 5) to apply the alternative selec-
tion process. Otherwise, a multi-objective optimiza-
tion process is employed to obtain the satisfactory
decision solutions. In some cases, there is no any de-
cision solution satisfying the predefined acceptance
conditions after the optimization process. Then, the
DSM goes to phase 4) to conduct a interactive pro-
cedure with DMs.

4) Controling the interactive procedure with
DMs. In this phase, a discussion will be held among
all or some of the DMs. The decision solutions as
well as the advice about how to change the evalu-
ation values should be reported to DMs who will
be suggested to modify their initial decision pref-
erences or opinions. In this feedback process, the
DSM will identify the DM(s) who need to change

their decision preferences in the next round accord-
ing to the proximity. After that, the DSM repeats
the process from the first phase. In real problems,
some DMs may not accept the advices and refuse
to change their decision preferences. When such a
dilemma occurs, it is necessary to develop new alter-
natives. This situation is out of the scope of this re-
search, we assume that DMs will accept the advices
generated by the DSM. In order to avoid that the
interactive procedure dose not converge after many
rounds of discussion, we employ a maximum num-
ber of rounds to be developed in the interactive pro-
cedure, denoted as Maxcycles 32,16,17.

5) Applying the alternative selection process. If
the decision solution satisfies the predefined accep-
tance conditions, then selection process is applied
to calculate the performances of alternatives and se-
lect the preferable one(s). What should be noted is
that there may be more than one decision solution
which satisfies the predefined acceptance condition-
s. In such situation, as all decision solutions are fea-
sible, the identification of decision solution is up to
the trade-off between consensus degree and depar-
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ture degree. We concentrate our research on the en-
tire structure of the DSM and the trade-off approach
is beyond the scope of this paper.

3.1. Preliminary process of decision information

In general, there are benefit attributes and cost at-
tributes in MAGDM 23. In order to facilitate inter-
attribute comparisons and to measure all attributes e-
valuation values in dimensionless units, in this phase
we transform the evaluation values for cost attributes
to that for benefit attributes, and then normalize the
evaluation value to the interval [0,1]. For cost at-
tributes, the transformed evaluation value is denoted
as a′ki j, given as follows:

a′ki j = (amax−akupper
i j ,amax−akmost

i j ,amax−aklower
i j ) (2)

where amax is the maximum value of the standard
numerical evaluation scale. As this paper employs
the 1-9 ratio scale as the numerical scale of evalua-
tion value, we set amax to 10. Then, we normalize
the evaluation value into the interval [0,1]. For each
DM ek ∈ E, the normalized decision matrix is repre-
sented as Ãk = (ãk

i j)n×q, where

ãk
i j =

(
aklower

i j

amax
,
akmost

i j

amax
,
aku pper

i j

amax

)
(3)

3.2. Computation of consensus degree and
departure degree

Consensus degree is used to measure the level of
agreement amongst all DMs. The computation of
consensus degree requires the use of some similarity
or coincidence functions to obtain the level of agree-
ment 13,14,17. These similarity or coincidence func-
tions can be defined using the traditional distance
measurement, e.g., Euclidean distance. As in this
research the evaluation value is given by triangu-
lar fuzzy number, we define the measure of consen-
sus degree based on the concept of distance between
triangular fuzzy numbers. According to the exist-
ing literature 33,34, there are many distance measure-
ment functions for fuzzy numbers. To compare the
fuzzy evaluation value, we use the concept of vertex
method 35 to calculate the distance between fuzzy

numbers. Let a = (a1,a2,a3) and b = (b1,b2,b3) be
two triangular fuzzy numbers, the distance between
which is given by

d
′
(a,b) =

√
1
3
[(a1−b1)2 +(a2−b2)2 +(a3−b3)2]

(4)
In the problem addressed in this research, the

value a2 and b2 represent the most preferable evalua-
tion value given by DMs. Thus, these values indicate
the best level of a DM’s knowledge and expertise to-
wards to an alternative with respect to a given eval-
uating attribute. So the most preferable value plays
a more important role in comparison of two evalua-
tion values. Then, we modify the vertex method for
distance measurement as follows.

d(a,b) =√
α

2
(a1−b1)2 +(1−α)(a2−b2)2 +

α

2
(a3−b3)2]

(5)

where α is a constant coefficient in the interval [0,1].
Since α indicates the importance of the lower and
upper bounds of the fuzzy evaluating values, we sug-
gest the value of α is set to lower than 0.5. In this
research α is set to 0.1 with no other specific reason.
From the definition of distance in Eq.(5) we can see
that if a and b are real numbers, them the distance
d(a,b) is identical to the Euclidean distance. Thus,
we define a similarity function s between these two
triangular fuzzy numbers as follows:

s(a,b) = 1− d(a,b)
g

(6)

In order to normalize the similarity measurement
in the interval [0,1], g is taken the value of maximum
numerical scale amax. And note that if the fuzzy e-
valuation value has been normalized as Eq. (3), then
g is set to be 1. The closer s(a,b) is to 1 the more
similar a and b are, while the closer s(a,b) is to 0
the more distant a and b are.

For two DMs ek1 and ek2 ∈ E, their similarity
on an evaluating attribute c j ∈ C for an alternative
xi ∈ X is given by

sck1k2
i j = s(ak1

i j ,a
k2
i j ), i = 1, · · · ,n and j = 1, · · · ,q

(7)
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The similarity on the alternative is obtained by
aggregating the similarities on attributes using the
additive weight aggregation (AWA) operator, given
by

sak1k2
i =

q

∑
j=1

λ jsck1k2
i j , i = 1, · · · ,n (8)

The consensus degree between two DMs in a
decision solution, denoted as csk1k2 , is defined as
the arithmetic mean of the similarity on alternatives,
given by

csk1k2 =
∑

n
i=1 sak1k2

i
n

(9)

The consensus degree of a decision solution,
called cs, is defined as the minimum of consensus
degrees for all pairs of DMs in a decision solution,
given by

cs = Min(csk1k2), k1, k2 = 1, · · · ,m ∧ k1 6= k2
(10)

If cs < η , it indicates that the agreement level a-
mongst DMs is lower than the threshold. Then, the
data processor can adjust the most preferable evalu-
ation value of DMs in the permitted interval.

Departure degree is used to measure how far the
adjusted decision solution from the initial decision
solution. In a decision solution after adjustment, for
a DM ek ∈ E, the distance between the initial pref-
erence value and adjusted preference value for an
alternative xi ∈ X with respect to an evaluating at-
tribute c j ∈C, denoted as dk

i j, is defined as follows:

dk
i j = 1−µak

i j
(âkmost

i j ) (11)

where µ is the membership function of a triangular
fuzzy number given by Eq.(1). It is clear that dk

i j is
in the interval of [0,1] and the closer dk

i j is to 0 the
closer the DM ek is to his/her most preferable value
on the attribute, the closer dk

i j is to 1 the more distant
the DM ek is from his/her most preferable value.

The distance between the initial preference val-
ue and adjusted preference value for an alternative
xi ∈ X , denoted as dk

i , is calculated by AWA opera-
tor, given by

dk
i =

q

∑
j=1

λ jdk
i j (12)

The departure degree of a DM, denoted as d pk,
is defined as the arithmetic mean of distance for all
alternatives, given by

d pk =
∑

n
i=1 dk

i
n

(13)

The departure degree of a decision solution,
called d p, is defined as the maximum of departure
degrees for all DMs in a decision solution, given by

d p = Max(d pk),k = 1, · · · ,m (14)

If d p > γ , the decision solution is considered as
unacceptable.

3.3. Multi-objective model for the MAGDM
process

In the conventional MAGDM problems, great effort-
s have been attached to the pursuing of maximum
consensus degree of the decision solution. We in-
troduce departure degree as another measurement to
the decision solution, then the decision process is
modeled as a multi-objective optimization process
which simultaneously considers the maximization
of consensus degree and the minimization of depar-
ture degree. The multi-objective optimization model
of MAGDM process is presented as Model(1), giv-
en as follows.

ob j. : Max f1 = cs(I),Min f2 = d p(I)

s.t. : aklower
i j 6 âkmost

i j 6 akupper
i j

i = 1, · · · ,n
j = 1, · · · ,q
k = 1, · · · ,m

(15)

where I is the decision solution which consists of
decision matrices of all DMs.

Given the predefined threshold values of η and γ ,
for a decision solution I, if cs(I) < η or d p(I) > γ ,
the decision solution is considered as unacceptable.
Then, the DSM solves the multi-objective optimiza-
tion problem proposed in Model(1) to obtain the
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more satisfactory solutions. We define the accept-
able decision solution based on the non-dominated
concept as follows.

Definition 1. A decision solution I is said to be
a non-dominated solution of Model(1), if and on-
ly if there does not exist another decision solution
I for the consensus degree cs and departure de-
gree d p, satisfying the following condition: cs(I)>
cs(I) ∧ d p(I)6 d p(I), with strict inequality hold-
ing for at least one measure degree.

Definition 2. For a MAGDM problem, the decision
solution I∗ is said to be an acceptable solution if I∗ is
a non-dominated solution for Model(1) and satisfy-
ing the following condition: cs(I∗)>η ∧ d p(I∗)6
γ .

For solving the proposed multi-objective opti-
mization problem, multi-objective evolutionary al-
gorithm (MOEA) is employed in DSM because of
its ability to find multiple non-dominated solution-
s in a single run 36. Although a great number of
MOEAs have been suggested since about the ear-
ly 1990’s, we use one of the classic MOEAs –
NSGA-II 37– as the optimization algorithm. NSGA-
II is an elitism algorithm whose main feature is the
fast-non-dominated-sort and the crowding-distance-
assignment mechanism. The former creates a mat-
ing pool by combining the parent and offspring pop-
ulations and selecting solutions considering fitness
and spread. The latter ensures diversity is main-
tained among non-dominated solutions.

3.4. Control the interactive procedure with DMs

In some cases, we cannot obtain any acceptable de-
cision solution after the optimization process. It in-
dicates that the decision preferences are very differ-
ent amongst the DMs. In such a case, the DSM will
identify the DM(s) who need to change their evalua-
tion values and generate changing direction advices.
The upper level decision maker will report this sit-
uation as well as advices to the identified DM(s).
Then, the new decision information is collected, and
the computing and optimization process aforemen-
tioned is repeated.

The proximity measure, which reflects the dis-
tance between an individual preference and the col-

lective one, is used to identify the DM(s) who
need to change their preferences in the next round.
Let Ac = (ai j)n×q be the collective decision matrix,
where ai j is also a triangular fuzzy number repre-
sented as (alower

i j ,amost
i j ,aupper

i j ). ai j is obtained by
aggregating all evaluation values given by all DM-
s as shown in Eq.(16).

ai j = Ψ(a1
i j,a

2
i j, · · · ,am

i j) (16)

where Ψ is the AWA operator, i.e.:

alower
i j =

m

∑
k=1

ωkaklower
i j (17)

amost
i j =

m

∑
k=1

ωkakmost
i j (18)

aupper
i j =

m

∑
k=1

ωkakupper
i j (19)

For each DM ek ∈ E, the proximity measure, de-
noted as pmk, is defined as the consensus degree be-
tween the individual DM and the collective one, giv-
en by

pmk = cskc (20)

where the DM ec represents the collective one whose
decision matrix is obtained by Eq.(17)–Eq.(19). The
arithmetic mean of proximities is calculated in each
round and the DM whose proximity is below the
mean value is identified as the one who should
change his/her evaluation value in the next round.
It can be represented as: For each DM ek ∈ E, if the
proximity measure pmk < pmk =

∑
m
k=1 pmk

m , then DM
ek is suggested to change his/her preference in the
next round.

The change direction advices are represented as
direction rules 19 and are generated based on the
comparison of individual decision preferences and
collective decision preference. Here we use the most
possible value of the triangular fuzzy evaluation val-
ue to compare individual decision preferences and
the group decision preference. Thus, the direction
rules can be described as follows.

Rule 1. For the evaluation value of an alternative
xi with respect to an attribute c j given by DM ek,
if akmost

i j −amost
i j < 0, then the DM ek need to increase
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the evaluating value associated with the attribute if it
is a benefit attribute or decrease the evaluating value
associated with the attribute if it is a cost attribute.

Rule 2. For the evaluation value of an alternative
xi with respect to an attribute c j given by DM ek, if
akmost

i j − amost
i j > 0, then the DM ek need to decrease

the evaluating value associated with the attribute if it
is a benefit attribute or increase the evaluating value
associated with the attribute if it is a cost attribute.

Rule 3. For the evaluation value of an alternative
xi with respect to an attribute c j given by DM ek, if
akmost

i j − amost
i j = 0, then the DM ek dose not need to

change the evaluating value associated with the at-
tribute.

3.5. Applying the alternative selection process

After the optimization process and/or the interactive
procedure with DMs, the acceptable solutions are
obtained. Then the final decision solution is iden-
tified by upper level decision maker and the alterna-
tive selection process is applied to calculate the per-
formance ratings of all alternatives under the identi-
fied decision solution. This paper employs a widely
used multiple attribute decision method called the
technique for order preference by similarity to ideal
solution (TOPSIS) 38,39 as the alternative selection
method for MAGDM. The basic concept of TOPSIS
is that the most preferred alternative should not only
have the shortest distance from the positive ideal so-
lution (or the best possible alternative), but also have
the longest distance from the negative ideal solution
(or the worst possible alternative). For the specific
details of TOPSIS, readers are referred to 8.

4. Case Study

To illustrate the proposed DSM for MAGDM, an ex-
ample about selection of alternatives for hydroelec-
tric project is taken as a case study in this research.
The problem background is described as follows:
China decides to build a hydroelectric project in the
Yangzte River basin. For sustainable development,
the decision about the project should consider many
related aspects. Experts from different fields are
called to express their decision preference on dam

height and electricity generation capacity, whose d-
ifferent combinations compose the alternatives to be
evaluated. Table 1 shows the evaluation attributes
for an alternative in hydroelectric project decision
problem and the weight vector of attributes is denot-
ed as λ = (0.12,0.18,0.20,0.20,0.16,0,14). The
group of DMs consists of 5 panel of expert(s) which
are from different fields and departments, such as
Ministry of Water Resource, National Development
and Reform Commission, Ministry of Environmen-
tal Protection, Ministry of Civil Affairs, National
Disaster Reduction Committee and so on. The group
of DMs is denoted as E = (e1,e2,e3,e4,e5), whose
weight vector is ω = (0.15,0.2,0.22,0.25,0.18).
There are 4 alternatives to be evaluated, denoted as
X = (x1,x2,x3,x4). The alternatives stand for differ-
ent settings of the key indices of the hydroelectric
project, i.e., dam height and electricity generation
capacity in this research. The decision matrices giv-
en by DMs are represented in Table 2.

4.1. Preliminary process and consensus degree
computation

The evaluating attributes c2, c4 and c5 are cost at-
tributes, so we transformed the evaluation values
with respect to these attributes as Eq.(2) . The
thresholds of consensus degree and departure degree
is predefined to be η = 0.85 and γ = 0.15. The con-
sensus degree of initial decision solution is calculat-
ed as cs = 0.8050. Because cs < 0.85, the adjust-
ment process of the preference values by solving the
multi-objective optimization model is applied.

4.2. Solving multi-objective optimization model
for MAGDM

In the employed multi-objective genetic algorithm,
we used a population size of 100. And crossover
and mutation rates were 0.98 and 0.20 respective-
ly. The evolution was terminated after 5000 gener-
ations. Figure 2 shows the obtained non-dominated
decision solutions after 5000 generations. It is clear
that the figure visualizes a set of non-dominated de-
cision solutions well-spread in the objective sapce.
This indicates that consensus degree and departure
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Table 1: Evaluating attributes of MAGDM in a case study.

Attribute Description

c1 Economic factor, which reflects the economic benefit resulting from the
project.

c2 Environment factor, which reflects the negative affect to the ecology by the
project.

c3 Disaster prevention, factor which reflects the capability to control flood disas-
ter and drought disaster by using the hydroelectric project.

c4 Society factor, which reflects the negative impact to society by the project,
such as immigration, destroy to cultural heritage and so on.

c5 Military factor, which reflects the project’s potential risk when it is attacked in
the war time.

c6 Agriculture factor, which reflects agricultural benefit acquired from the project.

degree are strongly conflicting with each other. S-
ince the predefined threshold values of consensus
degree and departure degree are 0.85 and 0.15 re-
spectively, there is no acceptable decision solution
among these obtained non-dominated solutions and
the interactive procedure with DMs is activated.

4.3. Interactive procedure with DMs

The vector of proximity measures for all DMs
was computed as (0.9381, 0.8987, 0.9304, 0.9369,
0.8863). The average of proximity measures was
pmk = 0.9181. Thus, the DMs e2 and e5 were i-
dentified to be suggested to change there evalua-
tion values in the next round. By considering both
group opinion and individual opinions, change di-
rection advices could be generated through the di-
rection rules, i.e., Rule 1, Rule 2 and Rule 3. These
advices as well as group opinion were reported to e2
and e5. Then, they could know their gaps between
group opinion on each attribute for each alternative
and make some changes on their most preferable e-
valuating values. We suppose that the decision ma-
trices given by e2 and e5 after the first round of in-
teractive procedure are shown in Table 3 and 4, re-
spectively.

4.4. Repeating the degrees computation and
optimization process

In the next round, the consensus degree of decision
solution came out as cs = 0.8248 and at this time the
departure degree was equal to 0. Because cs was stil-
l lower that the predefined threshold value 0.85, the
optimization process was applied to obtain more sat-
isfactory decision solutions with the aid of comput-
er. The parameter settings were remained the same
as those in the first round. Figure 3 shows the the ob-
tained non-dominated decision solutions after 5000
generations in the second round. It is quite clear
from the figure that there are acceptable decision
solutions which satisfy cs > 0.85 and d p 6 0.15 in
the well-spread set of non-dominated solutions. For
the sake of clarity, we removed the non-acceptable
solutions from the non-dominated set and Figure 4
shows the visualization of acceptable decision solu-
tions in the objective space.

4.5. Applying the alternative selection process

The upper lever decision maker identifies the final
decision solution from the set of acceptable decision
solutions according to the preference and by using
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Table 2: Initial decision matrix given by DM1-DM5.

DM1 c1 c2 c3 c4 c5 c6

x1 (7.5,7.8,8.2) (1.5,2.0,2.5) (7.9,8.4,8.8) (2.2,2.6,2.9) (1.4,1.9,2.6) (8.3,8.8,9.3)

x2 (7.8,8.3,8.8) (1.3,1.7,2.3) (7.3,8.0,8.5) (1.8,2.2,2.7) (1.8,2.3,2.7) (8.3,8.9,9.4)

x3 (7.4,8.1,8.5) (1.2,1.6,2.0) (8.1,8.6,9.1) (1.3,1.8,2.5) (1.6,2.0,2.7) (7.4,8.0,8.9)

x4 (8.2,8.8,9.2) (1.8,2.3,3.0) (8.0,8.6,9.0) (2.1,2.7,3.1) (1.3,1.7,2.2) (7.9,8.4,9.0)

DM2

x1 (8.0,8.4,8.9) (1.6,2.4,2.9) (7.3,7.6,8.1) (2.1,2.7,3.2) (1.4,1.9,2.5) (7.0,8.0,8.7)

x2 (7.1,7.5,8.0) (1.9,2.6,3.2) (8.0,8.3,8.8) (2.3,2.7,3.0) (1.6,1.9,2.4) (7.5,7.9,8.3)

x3 (6.8,7.2,7.6) (1.5,1.9,2.5) (8.4,9.0,9.4) (1.9,2.6,3.1) (2.2,2.7,3.3) (7.0,7.4,8.0)

x4 (7.3,8.0,8.5) (2.1,2.7,3.2) (7.1,7.4,8.0) (1.8,2.3,2.9) (1.7,2.3,2.9) (7.3,8.0,8.8)

DM3

x1 (7.6,8.1,8.8) (2.0,2.5,2.9) (7.8,8.2,8.9) (2.1,2.4,2.8) (1.7,2.2,2.6) (8.2,8.5,9.0)

x2 (7.4,7.7,8.5) (1.3,1.8,2.4) (6.9,7.5,8.3) (1.3,1.7,2.2) (1.5,2.1,2.5) (8.6,9.0,9.4)

x3 (7.6,8.0,8.9) (1.8,2.2,2.6) (8.1,8.5,9.0) (1.8,2.4,2.8) (1.4,1.8,2.4) (8.0,8.5,8.9)

x4 (8.8,9.1,9.3) (1.9,2.6,3.0) (8.0,8.4,9.0) (1.1,1.6,2.0) (1.6,1.9,2.2) (7.8,8.3,8.8)

DM4

x1 (8.0,8.3,8.9) (1.4,1.8,2.2) (7.7,8.1,8.6) (2.2,2.5,2.9) (1.4,1.7,2.4) (7.3,8.3,9.3)

x2 (7.8,8.3,8.8) (1.6,2.4,2.8) (7.0,7.6,8.1) (1.6,2.0,2.6) (2.0,2.5,2.9) (8.4,8.8,9.5)

x3 (7.6,8.1,8.6) (1.8,2.3,2.7) (8.1,8.7,9.1) (1.3,1.8,2.5) (1.6,2.2,2.7) (8.0,8.3,8.8)

x4 (8.0,8.5,9.0) (1.2,1.7,2.5) (8.4,8.9,9.3) ( 2.1,2.5,3.1) (1.3,1.6,2.2) (7.9,8.5,8.9)

DM5

x1 (8.0,8.3,8.8) (2.4,2.8,3.4) (7.0,7.6,8.3) (1.7,2.1,2.9) (1.8,2.4,2.9) (7.3,7.8,8.3)

x2 (6.8,7.2,8.0) (1.9,2.5,2.9) (7.8,8.2,8.8) (2.3,2.9,3.2) (2.3,2.8,3.2) (7.2,7.6,8.1)

x3 (7.0,7.8,8.4) (1.5,1.9,2.4) (7.0,7.8,9.0) (1.7,1.9,2.4) (1.8,2.3,2.7) (8.1,8.4,9.0)

x4 (7.4,7.8,8.4) (2.4,2.9,3.3) (8.3,8.8,9.3) (2.2,2.8,3.2) (2.2,2.7,3.2) (7.2,7.8,8.3)
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Figure 2: Obtained non-dominated decision solutions of the multi-objective optimization problem of initial
decision preferences given by DMs.

Table 3: Decision matrix given by DM2 after the first round of interactive procedure

c1 c2 c3 c4 c5 c6

x1 (8.1,8.6,9.1) (1.4,2.2,2.7) (7.3,7.6,8.1) (2.1,2.7,3.2) (1.2,1.6,2.0) (8.0,8.4,8.9)

x2 (7.3,7.6,8.2) (1.7,2.1,2.5) (8.3,8.8,9.2) (2.0,2.3,2.8) (1.6,1.9,2.4) (7.5,7.9,8.3)

x3 (6.8,7.3,7.7) (1.1,1.5,2.3) (8.7,9.1,9.4) (1.4,2.2,2.7) (2.0,2.3,2.6) (7.2,7.8,8.3)

x4 (7.7,8.2,8.9) (2.1,2.4,2.8) (7.6,8.2,8.9) (1.8,2.3,2.9) (1.5,1.8,2.3) (7.7,8.2,8.8)

Table 4: Decision matrix given by DM5 after the first round of interactive procedure

c1 c2 c3 c4 c5 c6

x1 (8.1,8.5,9.0) (1.4,1.8,2.4) (7.0,7.9,8.5) (1.4,1.8,2.4) (1.8,2.4,2.9) (7.3,7.8,8.3)

x2 (6.8,7.2,8.0) (1.6,2.2,2.5) (7.8,8.3,8.9) (1.3,1.9,2.2) (1.3,1.8,2.2) (8.2,8.7,9.2)

x3 (8.0,8.4,8.9) (1.5,1.9,2.4) (7.0,7.8,9.0) (1.7,1.9,2.4) (1.5,2.0,2.7) (8.5,8.9,9.2)

x4 (7.4,8.0,8.4) (1.2,1.5,2.2) ( 8.4,9.0,9.4) (2.2,2.8,3.2) (1.7,2.3,2.8) (7.2,8.0,8.5)
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Figure 3: Obtained non-dominated decision solutions of the multi-objective optimization problem of the deci-
sion preferences given by DMs after the first round of interactive procedure.

Figure 4: Obtained acceptable decision solutions of the multi-objective optimization problem of the decision
preferences given by DMs after the first round of interactive procedure.
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Table 5: The transformed individual decision matrix of DM1-DM5 in the final decision solution

DM1 c1 c2 c3 c4 c5 c6

x1 (7.5,7.74,8.2) (7.5,8.10,8.5) (7.9,8.28,8.8) (7.1,7.42,7.8) (7.4,8.08,8.6) (8.3,8.82,9.3)

x2 (7.8,8.40,8.8) (7.7,8.14,8.7) (7.3,8.09,8.5) (7.3,7.78,8.2) (7.3,7.73,8.2) (8.3,8.90,9.4)

x3 (7.4,7.90,8.5) (8.0,8.50,8.8) (8.1,8.54,9.1) (7.5,8.27,8.7) (7.3,7.99,8.4) (7.4,8.01,8.9)

x4 (8.2,8.83,9.2) (7.0,7.70,8.2) (8.0,8.65,9.0) (6.9,7.34,7.9) (7.8,8.31,8.7) (7.9,8.43,9.0)

DM2

x1 (8.1,8.67,9.1) (7.3,7.77,8.6) (7.3,7.75,8.1) (6.8,7.45,7.9) (8.0,8.49,8.8) (8.0,8.40,8.9)

x2 (7.3,7.60,8.2) (7.5,7.96,8.3) (8.3,8.70,9.2) (7.2,7.76,8.0) (7.6,8.10,8.4) (7.5,7.91,8.3)

x3 (6.8,7.38,7.7) (7.7,8.30,8.9) (8.7,9.18,9.4) (7.3,7.90,8.6) (7.4,7.72,8.0) (7.2,7.85,8.3)

x4 (7.7,8.23,8.9) (7.2,7.65,7.9) (7.6,8.32,8.9) (7.1,7.71,8.2) (7.7,8.21,8.5) (7.7,8.22,8.8)

DM3

x1 (7.6,8.06,8.8) (7.1,7.59,8.0) (7.8,8.19,8.9) (7.2,7.66,7.9) (7.4,7.80,8.3) (8.2,8.51,9.0)

x2 (7.4,7.88,8.5) (7.6,8.12,8.7) (6.9,7.79,8.3) (7.8,8.30,8.7) (7.5,7.96,8.5) (8.6,9.00,9.4)

x3 (7.6,8.06,8.9) (7.4,7.94,8.2) (8.1,8.57,9.0) (7.2,7.74,8.2) (7.6,8.21,8.6) (8.0,8.50,8.9)

x4 (8.8,9.13,9.3) (7.0,7.51,8.1) (8.0,8.61,9.0) (8.0,8.44,8.9) (7.8,8.12,8.4) (7.8,8.31,8.8)

DM4

x1 (8.0,8.43,8.9) (7.8,8.20,8.6) (7.7,8.22,8.6) (7.1,7.48,7.8) (7.6,8.34,8.6) (7.3,8.44,9.3)

x2 (7.8,8.25,8.8) (7.2,7.73,8.4) (7.0,7.65,8.1) (7.4,8.02,8.4) (7.1,7.55,8) (8.4,8.81,9.5)

x3 (7.6,8.25,8.6) (7.3,7.80,8.2) (8.1,8.78,9.1) (7.5,8.26,8.7) (7.3,7.85,8.4) (8.0,8.31,8.8)

x4 (8.0,8.52,9) (7.5,8.38,8.8) (8.4,8.97,9.3) (6.9,7.51,7.9) (7.8,8.57,8.7) (7.9,8.56,8.9)

DM5

x1 (8.1,8.47,9) (7.6,8.21,8.6) (7.0,7.84,8.5) (7.6,8.20,8.6) (7.1,7.76,8.2) (7.3,7.88,8.3)

x2 (6.8,7.40,8) (7.5,7.85,8.4) (7.8,8.35,8.9) (7.8,8.11,8.7) (7.8,8.23,8.7) (8.2,8.70,9.2)

x3 (8.0,8.39,8.9) (7.6,8.20,8.5) (7.0,8.22,9.0) (7.6,8.09,8.3) (7.3,7.95,8.5) (8.5,8.90,9.2)

x4 (7.4,8.02,8.4) (7.8,8.49,8.8) (8.4,9.02,9.4) (6.8,7.53,7.8) (7.2,8.08,8.3) (7.2,8.08,8.5)
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Table 6: The collective transformed individual decision matrix in the final decision solution

c1 c2 c3 c4 c5 c6

x1 (7.88,8.30,8.83) (7.47,7.97,8.45) (7.55,8.06,8.58) (7.15,7.64,7.99) (7.52,8.11,8.50) (7.79,8.40,8.97)

x2 (7.43,7.91,8.47) (7.48,7.95,8.49) (7.43,8.08,8.57) (7.51,8.01,8.41) (7.44,7.90,8.35) (8.21,8.67,9.17)

x3 (7.48,8.01,8.53) (7.56,8.11,8.48) (8.02,8.68,9.12) (7.41,8.05,8.50) (7.39,7.94,8.38) (7.84,8.32,8.81)

x4 (8.04,8.55,8.97) (7.31,7.96,8.38) (8.09,8.72,9.13) (7.16,7.73,8.16) (7.67,8.27,8.52) (7.71,8.33,8.80)

the trade-off approach. As this process is out of the
scope of our research, we assumed one of the accept-
able decision solutions as the final one, which had a
consensus degree cs = 0.8613 and departure degree
d p = 0.1404. The transformed individual decision
matrices of DMs are represented in Table 5. The col-
lective transformed decision matrix is shown in Ta-
ble 6. With the collective decision matrix, we used
the TOPSIS method presented by Yeh and Chang 8

to calculate the preference value of each alternative
and the results is shown in Table 7. Then, the rank-
ing order of alternatives in the selected final decision
solution is :x4 ≺ x1 ≺ x3 ≺ x2.

5. Conclusion

As the increasing complexity of the social-economic
environment, many decision problems are no longer
performed by a single DM, but involved a group of
experts to achieve the decision solution. This paper
focuses on MAGDM in which DMs express their ab-
solute judgements on alternatives with respect to d-
ifferent evaluating attributes by fuzzy numbers. We
employ consensus degree and departure degree to
measure a decision solution from two different as-
pects. The former degree reflects the agreement lev-
el amongst all DMs and the latter degree is used to
evaluate how far the DMs depart from their most
preferable evaluation values. Based on these two
conflicting measure degrees, the decision process of
MAGDM is modelled as a multi-objective optimiza-
tion problem. Then, a multi-objective evolutionary
algorithm is employed to obtain the acceptable de-
cision solutions. A decision support model (DSM)

for MAGDM is proposed in this research. The pro-
posed DSM is an iterative and interactive process
which includes 5 implementing phases. With the
proposed approach and model, we can avoid the sit-
uation that DMs severely depart from their prefer-
ence while pursuing the maximum consensus degree
of the decision solution, thus we can effectively ob-
tain a more reliable decision result. For illustrating
the feasibility of our approach, we take the alterna-
tive selection problem about a hydroelectric project
as a case study and report the decision process and
the decision results for the problem.
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