
1

An Efficient Binary Differential Evolution with Parameter Adaptation

Dongli Jia *
School of Information and Electronic Engineering, Hebei University of Engineering, 056038, China

Xintao Duan
School of Computer and Information Engineering, Henan Normal University, 453000, China

Muhammad Khurram Khan
Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh, Saudi Arabia

Abstract

Differential Evolution (DE) has been applied to many scientific and engineering problems for its simplicity and
efficiency. However, the standard DE cannot be used in a binary search space directly. This paper proposes an
adaptive binary Differential Evolution algorithm, or ABDE, that has a similar framework as the standard DE but
with an improved binary mutation strategy in which the best individual participates. To further enhance the search
ability, the parameters of the ABDE are slightly disturbed in an adaptive manner. Experiments have been carried
out by comparing ABDE with two binary DE variants, normDE and BDE, and the most used binary search
technique, GA, on a set of 13 selected benchmark functions and the classical 0-1 knapsack problem. Results show
that the ABDE performs better than, or at least comparable to, the other algorithms in terms of search ability,
convergence speed, and solution accuracy.

Keywords: Computational Intelligence; Evolutionary Computation; Differential Evolution; Genetic Algorithm;
Binary optimization.

*Corresponding author, present affiliation: School of Information and Electronic Engineering, Hebei University of Engineering, China. Email:
jwdsli@gmail.com.

1. Introduction

Differential Evolution (DE), which was first proposed
over 1994-1996 by Storn and Price at Berkeley, is a
simple yet powerful evolutionary algorithm [1-5]. It has
been proved that DE is an accurate, reasonably fast, and
robust optimizer for many optimization problems in
real-world applications such as filter design, PID control,
image segmentation, and other scientific and
engineering problems [6-15]. The DE has a similar
framework with Genetic Algorithm but only a few
control variables. Therefore it is easy to use in
optimizing problems.

Most researchers focus their attention on DE in
continuous optimization applications and a lot of
improved variants of DE have been presented recently

such as Self-adaptive Differential Evolution (SaDE)[16],
Fuzzy Adaptive Differential Evolution (FADE)[17],
Adaptive DE with Optional Archive(JADE)[18], jDE
[19, 20] etc. However, many problems are set in a
discrete search space where the standard DE cannot be
implemented directly [21, 22]. Besides, for easy of
hardware-implementation, continuous optimization
problems are usually solved in a binary number space.
However, unfortunately, only a few researches pay their
attentions to the binary DE algorithm. Gong and Tuson
proposed a binary Differential Evolution (BDE)
algorithm in [23] where the continuous difference
between two individuals in standard DE is represented
by a hamming distance in the binary search space.
Similar with binary particle swarm optimization
(BPSO)[24], Engelbrecht and Pampara also proposed a

International Journal of Computational Intelligence Systems, Vol. 6, No. 2 (March, 2013), 328-336

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 328

Administrateur
Texte tapé à la machine
Received 21 December 2010

Administrateur
Texte tapé à la machine
Accepted 13 November 2012

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

Dongli Jia, Xintao Duan, Muhammad Khurram Khan

normalized binary Differential Evolution
algorithm(normDE) in CEC 07 [25].

In this paper, we proposed a novel binary DE
algorithm with parameters adaptation (ABDE) based on
DE/best/1/bin strategy of the standard DE for both
continuous and discrete problems optimization.
Different from the other two binary DE variants, BDE
and normDE, the scaling factor F was transformed into
a binary string in the proposed ABDE algorithm.
Compared with Genetic Algorithm (GA), BDE and
normDE, the proposed ABDE algorithm shows a better
optimization performance on a set of test problems.

The remainder of this paper is organized as follows.
Section 2 describes the classic DE procedure and some
basic concepts. In Section 3, the new proposed ABDE
algorithm is elaborated with detailed explanations.
Simulations are presented in Section 4 for the
comparison and analysis. At the end, Section 5
concludes the findings in the paper.

2. Differential Evolution

In standard Differential Evolution, the individual (also
called a solution to the problem) is first generated in a
continuous search space randomly. Then it experienced
the iteration of mutation, crossover, and selection steps
until the termination criterion is met.
Suppose that there is a minimization problem ()f X .

[]1 2min (), , ,..., ,

. . [,]
D

i i i

f X X x x x
s t x a b

=

∈
 (1)

where X is the decision vector consisting of D
variables. ia and ib are the lower and upper
boundaries of ix , respectively.

In the standard DE model, each candidate X can
be coding as an individual in a continuous search space.
All individuals form a population for further evolution.
At each generation, individuals are evaluated to assess
their quality and the best member is marked to track the
evolution progress.

A. Initialization

A candidate solution to objective function ()f X can
be coding as

 1 2[, ,...,], {1,2,..., }g g g g
i i i iDX x x x i NP= ∈ (2)

where g
ijx is the j -th component of the i -th individual

in g -th generation. NP is the population size. D is
the dimension of objective function ()f X . In
initialization, all individuals are randomly generated
with the uniform probability distribution.

B. Mutation

In standard DE, the mutation is executed in a continuous
search space. For each individual vector g

iX , a
continuous difference is calculated between two
randomly selected individuals. Then the difference is
scaled by multiplied a scaling factor F . The mutation
equation is

3 2 1

1 2 3

(),
, , {1, 2,..., }, [0,1]

g g g g
i r r rV X F X X

r r r NP F
= + ⋅ −

∈ ∈
 (3)

where 3 2,g g
r rX X and 1

g
rX are selected individuals from

the population but different from the running individual
g
iX . The scaling factor F is closely related to the

convergence speed.

C. Crossover

In the crossover scheme, the components of the
individuals exchange their position according to the
following equation:

, () ,or ()
,

, () or ()

 {1, 2,..., }

g
ijg

ij g
ij

v rand j CR j rnbr i
u

x rand j CR j rnbr i

j D

⎧ ≤ =⎪= ⎨ > ≠⎪⎩
∈

 (4)

where g
iju is a component of the candidate child g

iU ,
and the g

ijv is a component of g
iV . ()rnbr i is a

randomly chosen index {1,2,..., }D∈ . CR is the
crossover factor. In an adaptive DE algorithm, F and
CR usually vary with the evolution process.

D. Selection

The candidate child g
iU and the individual g

iX
compete in their fitness. The winner will survive for the
next generation.

 1 , if () ()
, otherwise

g g g
g i i i
i g

i

U f X f U
X

X
+ ⎧ ≥
= ⎨
⎩

 (5)

The DE iterates above B, C and D steps until the
termination criterion is met.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 329

 An Efficient Binary Differential Evolution

Different mutation and crossover schemes can
form different DE strategies. Generally, they are defined
as / / /DE x y z . The x specifies the individual who
will take part in the mutation, y is the number of
difference vectors, and z denotes the crossover scheme.

3. Discrete Differential Evolution with
parameters adaptation

This section proposes a novel discrete DE with
parameters adaptation for the discrete space
optimization. The basic difference between the discrete
DE algorithm and the standard DE lies in the mutation
strategy. In standard DE, mutation is implemented
based on the scaled difference between two selected
individuals in a continuous search space. In the
proposed binary DE algorithm, the mutation of thi
individual can be defined as:

2 1

^

(if) & (^)

g g
i best

g g
j j j j

V X D
D rand F x x

=

= <
 (6)

where, ‘^’ is the xor operator and ‘&’ is the and
operator. jD is the scalded difference between two
individuals. The scaling factor F indicates the
accepted probability of the component difference
between 1

g
jx and 2

g
jx in two selected individuals 2

gX
and 1

gX .
Our adaptation scheme is designed based on the

DE/best/1/bin strategy, so the g
bestX will always be the

best member in the population.
An instance of the binary mutation is illustrated in

Fig. 1.
In the proposed binary DE, the crossover and the

selection strategies are the same as them in the standard
DE.

To further improve the optimization performance,
we introduce a parameter adaptation scheme into the

binary DE. First, each individual in the population is
assigned an F and a CR value as depicted in Fig 2.

In the initialization phase, all the F and CR are
originally set to be 0.65 and 0.25, respectively. Then in
every evolutionary generation, the F and CR of each
individual are slightly disturbed based on the following
equation.

1

1

(,0.05), if 0.05
, otherwise

(,0.05), if 0.05
, otherwise

ig
i g

i

ig
i g

i

normrnd mF rand
F

F

normrnd mCR rand
CR

CR

+

+

<⎧
= ⎨
⎩

<⎧
= ⎨
⎩

 (7)

where, mF and mCR are the mean F and mean CR
values, respectively. ()normrnd g indicates a normal
distribution with a mean of mF or mCR and a
variance of 0.05.

In selection step, the individual with a better fitness
will survive the next generation and the associated F
and CR will be also propagated to the next generation.
The whole procedure of the adaptive DE based on the
DE/best/1/bin strategy is described below:
• Step1. Initialization

• Step1.1. Set the population size NP, and the
stop criteria;

• Step1.2. Initialize all individuals randomly;
set the F and CR to be 0.65 and 0.25,
respectively.

• Step1.3. Evaluate ()f X over all individuals.
• Step2. Iteration

• Step2.1. Execute mutation according to
equation (6) and adjusting F and CR for each
individual;

• Step2.2. Execute crossover according to
equation (4);

• Step2.3. Execute selection according to equation
(5);

1 jx 1 1 0 1 1

2 jx 0 1 1 1 0

 jrand F< 1 0 1 1 0

,best jx 0 1 1 0 1

jv 1 1 0 0 1

Fig. 1 An instance of binary mutation

… … …

1
gX

2
gX

g
NPX

1
gF

2
gF

g
NPF

1
gCR

2
gCR

g
NPCR

Fig. 2 Adaptation encoding format

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 330

Dongli Jia, Xintao Duan, Muhammad Khurram Khan

• Step3. If the stopping criteria are met, output the
best solution. Otherwise, jump to step2.

4. Experiments

4.1. Algorithms for comparison

The most-used binary evolutionary algorithm, GA, and
two binary DE variants, normDE and BDE, are
compared over the test benchmarks. In order to
demonstrate the effects of our mutation strategy on
improving the performance of ABDE, the ABDE
without parameters adaptation (ABDE_W) was also
simulated.

normDE:

normDE is originally proposed by Engelbrecht and
Pampara in CEC 07[25]. Similarly with BPSO [24], the
normDE uses the floating-point DE individuals to
generate a binary DE bit string. First, each component
of each individual is linearly scaled to the range of [0, 1].

' min min max() (() | () |) /(| () | ())ij ij i i ix g x g x g x g x g= + +
 (8)

where ()ijx g is the j-th component of i-th individual in
g-th generation. max

ix and min
ix are the largest and the

smallest component values of the i-th individual. The
binary bit string then generated using

'0, if () 0.5
()

1, otherwise
ij

ij
x g

y g
⎧ <

= ⎨
⎩

 (9)

The bit string is used by the fitness function to
determine its quality and in turn associated with
floating-point representation of the individual.

BDE:

BDE is originally proposed by Gong and Tuson in [23].
There are two mutation operators introduced in BDE.
One operator considers each decision variable as a
single dimension and the other operator considers all
decision variables as a single dimension. In our
experiment, we only consider the latter one. Firstly,
evaluate the distance d between 2

gX and 3
gX over all

variables. Then, scale the distance d ′ with F ,
'd F D= ⋅ . Finally, round the scaled distance to a

suitable integer number ([0,]D∈) to apply to another
apply binary string (i.e. 1

gX).

' ' '

1 '

(int) 1, if (int)
(,)

(int) , otherwise
g d rand d d

D Mutant X
d

⎧ + < −
= ⎨
⎩

 (10)

GA:

GA is the most-used binary evolutionary algorithm and
we can find a lot of paper related to GA. In our
comparison, we use the standard GA and Dejong
parameter settings as introduced in [26].

4.2. Benchmark functions

Experiments are carried out over a set of 13 widely used
benchmark functions described in appendix 1. These
functions are taken from [27] by Yao et al each with
different characteristics. Most of them are also tested in
other binary evolution algorithm such as in [25, 23].
Among these benchmarks, F1-F4 are unimodal
functions, F5 is the Rosenbrock function which is
unimodal function for D=2 and multimodal function for
D>3[28], F6 is a step function, F7 is a noisy quartic
function, F8-F13 are multimodal function.

4.3. Parameter settings and numerical results

All simulations are carried out over 13 benchmark
functions. The parameters of the normDE are set as
recommended in [25]. For BDE, the F and CR values
used in [23] are problem dependent. In our simulation,
we use the median values which the authors of BDE
have used. We fixed the parameters of BDE to F=0.3,
CR=0.6 for all benchmark functions. For GA, the
parameters are set to two point crossover with rate of
0.6, bit flip mutation with rate of 0.001, and roulette
wheel selection as recommended by Dejong in [26]. The
parameters of ABDE are set as discussed above. The F
and CR values are fixed to 0.65 and 0.25 for ABDE_W,
respectively. For all binary DE variants and GA, the
population size are set to be 60 and the max generation
1000 for all 13 benchmark functions at dimension D=10
（every dimension is represented by a length of 20
binary bit string）.

The averaged and standard deviations (within
parentheses) of the best values for 25 independent runs
of each algorithm are presented in Table 1. The best
solutions and its standard deviation have been shown in
boldface.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 331

 An Efficient Binary Differential Evolution

From Table 1, it can be seen that our strategy is
superior to GA and the other two binary DE variants. In
9 out of 13 cases in Table 1, the ABDE or ABDE_W
achieves the best error values. If we make a deep insight
into the results, we will find that, in many cases, the
ABDE_W reaches the best results. However, in some
other cases, the ABDE is superior to the ABDE_W
because of its parameters adaptation strategy.

In the final columns of Table 1, a two-tailed T test
was employed to show the statistical significance level
of the difference of the means of two best algorithms. A
sign ‘+’ indicates the t value of 24 degrees of freedom is
significant at a 0.05 level of significance, a sign ‘·’
stand for the difference is not statistically significant.

4.4. Convergence performance

Convergence speed is very important for evolutionary
optimization algorithms [6, 25]. To demonstrate the
convergence performance of the proposed ABDE
algorithm, we compared it with the binary DE variants
and GA over four benchmark functions each with
different characteristics. F3 is unimodal function, F5 is
the Rosenbrock function, F7 is a noisy quartic function,

and F8 is multimodal function. The convergence graphs
of the algorithms over test problems are shown in Fig 3.
Please note that the convergence graphs are the mean
best function values of 25 independent runs at each
generation. From the Fig 3, it can be seen that our
algorithm not only has the fastest convergence speed,
but it obtains the best solutions to the four test functions.

4.5. Effects of the parameters adaptation

To show the effects of the parameters adaptation
scheme, we recorded the variation tendency of F and
CR values in the evolution processes over F7-F11
benchmark functions and illustrated them in Fig. 4 and
Fig. 5.

From Fig. 4 and Fig. 5, it can be seen that the
variant tendency of F and CR are problem dependent.
With the progress of the evolution, the F and CR tend to
become smaller almost for all these test functions.

4.6. Test on the 0-1 knapsack problem

The 0-1 knapsack problem (KP) is one of the classical
NP-hard problems with binary decision variables. The

Table 1. Mean best values and its standard deviation at D=10

 GA normDE BDE ABDE_W ABDE Statistical
Significance

F1 9.09E-08
(0.00E+00)

1.11E+00
(3.32E-01)

2.33E+01
(4.55E+01)

3.38E-02
(1.30E-01)

1.29E-01
(4.98E-01) +

F2 9.54E-05
(0.00E+00)

2.12E-01
(2.58E-02)

1.74E-01
(9.74E-02)

6.91E-04
1.42(E-03)

7.49E-04
(2.02E-03) +

F3 1.49E+02
(1.18E+02)

1.27E+02
(4.90E+01)

8.74E+01
(7.59E+01)

3.08E-01
(9.99E-01)

2.60E-01
(9.84E-01) +

F4 9.68E-01
(9.38E-01)

1.79E+00
(2.28E-01)

1.49E+01
(7.80E+00)

2.27E+00
(2.75E+00)

2.48E+00
(3.39E+00) +

F5 8.45E+00
(7.86E+00)

8.26E+01
(2.51E+01)

1.35E+04
(5.77E+04)

4.52E+00
(5.06E+00)

3.43E+00
(2.67E+00) +

F6 1.48E+00
(5.03E+00)

5.20E-01
(5.10E-01)

1.19E+01
(2.11E+01)

4.00E-02
(2.00E-01)

0.00E+00
(0.00E+00) +

F7 3.69E-02
(1.76E-02)

1.27E-02
(3.59E-03)

6.66E-03
(2.54E-03)

3.22E-03
(1.52E-03)

3.02E-03
(1.45E-03) +

F8 4.99E+02
(2.22E+02)

1.65E+02
(8.79E+01)

5.94E+01
(7.59E+01)

2.14E-03
(6.15E-03)

9.69E-03
(2.87E-02) +

F9 1.29E+01
(5.03E+00)

1.19E+01
(2.32E+00)

6.13E+00
(2.82E+00)

1.41E-01
(3.38E-01)

5.37E-02
(1.98E-01) +

F10 1.22E-04
(0.00E+00)

6.48E-01
(1.31E-01)

1.92E+00
(1.20E+00)

5.31E-02
(2.31E-01)

5.75E-02
(2.45E-01) +

F11 3.86E-01
(6.34E-01)

6.14E-01
(1.14E-01)

6.09E-01
(2.54E-01)

2.30E-02
(1.51E-02)

2.33E-02
(2.51E-02) +

F12 6.49E-01
(1.39E+00)

1.84E-02
(8.05E-03)

3.14E+02
(1.08E+03)

1.75E-02
(6.48E-02)

2.56E-02
(1.09E-01) +

F13 2.40E-02
(2.73E-02

6.83E-02
1.70E-02)

3.89E+02
(1.24E+03)

2.44E-04
(9.77E-04)

2.70E-04
(1.07E-03) +

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 332

Dongli Jia, Xintao Duan, Muhammad Khurram Khan

0-1 KP problem is generally descried as: given a set of
N items, each item i has a profit ip and a weight iw ,

the problem is how to choose a subset of the items to
maximize the overall profit [29].

0 200 400 600 800 1000
10-1

100

101

102

103

104

Generation

B
es

t V
al

ue
s(

lo
g)

GA
normDE
BDE
ABDE-W
ABDE

0 200 400 600 800 1000

10
0

10
2

10
4

10
6

10
8

Generation
B

es
t V

al
ue

s(
lo

g)

GA
normDE
BDE
ABDE-W
ABDE

Function F3 Function F5

0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

Generation

B
es

t V
al

ue
s(

lo
g)

GA
normDE
BDE
ABDE-W
ABDE

0 200 400 600 800 1000

10-4

10
-2

10
0

102

104

Generation

B
es

t V
al

ue
s(

lo
g)

GA
normDE
BDE
ABDE-W
ABDE

Function F7 Function F8

Fig. 3 Convergence performance of the proposed algorithm

200 400 600 800 1000
0.625

0.63

0.635

0.64

0.645

0.65

0.655

Generation

V
al

ue
s

of
 F

F7
F8
F9
F10
F11

200 400 600 800 1000
0.16

0.18

0.2

0.22

0.24

0.26

Generation

V
al

ue
s

of
 C

R

F7
F8
F9
F10
F11

Fig. 4 Variant tendency of F Fig. 5. Variant tendency of CR

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 333

 An Efficient Binary Differential Evolution

In the test, we assume that the number of items is
100N = , all the weight iw and profit ip are integer

values uniformly random distributed in [1,200]. The
settings of the algorithms are the same as mentioned in
section 4.3.
The items for test are:

{17 94 50 139 136 172 155 176 6 142 21 113 166 120 167 184 86 51 41
 173 62 143 166 16 95 107 58 77 19 22 48 197 102 79 1 25 125 184 190 193
46 38 126 71 151 46 71 197 127 13 120 150 84 166 25 48 68

W =

12 191 150 76
12 196 141 200 34 16 169 53 120 97 43 75 128 133 103 199 108 185 186 89
96 81 192 32 137 11 191 62 7 139 200 35 65 98 100 181 76 141 43}

{172 46 108 100 190 146 164 19 73 160 26 199 32 22 63 154 173 3 143
180 196 113 113 72 162 97 14 5 95 37 91 86 27 159 139 140 118 20 14 101
83 134 62 129 42 155 180 116 62 93 130 9 2 130 92 83 194 8

P =

2 95 103 187
118 124 47 164 170 159 17 5 167 151 137 130 16 168 196 158 120 142 21
33 65 77 148 59 125 48 72 111 22 100 30 80 187 40 153 58 7 158 106}

The results are summarized in Table 2.

Table 2 Solutions to 0-1 knapsack problem

Algorithm Best Mean Best Std. Dev.

GA 7090 6834 1.79E+02
normDE 7220 7154 3.68E+01

BDE 7274 7147 6.01E+01

ABDE 7388 7388 0.00E+00

From Table 2, it can be seen that not only the ABDE

obtains the best solutions to 0-1 KP problem, but it is
the most stable algorithm with the minimum standard
deviation.

5. Conclusions

DE is a recently developed simple yet powerful
evolutionary algorithm. Due to ease of implementation,
DE has been applied to many scientific and engineering
problems. However, the standard DE can not be used in
a binary search space directly. In this paper, we
proposed a simple but effective binary DE algorithm,
ABDE, that has a similar framework with the standard
DE and an improved binary mutation strategy. To adapt
to different problems, we control the parameters of the
ABDE in an adaptive manner in the evolution process.
Comparisons have been carried out on a set of 13
selected benchmarks and the classical 0-1 knapsack
problem. Results show that the ABDE is superior to the
other binary DE variants, normDE and BDE, and the
most-used binary search algorithm, GA, in terms of the
convergence speed, search ability, and robustness.

In our future study, we will apply the proposed
ABDE algorithm to more real life problems. We will

also compare the ABDE with more binary search
technique to further verify its effectiveness.

Acknowledgement

This paper is partially supported by the National Nature
Science Foundation of China (NO. U1204606).

References

1. S. Das and P. N. Suganthan, "Differential evolution - a
survey of the state-of-the-art", IEEE Transactions on
Evolutionary Computation, 15(1)(2011) 4-31.

2. S. Das, A. Abraham, U. K. Chakraborty, and A. Konar,
Differential evolution using a neighborhood-based
mutation operator, IEEE Transactions on Evolutionary
Computation, 13(3) (2009) 526-52

3. K. Price, R. Storn, and J. Lampinen, Differential
Evolution: A Practical Approach to Global Optimization,
1st ed. New York: Springer-Verlag,. 2005.

4. R Storn, K Price, Differential evolution - A simple and
efficient heuristic for global optimization over continuous
spaces, Journal of Global Optimization, 11(4) (1997)
341-359.

5. R. Storn and K. Price, Minimizing the real functions of
the ICEC’96 contest by differential evolution,
Proceedings of IEEE International Conference on
Evolutionary Computation, Nagoya, Japan, 1996, pp.842-
844.

6. S. Dasgupta, A. Biswas, S. Das and A. Abraham,
Modeling and analysis of the population dynamics of
differential evolution algorithm, AI Communications -
The European Journal on Artificial Intelligence, IOS
Press, Netherlands, 22(1) (2009) 1 – 20

7. S. Das, S. Sil, Kernel-induced fuzzy clustering of image
pixels with an improved differential evolution algorithm,
Information Sciences, 180(8) (2010) 1237-1256

8. R. Joshi, A. C. Sanderson, Minimal representation
multisensory fusion using differential evolution, IEEE
Transaction on . Systems, Man and Cybern. Part A, 29(1)
(1999) 63–76.

9. A.C. Nearchou, A differential evolution approach for the
common due date early/tardy job scheduling problem,
Computers & Operations Research, 2008,35(4), (2008)
1329-1343

10. Q.K. Pan, L. Wang, B. Qian, A novel differential
evolution algorithm for bi-criteria no-wait flow shop
scheduling problems, Computers & Operations Research,
36(8) (2009) 2498-2511.

11. B. Qian, L. Wang, D.X. Huang, W.L. Wang, X. Wang,
An effective hybrid DE-based algorithm for multi-
objective flow shop scheduling with limited buffers ,
Computers & Operations Research, 36(1) (2009) 209-233.

12. M.F. Tasgetiren, Q.K. Pan, Y.C. Liang, A discrete
differential evolution algorithm for the single machine
total weighted tardiness problem with sequence

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 334

Dongli Jia, Xintao Duan, Muhammad Khurram Khan

dependent setup times, Computers & Operations
Research, 36(6) (2009)1900-1915.

13. Y. Wang, B. Li, T. Weise, Estimation of distribution and
differential evolution cooperation for large scale
economic load dispatch optimization of power systems,
Information Sciences, 180(12) (2010) 2405-2420

14. J. Zhang, V. Avasarala, and R. Subbu, Evolutionary
optimization of transition probability matrices for credit
decision-making, European Journal of Operational
Research, 20(2) (2010) 557-567.

15. M. Zhang, W. Luo, X.F. Wang, Differential evolution
with dynamic stochastic selection for constrained
optimization, Information Sciences, 178(15) (2008)
3043-3074

16. A. K. Qin and P. N. Suganthan, Self-adaptive differential
evolution algorithm for numerical optimization, in
Proceedings of IEEE Congress on Evolutionary
Computation, vol. 2. 2005, pp. 1785–1791.

17. J. Liu and J. Lampinen, A fuzzy adaptive differential
evolution algorithm, Soft Comput.: Fusion Found.,
Methodologies Applicat., 9(6) (2005) 448–462.

18. J.Q. Zhang, A. C. Sanderson, JADE: Adaptive
Differential Evolution with Optional External Archive,
IEEE Transactions on Evolutionary Computation, 13(5)
(2009) 945-958.

19. J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V.
Zumer, Selfadapting control parameters in differential
evolution: A comparative study on numerical benchmark
problems, IEEE Transactions on Evolutionary
Computation, 10(6) (2006) 646–657.

20. J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, V.
Zumer, High-dimensional Real-parameter Optimization
Using Self-adaptive Differential Evolution Algorithm
with Population Size Reduction, 2008 IEEE World

Congress on Computational Intelligence, 2008, pp. 2032-
2039.

21. X. He, Q. Zhang, N. Sun, Y. Dong, Feature selection
with discrete binary differential evolution. International
Conference on Artificial Intelligence and Computational
Intelligence. (2009), pp.327-330.

22. S. Dutta, D. Datta, A Binary-Real-Coded Differential
Evolution for Unit Commitment Problem, International
Journal of Electrical Power & Energy Systems, 42(1)
(2012) 517-524.

23. T. Gong and A. Tuson, Differential Evolution of Binary
Encoding, Soft Computing in Industrial Application, vol.
ASC39, 2007, pp.251-262

24. J.Kennedy and R.Eberhart, A Discrete Binary Version of
the Particle Swarm Algorithm, Proceedings of the World
Multiconference on Systemics, Cybernetics and
Informatics, 1997, pp.4104-4109

25. A.P. Engelbrecht, G. Pampara, Binary Differential
Evolution Strategies[A], IEEE Congress on Evolutionary
Computation[C], Singapore, 2007. 1942 – 1947

26. K.A. Dejong, W.M. Spears, An analysis of the interacting
roles of population size and crossover in Genetic
Algorithms. Proceedings of the first workshop on parallel
problem solving from nature. Springer-Verlag, Berlin,
1990. pp.38-47

27. X. Yao, Y. Liu, and G. Lin, Evolutionary programming
made faster, IEEE Transactions on Evolutionary
Computation., 3(2) (1999) 82–102.

28. Y. W. Shang and Y.H. Qiu, A note on the extended
rosenbrock function, Evol. Comput., vol. 14, no. 1, pp.
119–126, 2006.

29. S. Martello, D. Pisinger, P. Toth, New trends in exact
algorithm for 0-1 knapsack problem. European journal of
operation research, 123(2), (2000) 325-332

Appendix A.

1. . 2

1
1()

D

i
i

F X x
=

= ∑ ; 100 100ix− ≤ ≤ ; *1 () 1(0, ,0) 0F X F= =L .

2.
1 1

2()
DD

i i
i i

F X x x
= =

= +∑ ∏ ; 10 10ix− ≤ ≤ ; *2 () 2(0, ,0) 0F X F= =L .

3. 2

1 1

3() ()
D i

j
i j

F X x
= =

= ∑ ∑ ; 100 100ix− ≤ ≤ ; *3 () 3(0, ,0) 0F X F= =L .

4. 4() max iF X x= ; 100 100ix− ≤ ≤ ; *4 () 4(0, ,0) 0F X F= =L .

5.
1

2 2 2
1

1
5() 100() (1)

D

i i i
i

F X x x x
−

+
=

⎡ ⎤= − + −⎣ ⎦∑ ; 30 30ix− ≤ ≤ ; *5 () 5(1, ,1) 0F X F= =L .

6. ()2

1
6() 0.5

D

i
i

F X x
=

= +⎢ ⎥⎣ ⎦∑ ; 100 100ix− ≤ ≤ ; *
16 () 6(, ,) 0DF X F x x= =L ;

1 1
2 2ix− ≤ < .

7. 4

1
7() [0,1)

D

i
i

F X ix rand
=

= +∑ ; 1.28 1.28ix− ≤ ≤ ; *7 () 7(0, ,0) 0F X F= =L .

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 335

Dongli Jia, Xintao Duan, Muhammad Khurram Khan

8. ()
1

8() sin 418.98288727243369
D

i i
i

F X x x D
=

= − +∑ � � ; 500 500ix− ≤ ≤ ;

*8 () 8(0, ,0) 0F X F= =L .

9. ()2

1
9() 10cos 2 10

D

i i
i

F X x xπ
=

⎡ ⎤= − +⎣ ⎦∑ ; 5.12 5.12ix− ≤ ≤ ; *9 () 9(0, ,0) 0F X F= =L .

10. 2

1 1

1 110() 20exp 0.2 exp cos 2 20
D D

i i
i i

F X x x e
D D

π
= =

⎛ ⎞ ⎛ ⎞= − − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑ ∑ ; 32 32ix− ≤ ≤ ;

*10 () 10(0, ,0) 0F X F= =L .

11. 2

1 1

111() cos 1
4000

DD
i

i
i i

xF X x
i= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∏ ; 600 600ix− ≤ ≤ ; *11 () 11(0, ,0) 0F X F= =L .

12. () () () () ()
1

2 22 2
1 1

1 1
12() 10sin 1 1 10sin 1 ,10,100,4

D D

i i D i
i i

F X y x y y u x
D
π π π

−

+
= =

⎧ ⎫⎡ ⎤= + − + + − +⎨ ⎬⎣ ⎦⎩ ⎭
∑ ∑ ;

50 50ix− ≤ ≤ ; *12 () 12(1, , 1) 0F X F= − − =L .

where, ()11 1
4i iy x= + + and ()

()

()

, , , 0

m
i i

i i
m

i i

k x a x a
u x a k m a x a

k x a x a

⎧ − >
⎪⎪= − ≤ ≤⎨
⎪

− − < −⎪⎩

13. () () ()
1

22 2
1 1

1
13() 0.1 sin 3 1 1 sin 3

D

i i
i

F X x x xπ π
−

+
=

⎧ ⎫⎡ ⎤= + − ⋅ +⎨ ⎬⎣ ⎦⎩ ⎭
∑

() (){ } ()2 2

1
1 1 sin 2 ,5,100,4

D

D n i
i

x x u xπ
=

+ − + +∑ ; 50 50ix− ≤ ≤ ;

*13 () 13(1, ,1,1) 0F X F= =L .

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 336

