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Abstract 

Differential Evolution (DE) has been applied to many scientific and engineering problems for its simplicity and 
efficiency. However, the standard DE cannot be used in a binary search space directly. This paper proposes an 
adaptive binary Differential Evolution algorithm, or ABDE, that has a similar framework as the standard DE but 
with an improved binary mutation strategy in which the best individual participates. To further enhance the search 
ability, the parameters of the ABDE are slightly disturbed in an adaptive manner. Experiments have been carried 
out by comparing ABDE with two binary DE variants, normDE and BDE, and the most used binary search 
technique, GA, on a set of 13 selected benchmark functions and the classical 0-1 knapsack problem. Results show 
that the ABDE performs better than, or at least comparable to, the other algorithms in terms of search ability, 
convergence speed, and solution accuracy. 
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1. Introduction 

Differential Evolution (DE), which was first proposed 
over 1994-1996 by Storn and Price at Berkeley, is a 
simple yet powerful evolutionary algorithm [1-5]. It has 
been proved that DE is an accurate, reasonably fast, and 
robust optimizer for many optimization problems in 
real-world applications such as filter design, PID control, 
image segmentation, and other scientific and 
engineering problems [6-15]. The DE has a similar 
framework with Genetic Algorithm but only a few 
control variables. Therefore it is easy to use in 
optimizing problems. 

Most researchers focus their attention on DE in 
continuous optimization applications and a lot of 
improved variants of DE have been presented recently 

such as Self-adaptive Differential Evolution (SaDE)[16], 
Fuzzy Adaptive Differential Evolution (FADE)[17], 
Adaptive DE with Optional Archive(JADE)[18], jDE 
[19, 20] etc. However, many problems are set in a 
discrete search space where the standard DE cannot be 
implemented directly [21, 22]. Besides, for easy of 
hardware-implementation, continuous optimization 
problems are usually solved in a binary number space. 
However, unfortunately, only a few researches pay their 
attentions to the binary DE algorithm. Gong and Tuson 
proposed a binary Differential Evolution (BDE) 
algorithm in [23] where the continuous difference 
between two individuals in standard DE is represented 
by a hamming distance in the binary search space. 
Similar with binary particle swarm optimization 
(BPSO)[24], Engelbrecht and Pampara also proposed a 
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normalized binary Differential Evolution 
algorithm(normDE) in CEC 07 [25]. 

In this paper, we proposed a novel binary DE 
algorithm with parameters adaptation (ABDE) based on 
DE/best/1/bin strategy of the standard DE for both 
continuous and discrete problems optimization. 
Different from the other two binary DE variants, BDE 
and normDE, the scaling factor F was transformed into 
a binary string in the proposed ABDE algorithm. 
Compared with Genetic Algorithm (GA), BDE and 
normDE, the proposed ABDE algorithm shows a better 
optimization performance on a set of test problems. 

The remainder of this paper is organized as follows. 
Section 2 describes the classic DE procedure and some 
basic concepts. In Section 3, the new proposed ABDE 
algorithm is elaborated with detailed explanations. 
Simulations are presented in Section 4 for the 
comparison and analysis. At the end, Section 5 
concludes the findings in the paper. 

2. Differential Evolution 

In standard Differential Evolution, the individual (also 
called a solution to the problem) is first generated in a 
continuous search space randomly. Then it experienced 
the iteration of mutation, crossover, and selection steps 
until the termination criterion is met. 
Suppose that there is a minimization problem ( )f X .  

 
[ ]1 2min  ( ),   , ,..., ,

. .   [ , ]
D

i i i

f X X x x x
s t x a b

=

∈
          (1) 

where X  is the decision vector consisting of D  
variables. ia  and ib  are the lower and upper 
boundaries of ix , respectively. 

In the standard DE model, each candidate X  can 
be coding as an individual in a continuous search space. 
All individuals form a population for further evolution. 
At each generation, individuals are evaluated to assess 
their quality and the best member is marked to track the 
evolution progress. 

A. Initialization 

A candidate solution to objective function ( )f X  can 
be coding as 

 1 2[ , ,..., ], {1,2,..., }g g g g
i i i iDX x x x i NP= ∈          (2) 

where g
ijx  is the j -th component of the i -th individual 

in g -th generation. NP  is the population size. D  is 
the dimension of objective function ( )f X . In 
initialization, all individuals are randomly generated 
with the uniform probability distribution. 

B. Mutation 

In standard DE, the mutation is executed in a continuous 
search space. For each individual vector g

iX , a 
continuous difference is calculated between two 
randomly selected individuals. Then the difference is 
scaled by multiplied a scaling factor F . The mutation 
equation is 

3 2 1

1 2 3

( ),
, , {1, 2,..., }, [0,1]

g g g g
i r r rV X F X X

r r r NP F
= + ⋅ −

∈ ∈
           (3) 

where 3 2,g g
r rX X  and 1

g
rX  are selected individuals from 

the population but different from the running individual 
g
iX . The scaling factor F  is closely related to the 

convergence speed. 

C. Crossover 

In the crossover scheme, the components of the 
individuals exchange their position according to the 
following equation: 

,   ( ) ,or ( )
,

,   ( )  or ( )

   {1, 2,..., }

g
ijg

ij g
ij

v rand j CR j rnbr i
u

x rand j CR j rnbr i

j D

⎧ ≤ =⎪= ⎨ > ≠⎪⎩
∈

    (4) 

where g
iju  is a component of the candidate child g

iU , 
and the g

ijv  is a component of g
iV . ( )rnbr i  is a 

randomly chosen index {1,2,..., }D∈ . CR  is the 
crossover factor. In an adaptive DE algorithm, F  and 
CR  usually vary with the evolution process. 

D. Selection 

The candidate child g
iU  and the individual g

iX  
compete in their fitness. The winner will survive for the 
next generation. 

 1 ,   if  ( ) ( )
,   otherwise               

g g g
g i i i
i g

i

U f X f U
X

X
+ ⎧ ≥
= ⎨
⎩

        (5) 

The DE iterates above B, C and D steps until the 
termination criterion is met. 
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Different mutation and crossover schemes can 
form different DE strategies. Generally, they are defined 
as / / /DE x y z . The x  specifies the individual who 
will take part in the mutation, y  is the number of 
difference vectors, and z denotes the crossover scheme. 

3. Discrete Differential Evolution with 
parameters adaptation 

This section proposes a novel discrete DE with 
parameters adaptation for the discrete space 
optimization. The basic difference between the discrete 
DE algorithm and the standard DE lies in the mutation 
strategy. In standard DE, mutation is implemented 
based on the scaled difference between two selected 
individuals in a continuous search space. In the 
proposed binary DE algorithm, the mutation of thi  
individual can be defined as: 

2 1

^

(if ) & ( ^ )

g g
i best

g g
j j j j

V X D
D rand F x x

=

= <
            (6) 

where, ‘^’ is the xor operator and ‘&’ is the and 
operator. jD is the scalded difference between two 
individuals. The scaling factor F  indicates the 
accepted probability of the component difference 
between 1

g
jx  and 2

g
jx  in two selected individuals 2

gX  
and 1

gX .  
Our adaptation scheme is designed based on the 

DE/best/1/bin strategy, so the g
bestX  will always be the 

best member in the population. 
An instance of the binary mutation is illustrated in 

Fig. 1. 
In the proposed binary DE, the crossover and the 

selection strategies are the same as them in the standard 
DE. 

To further improve the optimization performance, 
we introduce a parameter adaptation scheme into the 

binary DE. First, each individual in the population is 
assigned an F and a CR value as depicted in Fig 2. 

In the initialization phase, all the F and CR are 
originally set to be 0.65 and 0.25, respectively. Then in 
every evolutionary generation, the F and CR of each 
individual are slightly disturbed based on the following 
equation. 

1

1

( ,0.05),  if 0.05
,                    otherwise

( ,0.05),  if 0.05
,            otherwise

ig
i g

i

ig
i g

i

normrnd mF rand
F

F

normrnd mCR rand
CR

CR

+

+

<⎧
= ⎨
⎩

<⎧
= ⎨
⎩

            (7) 

where, mF  and mCR  are the mean F and mean CR 
values, respectively. ( )normrnd g  indicates a normal 
distribution with a mean of mF  or mCR  and a 
variance of 0.05. 

In selection step, the individual with a better fitness 
will survive the next generation and the associated F 
and CR will be also propagated to the next generation. 
The whole procedure of the adaptive DE based on the 
DE/best/1/bin strategy is described below: 
• Step1. Initialization 

• Step1.1. Set the population size NP, and the 
stop criteria; 

• Step1.2. Initialize all individuals randomly; 
set the F and CR to be 0.65 and 0.25, 
respectively. 

• Step1.3. Evaluate ( )f X  over all individuals. 
• Step2. Iteration 

• Step2.1. Execute mutation according to 
equation (6) and adjusting F and CR for each 
individual; 

• Step2.2. Execute crossover according to 
equation (4); 

• Step2.3. Execute selection according to equation 
(5); 

1 jx  1 1 0 1 1 

2 jx  0 1 1 1 0 

 jrand F<  1 0 1 1 0 

,best jx  0 1 1 0 1 

jv  1 1 0 0 1 

Fig. 1 An instance of binary mutation 

… … … 

1
gX

2
gX

g
NPX

 

1
gF

 
2
gF  

g
NPF  

1
gCR

2
gCR

g
NPCR

Fig. 2 Adaptation encoding format 

Co-published by Atlantis Press and Taylor & Francis 
                       Copyright: the authors 
                                    330



Dongli Jia, Xintao Duan, Muhammad Khurram Khan 
 

• Step3. If the stopping criteria are met, output the 
best solution. Otherwise, jump to step2. 

4. Experiments 

4.1. Algorithms for comparison 

The most-used binary evolutionary algorithm, GA, and 
two binary DE variants, normDE and BDE, are 
compared over the test benchmarks. In order to 
demonstrate the effects of our mutation strategy on 
improving the performance of ABDE, the ABDE 
without parameters adaptation (ABDE_W) was also 
simulated. 

normDE:  

normDE is originally proposed by Engelbrecht and 
Pampara in CEC 07[25]. Similarly with BPSO [24], the 
normDE uses the floating-point DE individuals to 
generate a binary DE bit string. First, each component 
of each individual is linearly scaled to the range of [0, 1]. 

' min min max( ) ( ( ) | ( ) |) /(| ( ) | ( ))ij ij i i ix g x g x g x g x g= + +
            (8) 

where ( )ijx g  is the j-th component of i-th individual in 
g-th generation. max

ix  and min
ix  are the largest and the 

smallest component values of the i-th individual. The 
binary bit string then generated using 

'0,   if ( ) 0.5
( )

1,     otherwise    
ij

ij
x g

y g
⎧ <

= ⎨
⎩

                  (9) 

The bit string is used by the fitness function to 
determine its quality and in turn associated with 
floating-point representation of the individual. 

BDE: 

BDE is originally proposed by Gong and Tuson in [23]. 
There are two mutation operators introduced in BDE. 
One operator considers each decision variable as a 
single dimension and the other operator considers all 
decision variables as a single dimension. In our 
experiment, we only consider the latter one. Firstly, 
evaluate the distance d between 2

gX and 3
gX over all 

variables. Then, scale the distance d ′ with F , 
'd F D= ⋅ . Finally, round the scaled distance to a 

suitable integer number ( [0, ]D∈ ) to apply to another 
apply binary string (i.e. 1

gX ). 

' ' '

1 '

(int) 1,  if (int)
( , )

(int) ,            otherwise            
g d rand d d

D Mutant X
d

⎧ + < −
= ⎨
⎩

              (10) 

GA: 

GA is the most-used binary evolutionary algorithm and 
we can find a lot of paper related to GA. In our 
comparison, we use the standard GA and Dejong 
parameter settings as introduced in [26]. 

4.2. Benchmark functions 

Experiments are carried out over a set of 13 widely used 
benchmark functions described in appendix 1. These 
functions are taken from [27] by Yao et al each with 
different characteristics. Most of them are also tested in 
other binary evolution algorithm such as in [25, 23]. 
Among these benchmarks, F1-F4 are unimodal 
functions, F5 is the Rosenbrock function which is 
unimodal function for D=2 and multimodal function for 
D>3[28], F6 is a step function, F7 is a noisy quartic 
function, F8-F13 are multimodal function. 

4.3. Parameter settings and numerical results 

All simulations are carried out over 13 benchmark 
functions. The parameters of the normDE are set as 
recommended in [25]. For BDE, the F and CR values 
used in [23] are problem dependent. In our simulation, 
we use the median values which the authors of BDE 
have used. We fixed the parameters of BDE to F=0.3, 
CR=0.6 for all benchmark functions. For GA, the 
parameters are set to two point crossover with rate of 
0.6, bit flip mutation with rate of 0.001, and roulette 
wheel selection as recommended by Dejong in [26]. The 
parameters of ABDE are set as discussed above. The F 
and CR values are fixed to 0.65 and 0.25 for ABDE_W, 
respectively. For all binary DE variants and GA, the 
population size are set to be 60 and the max generation 
1000 for all 13 benchmark functions at dimension D=10
（every dimension is represented by a length of 20 
binary bit string）. 

The averaged and standard deviations (within 
parentheses) of the best values for 25 independent runs 
of each algorithm are presented in Table 1. The best 
solutions and its standard deviation have been shown in 
boldface. 
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From Table 1, it can be seen that our strategy is 
superior to GA and the other two binary DE variants. In 
9 out of 13 cases in Table 1, the ABDE or ABDE_W 
achieves the best error values. If we make a deep insight 
into the results, we will find that, in many cases, the 
ABDE_W reaches the best results. However, in some 
other cases, the ABDE is superior to the ABDE_W 
because of its parameters adaptation strategy.  

In the final columns of Table 1, a two-tailed T test 
was employed to show the statistical significance level 
of the difference of the means of two best algorithms. A 
sign ‘+’ indicates the t value of 24 degrees of freedom is 
significant at a 0.05 level of significance, a sign ‘·’ 
stand for the difference is not statistically significant. 

4.4. Convergence performance 

Convergence speed is very important for evolutionary 
optimization algorithms [6, 25]. To demonstrate the 
convergence performance of the proposed ABDE 
algorithm, we compared it with the binary DE variants 
and GA over four benchmark functions each with 
different characteristics. F3 is unimodal function, F5 is 
the Rosenbrock function, F7 is a noisy quartic function, 

and F8 is multimodal function. The convergence graphs 
of the algorithms over test problems are shown in Fig 3. 
Please note that the convergence graphs are the mean 
best function values of 25 independent runs at each 
generation. From the Fig 3, it can be seen that our 
algorithm not only has the fastest convergence speed, 
but it obtains the best solutions to the four test functions. 

4.5. Effects of the parameters adaptation 

To show the effects of the parameters adaptation 
scheme, we recorded the variation tendency of F and 
CR values in the evolution processes over F7-F11 
benchmark functions and illustrated them in Fig. 4 and 
Fig. 5.  

From Fig. 4 and Fig. 5, it can be seen that the 
variant tendency of F and CR are problem dependent. 
With the progress of the evolution, the F and CR tend to 
become smaller almost for all these test functions. 

4.6. Test on the 0-1 knapsack problem 

The 0-1 knapsack problem (KP) is one of the classical 
NP-hard problems with binary decision variables. The 

Table 1.  Mean best values and its standard deviation at D=10 

 GA normDE BDE ABDE_W ABDE Statistical  
Significance 

F1 9.09E-08 
(0.00E+00) 

1.11E+00 
(3.32E-01)

2.33E+01 
(4.55E+01)

3.38E-02 
(1.30E-01)

1.29E-01 
(4.98E-01) + 

F2 9.54E-05 
(0.00E+00) 

2.12E-01 
(2.58E-02)

1.74E-01 
(9.74E-02)

6.91E-04 
1.42(E-03)

7.49E-04 
(2.02E-03) + 

F3 1.49E+02 
(1.18E+02) 

1.27E+02 
(4.90E+01)

8.74E+01 
(7.59E+01)

3.08E-01 
(9.99E-01)

2.60E-01 
(9.84E-01) + 

F4 9.68E-01 
(9.38E-01) 

1.79E+00 
(2.28E-01)

1.49E+01 
(7.80E+00)

2.27E+00 
(2.75E+00)

2.48E+00 
(3.39E+00) + 

F5 8.45E+00 
(7.86E+00) 

8.26E+01 
(2.51E+01)

1.35E+04 
(5.77E+04)

4.52E+00 
(5.06E+00)

3.43E+00 
(2.67E+00) + 

F6 1.48E+00 
(5.03E+00) 

5.20E-01 
(5.10E-01)

1.19E+01 
(2.11E+01)

4.00E-02 
(2.00E-01)

0.00E+00 
(0.00E+00) + 

F7 3.69E-02 
(1.76E-02) 

1.27E-02 
(3.59E-03)

6.66E-03 
(2.54E-03)

3.22E-03 
(1.52E-03)

3.02E-03 
(1.45E-03) + 

F8 4.99E+02 
(2.22E+02) 

1.65E+02 
(8.79E+01)

5.94E+01 
(7.59E+01)

2.14E-03 
(6.15E-03)

9.69E-03 
(2.87E-02) + 

F9 1.29E+01 
(5.03E+00) 

1.19E+01 
(2.32E+00)

6.13E+00 
(2.82E+00)

1.41E-01 
(3.38E-01)

5.37E-02 
(1.98E-01) + 

F10 1.22E-04 
(0.00E+00) 

6.48E-01 
(1.31E-01)

1.92E+00 
(1.20E+00)

5.31E-02 
(2.31E-01)

5.75E-02 
(2.45E-01) + 

F11 3.86E-01 
(6.34E-01) 

6.14E-01 
(1.14E-01)

6.09E-01 
(2.54E-01)

2.30E-02 
(1.51E-02)

2.33E-02 
(2.51E-02) + 

F12 6.49E-01 
(1.39E+00) 

1.84E-02 
(8.05E-03)

3.14E+02 
(1.08E+03)

1.75E-02 
(6.48E-02)

2.56E-02 
(1.09E-01) + 

F13 2.40E-02 
(2.73E-02 

6.83E-02 
1.70E-02) 

3.89E+02 
(1.24E+03)

2.44E-04 
(9.77E-04)

2.70E-04 
(1.07E-03) + 
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0-1 KP problem is generally descried as: given a set of 
N  items, each item i  has a profit ip  and a weight iw ,  

the problem is how to choose a subset of the items to 
maximize the overall profit [29]. 
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Fig. 3 Convergence performance of the proposed algorithm 
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In the test, we assume that the number of items is 
100N = , all the weight iw  and profit ip  are integer 

values uniformly random distributed in [1,200]. The 
settings of the algorithms are the same as mentioned in 
section 4.3. 
The items for test are: 

{17 94 50 139 136 172 155 176 6 142 21 113 166 120 167 184 86 51 41
 173 62 143 166 16 95 107 58 77 19 22 48 197 102 79 1 25 125 184 190 193 
46 38 126 71 151 46 71 197 127 13 120 150 84 166 25 48 68 

W =

12 191 150 76 
12 196 141 200 34 16 169 53 120 97 43 75 128 133 103 199 108 185 186 89 
96 81 192 32 137 11 191 62 7 139 200 35 65 98 100 181 76 141 43}

 

{172 46 108 100 190 146 164 19 73 160 26 199 32 22 63 154 173 3 143 
180 196 113 113 72 162 97 14 5 95 37 91 86 27 159 139 140 118 20 14 101 
83 134 62 129 42 155 180 116 62 93 130 9 2 130 92 83 194 8

P =

2 95 103 187 
118 124 47 164 170 159 17 5 167 151 137 130 16 168 196 158 120 142 21 
33 65 77 148 59 125 48 72 111 22 100 30 80 187 40 153 58 7 158 106}

 

The results are summarized in Table 2. 

Table 2 Solutions to 0-1 knapsack problem 

Algorithm Best Mean Best Std. Dev. 

GA 7090 6834 1.79E+02 
normDE 7220 7154 3.68E+01 

BDE 7274 7147 6.01E+01 

ABDE 7388 7388 0.00E+00 

 
From Table 2, it can be seen that not only the ABDE 

obtains the best solutions to 0-1 KP problem, but it is 
the most stable algorithm with the minimum standard 
deviation. 

5. Conclusions 

DE is a recently developed simple yet powerful 
evolutionary algorithm. Due to ease of implementation, 
DE has been applied to many scientific and engineering 
problems. However, the standard DE can not be used in 
a binary search space directly. In this paper, we 
proposed a simple but effective binary DE algorithm, 
ABDE, that has a similar framework with the standard 
DE and an improved binary mutation strategy. To adapt 
to different problems, we control the parameters of the 
ABDE in an adaptive manner in the evolution process. 
Comparisons have been carried out on a set of 13 
selected benchmarks and the classical 0-1 knapsack 
problem. Results show that the ABDE is superior to the 
other binary DE variants, normDE and BDE, and the 
most-used binary search algorithm, GA, in terms of the 
convergence speed, search ability, and robustness. 

In our future study, we will apply the proposed 
ABDE algorithm to more real life problems. We will 

also compare the ABDE with more binary search 
technique to further verify its effectiveness. 
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