
 

 

Gantry Crane Scheduling with Interference Constraints in Railway Container Terminals 

Peng Guo*, Wenming Cheng, Zeqiang Zhang, Min Zhang 
School of Mechanical Engineering, Southwest Jiaotong University 

Chengdu, 610031, P.R. China 

Jian Liang 
School of Mechanical Engineering & Automation, Xihua University 

Chengdu, 610039, P.R. China 

 

 

 

Abstract 

Railway container terminals, where gantry cranes are responsible for loading and unloading containers between 
freight trains and yards, are important hubs of hinterland logistics transportation. Terminal managers confront the 
challenge in improving the efficiency of their service. As the most expensive equipment in a terminal, the 
operational performance of gantry cranes is a crucial factor. In this paper, the gantry crane scheduling problem of 
railway container terminals is investigated. A mixed integer programming model which considers the effect of 
dwelling position dependent processing times is formulated. In addition, the safety distances, the travel times and 
the non-crossing requirement of cranes are incorporated in the mathematical model. A novel discrete artificial bee 
colony algorithm is presented to solve the intractable scheduling problem. Computational experiments are 
conducted to evaluate the proposed algorithm on some randomly constructed instances based on typical terminal 
operational data. Experimental results show that the proposed approach can obtain near optimal solutions for the 
investigated problem in a reasonable computational time. 

 

Keywords: Railway container terminal; Gantry crane scheduling; Interference constraint; Artificial bee colony 
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1. Introduction 

With the globalization of trade, container transportation 
is becoming more and more popular. The freight 
transport volumes of China have kept an unprecedented 
increase in the last decades, especially in rail freight. 
The volume of Chinese railway freight has increased by 
about 37% from the year 2006 to the year 20111. 
Recently, railway container terminals that serve as the 
key substantial hubs of hinterland logistics 
transportation have successively been built in China. 

Rising competition from road freight, marine cargo and 
air cargo, have put pressure on managers of these 
terminals to improve their competitiveness. In terms of 
terminal competitiveness, it is often measured by the 
time necessary to serve trains by gantry cranes (GCs), 
which are the most important and expensive equipment 
used in terminals. Compared with other competition 
indexes, the freight train handling time which is the 
latest completion time among all operating tasks of the 
container train is a commonly critical factor. Generally, 
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the objective is mainly determined by gantry crane 
scheduling and train dwelling allocation in practice. 

In a railway container terminal, there are a number 
of railroad track working areas along the railway line 
and each area is served by a number of gantry cranes. 
Simultaneously, some trucks are busy transferring 
containers from railroad track working areas to assistant 
container yards or vice versa. Fig. 1 illustrates a 
schematic representation of a railway container terminal. 
When a container train arrived at the terminal, the 
operator must decide which railroad track operating area 
is the most suitable dwelling position of the train. 
Normally, a desired dwelling position is specified for a 

train within the vicinity of these container yards in 
advance. If an actually chosen dwelling position is apart 
from the desired position, the load of the horizontal 
transport will increase. Thus, the processing times of 
some operating tasks of the train are extended. 
Sometimes, if the distance between the desired position 
and the actual position is long enough, the effect on the 
processing time of these discharging/loading tasks is 
very obvious. In that case, it cannot be ignored. The 
above descriptive situation is called the effect of the 
dwelling position dependent processing times for the 
container terminal. 

   .

 
Fig. 1. Schematic Representation of a railway container terminal

After the railroad track working area has been 
determined, the gantry crane scheduling problem (GCSP) 
which is similar to the quay crane scheduling problem 
(QCSP) in seaport terminals arises. In order to make 
mathematical modeling more convenient, a container 
train is typically divided longitudinally into different 
discharging/loading tasks when they share the same 
attributes: position, size, destination for outbound 
containers, or origin for inbound containers. Here, the 
definition of a task refers to the discharging/loading 
operation of the container groups belonging to the same 
operating location. GCs that are mounted on two uniform 

tracks provide the related handling operation in a railroad 
track working area. Fig. 2 depicts a typical task partition 
in a container train. Because GCs are tracks mounted, 
some crane interference constraints are involved in the 
GCSP. Two types of constraints are largely considered, 
such as non-crossing constraints and safety constraints. 
For the non-crossing constraints, all GCs cannot cross 
each other on the same tracks. For the safety constraints, 
adjacent GCs must keep a suitable distance at any time. 
In practice, only one gantry crane can work on a task at 
any time. In general, the above interference constraints 
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must be included in the mathematical model so as to 
make the schedule feasible and rigorous. 

Although the described GCSP is similar to the 
QCSP in port terminals, there are some unique 
characteristics of GCSP that are different from QCSP. 
The GCs are equipped with a cantilever on both sides and 
are arranged alongside the tracks for a parallel processing 
of container transferring. Once the working area of a 
freight train is determined, all GCs in this area are served 
for the train. Moreover, the crane assignment problem 
may not be considered in railway container terminal. But 
the choosing of the dwelling position is very important 
for charging and discharging of trains. All cranes located 
a given working area only move on two tracks of the area 
and can not perform handling tasks of other areas. 
Generally, the number of tracks and GCs directly 
determine the processing capacity of a railroad track 
working area.  

In this paper, the effect of dwelling position 
dependent processing times is integrated into the GCSP 

with the interference constraints, and the corresponding 
mathematical model is formulated. If the non-crossing 
requirement and safety constraint are included in QCSP, 
the problem is NP-complete2. Obviously, the proposed 
problem is also NP-complete hence there exists no 
polynomial time algorithm for the exact solution of the 
GCSP. Consequently, heuristic or meta-heuristic 
algorithms are needed to obtain near optimal solutions. 
Since there is no detailed work that introduces the use of 
the artificial bee colony (ABC) algorithm to solve the 
crane scheduling problem, a novel discrete ABC 
algorithm is developed for dealing with the integrated 
GCSP. In the novel algorithm, an analogous operational 
structure which enables to maintain all major 
characteristics of ABC is introduced into the classical 
search equation of ABC algorithm. In addition, a well-
designed decoding procedure is employed to transform a 
solution to a gantry crane schedule.                                . 

 
Fig. 2. Typical task partition of a container train

The remainder of this paper is organized as follows: 
Section 2 surveys the existing literature on the railway 
container terminal and the quay crane scheduling 
problem of port container terminal. Section 3 formulates 
a mathematical model for the considered GCSP. 
Afterward, a novel discrete ABC algorithm is proposed in 
Section 4, and the computational experiments in Section 
5 investigates the performance of the proposed approach. 
Some conclusions and future work are given in Section 6. 

2. Literature review 

There are many different decision problems involved in 
the operation management of railway container terminals3, 
such as the service slots of trains scheduling, railroad 
track working area assigning, the position of the 
containers on trains deciding, gantry crane scheduling, 

and so on. Compared with port container terminals, the 
researches of the hinterland railway container terminal 
are relatively less. In order to avoid the complexity of 
computation, simulation was used for analyzing the 
performance of new schemes in hinterland railway 
container terminal4, 5. However simulation did not 
provide any good schedules, mathematical programming 
is necessary. Boysen et al.3 considered the freight train 
scheduling problem of the modern railway container yard, 
provided a mathematical program and described two 
different solution procedures. In addition,  Kozan6 
designed a network model to improve the efficiency of 
container transfer operations in multimodal terminals. 
Corry and Kozan7 investigated a dynamic assignment 
problem of load planning for intermodal trains. Jeong and 
Kim8 studied an integrated scheduling of rail crane 
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operations and truck deliveries between a port terminal 
and a rail terminal. Although the above studies address 
the different scheduling problem of port-rail terminal, the 
gantry crane scheduling has never gotten enough 
attention and research. 

There is almost no study on GCSP for railway 
container terminal, but the gantry crane scheduling 
problem is similar to the quay crane scheduling problem 
(QCSP) in port terminals. The QCSP have received great 
attention in the literature. The literature review of this 
paper therefore focuses mainly on quay crane scheduling 
problem with interference constraints. A latest survey of 
berth allocation and quay crane scheduling problems in 
port container terminals was presented by Meisel and 
Bierwirth9. 

Since Daganzo10 studied the static and dynamic quay 
crane scheduling problems, the QCSP has drawn a 
worldwide attention as port container terminal developed 
rapidly. Daganzo assumed that container vessel can be 
divided into holds, and only one quay crane can work on 
a hold at a time. Quay cranes can travel freely and 
quickly from one hold to another. A branch and bound 
solution method was designed by Peterkofsky and 
Daganzo11 for solving large instances of the static crane 
scheduling problem. Nevertheless, the two papers did not 
involve any interference constraints between quay cranes 
in practical operations. Lim et al.12 considered that 
containers from a given area on a vessel were a job, and 
every job has a profit value when it is serviced by only 
one crane at any time. They augmented Peterkofsky and 
Daganzo’s study, and provided an integer programming 
model with non-crossing constraint, neighborhood 
constraint and job-separation constraint for the objective 
of maximizing the total profit. Dynamic programming 
algorithms, a probabilistic tabu search, and a squeaky 
wheel optimization heuristic were developed to solve the 
scheduling problem. But a profit value associated with a 
crane-to-job match is difficult to determine in practice, 
and hence their research cannot easily be applied in port 
container terminal. Kim and Park13 defined a task as a 
discharging or loading for a cluster of adjacent slots on 
one container vessel. They formulated a mixed integer 
programming model, which considers non-crossing 
constraint related to the operation of quay cranes, and 
designed a branch and bound method and a greedy 
randomized adaptive search procedure (GRASP) to 
obtain the optimal solution.  

The above two papers pointed out two main respects 
of the scheduling problem: QCSP with container groups 
and QCSP with complete bays. For the QCSP with 
container groups, Moccia et al.14 revised the Kim and 
Park formulation that yielded some solutions where 
interference between quay cranes is violated, and 
developed a branch and cut algorithm incorporating 
several families of valid inequalities adopted from 
solution methods for the precedence relationships of 
vehicle routing problem. Sammarraet al.2 provided a tabu 
search algorithm based on a local technique for the 
scheduling problem. Their algorithm provides a good 
balance between solution quality and computation time, 
and outperforms the GRASP and the branch and cut 
algorithm. Afterwards, Ng et al.15 proposed a scheduling 
heuristic to find effective schedules for the scheduling 
problem. Owing to lack of a correct treatment of crane 
safety constraints, Bierwirth and Meisel16 presented a 
revised optimization model for the scheduling of quay 
cranes and proposed a branch and bound algorithm. 

For the QCSP with complete bays, Zhu and Lim17 
studied the crane scheduling problem with non-crossing 
constraints, and showed that the problem is NP-complete. 
A simulated annealing algorithm that employed a new 
graph-search-based neighborhood search was devised to 
tackle large-sized instances. Besides, Lim et al.18 
developed a different improved simulated annealing 
algorithm for the m-parallel crane scheduling model with 
non-crossing constraint. Genetic algorithm was also 
proposed to obtain near optimal solutions for quay crane 
scheduling with non-interference constraints by Lee et 
al.19. The handling priority of each ship bay was 
considered in the quay crane scheduling problem with 
non-crossing constraint20, 21. Furthermore, a unifying rich 
QCSP model that comprehensively incorporates a variety 
of practical problem aspects was provided and was solved 
by a branch and bound method22.  

The aforementioned researches have focused on 
models with spatial constraints, but recent studies are 
paying more attention to the integration of the berth 
allocation problem (BAP) and the quay crane assignment 
problem (QCAP). The integration of the BAP and the 
QCAP was originally investigated by Park and Kim23. 
Next, a series of in-depth studies were made by Meisel 
and Bierwirth24, Zhang et al.25, and Raa et al.26. They 
mainly incorporated the berthing position dependent 
handling times, the coverage ranges of quay cranes, 

Co-published by Atlantis Press and Taylor & Francis 
                        Copyright: the authors 
                                          247



 Gantry Crane Scheduling with Interference Constraints in Railway Container Terminals 
 

 

vessel priorities, preferred berthing locations and 
handling time considerations in the integrated scheduling 
model by Park and Kim23. Correspondingly, there is less 
study on the integrated berth allocation and quay crane 
scheduling problem. Liang et al.27 introduced a 
formulation for the simultaneous berth and quay crane 
scheduling problem, and applied genetic algorithm with 
heuristic to find an approximate solution. But they did not 
consider real-life operation constraints of quay cranes. 
Moreover, Lee and Wang28 considered the relationship 
between berth allocation and quay crane scheduling with 
non-crossing constraints, and proposed a mixed integer 
programming model including two parts for the 
integrated scheduling problem. However, they failed to 
integrate the effect of berthing position dependent 
processing times into the QCSP with interference 
constraints. 

From this review, it can be said that there are some 
researches focusing on QCSP. However, to the best of 
our knowledge, gantry crane scheduling problem with the 
effect of dwelling position dependent processing times 
has not been considered for railway container terminals in 
the existing literature. There are no effective approaches 
to obtain the optimal solution for the problem under 
consideration. Therefore, a novel discrete ABC algorithm 
(DABC) is proposed to solve the problem. 

3. Mathematical formulation 

In order to minimize the freight container train handling 
time, a mixed integer programming model for the GCSP 
is formulated in this section. The following assumptions 
and constraints are imposed on the GCSP: 
• All tasks have different original processing times but 

the operation rate of cranes is identical; 
• No preemption is allowed among all tasks. That is to 

say, once a gantry crane starts to process a task, it 
must complete it before another task is processed; 

• All gantry cranes move between two adjacent tasks 
at uniform travel time; 

• Gantry cranes located in the same loading area are 
operated on the same tracks and cannot cross each 
other. In addition, the cranes line up in tracks and 
tasks are in trains that stand along the railroad track. 
These cranes and tasks are labeled according to their 
relative spatial positions. This means that the cranes 
1, 2, 3, …, m are arranged on two parallel tracks 

from left to right, and tasks 1, 2, 3, …, n are in the 
similar manner. Fig. 2 shows the details of the layout. 

• Adjacent GCs have to keep a safety margin at any 
time. 
The following notations are used to define the 

problem: 
• n    The number of tasks; 
• m   The number of gantry cranes; 
• d0 The desired dwelling position of one single 

container train; 
• d  The determined dwelling position of a container 

train; 
• pi

0   The original processing time of task i (1≤i≤n); 
• pi    The actual processing time of task i (1≤i≤n); 
• s   The necessary safety margin between adjacent 

GCs; 
• rk    The earliest available time of GC k (1≤k≤m); 
• li    The location of task i that is expressed by the task 

number; 
• lk

0   The initial position of GC k that is expressed by 
the task number; 

• t0    The travel time of a gantry crane between any 
two adjacent tasks; 

• tij    The travel time of a gantry crane from position li 
to position lj (1≤i, j≤n). k

it0  represents the travel time 
from the starting position lk

0 of GC k to location li of 
task i; 

• M    a sufficiently large positive number. 
The decision variables are defined as follows: 

• Ci    integer, the completion time of task i (1≤i≤n); 
• Cmax   integer, container train handling time, that is, 

the maximum completion time among all tasks; 
• xik    binary, set to 1 if task i is assigned to crane k; 0, 

otherwise (1≤i≤n, 1≤k≤m); 
• yij    binary, set to 1 if task i completes no later than 

task j starts; 0, otherwise (1≤i, j≤n). 
The mathematical formulation is presented below, 

followed by a brief explanation. 
Minimize: Cmax (1)
subject to: 

iCC ≥max , ni ≤≤∀1  (2)
)1( 00 ddpp ii −+⋅= β , ni ≤≤∀1  (3)

1
1

=∑
=

m

k
ikx , ni ≤≤∀1  (4)

jiij lltt −⋅= 0 , nji ≤≤∀ ,1 (5)

ii

m

k

k
ikik Cptrx ≤++⋅∑

=1
0 )( , ni ≤≤∀1  (6)

0)( ≥⋅+−−− MytpCC ijijjji , nji ≤≤∀ ,1 (7)
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0)1()( ≤⋅−+−−− MytpCC ijijjji , nji ≤≤∀ ,1 (8)
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==
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l
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k
ikjiij xlxkyyM , nji ≤≤∀ ,1 (9)

jsiyyM jiij −++≥+⋅ 1)( , nji ≤≤∀ ,1 (10)
{ }1,0, ∈ijik yx ,  

mknji ≤≤≤≤∀ 1;,1   (11)
In the above formulation, objective function (1) 

minimizes the train handling time, which is determined in 
Constraints (2) by the maximal completion time among 
all tasks. Constraints (3) redefine the processing time of 
task i that considers the effect of the dwelling position 
dependent processing times. Constraints (4) ensure that 
every task must be assigned exactly to one crane. 
Constraints (5) calculate the travel time of a gantry crane 
between position li and lj. Constraints (6) make sure that a 
task is not started earlier than the earliest available time 
of the assigned crane plus the time needed by the crane 
moving from its initial position to the location of the task. 
Constraints (7) and (8) define the property of decision 
variable yij：Constraints (7) indicate that yij=0 if Ci ≥ 
Cj−pj−tij, which means yij = 0 when task i finishes after 
task j starts; Constraints (8) indicate that yij=1 if Ci ≤ 
Cj−pj−tij, which means yij = 1 when task i finishes no later 
than task j starts. Constraints (9) impose non-crossing 
constraint between gantry cranes located in the same 
tracks. Suppose that task i and task j are performed 
simultaneously and i < j, which means yij+yji =0. As both 
gantry cranes and tasks are arranged in ascending order 
from the front to the tail of the container train. Thus, if 
task i is performed by crane k and the task j is performed 
by crane l, then k+1 ≤ l, cf. the paper of Lee et al.19. 
Constraints (10) guarantee that adjacent cranes have to 
keep a safety distance at any time when the cranes 
perform tasks simultaneously. Assume that tasks i and j 
are processed simultaneously by two cranes, then yij+yji 
=0. The necessary difference between tasks i and j must 
be no less than the required safety margin s. Since the 
tasks are labeled according to their relative spatial 
positions, the inequation i+s+1≤j must be met. 

The above descried GCSP is NP-complete. Because 
if the proposed problem is restricted such that the effect 
of berthing position dependent processing times is 
ignored and the travel time of a gantry crane between any 
two tasks is not considered, the resulting restricted GCSP 
is identified with the QCSP with safety distance and non-
crossing constraint to a certain extent. The quay crane 

scheduling problem has been proven to be NP-complete 
by Sammarra et al.2. Therefore, the proposed GCSP is 
NP-complete, and the next section employs a novel 
discrete artificial bee colony algorithm to obtain near 
optimal solutions. 

4. The discrete artificial bee colony algorithm 

The artificial bee colony (ABC) algorithm introduced by 
Karaboga29-32 is a new swarm optimization meta-heuristic 
for continuous function optimization based on the 
intelligent foraging behavior of honey bee swarm. In the 
ABC algorithm, the colony of artificial bees consists of 
three groups of bees namely employed bees, onlooker 
bees and scout bees searching for food. The first half of 
the colony consists of the employed bees, and the second 
half includes the onlooker bees. The position of a food 
source represents a possible solution of the problem 
under consideration and the nectar amount of a food 
source corresponds to the quality of the associated 
solution (fitness value). At the initialization stages, a 
randomly distributed population of solutions is filled with 
SN number of generated D-dimensional real value vectors, 
where SN denotes the colony size and D denotes the 
number of optimization variables. After initialization, the 
population of the solutions is subjected to repeated cycles 
of the search process of the employed bees, onlooker bees, 
and scout bees. An employed bee carries out a local 
search on the position in its memory to find a new food 
source (solution) and evaluates the nectar amount (fitness 
value) of the new food source. If the nectar amount of the 
new food source is higher than that of the old one, then 
the bee memorizes the new position and forgets the 
previous one. After the employed bees complete their 
search process, they share the nectar information of the 
food source and their position information with the 
onlooker bee in the dance area. An onlooker bee 
evaluates the nectar information taken from all employed 
bees and chooses a food source depending on a 
probability related to its fitness value, which is calculated 
by Eq. (12). 

∑
=

=
SN

i
iii fitnessfitnessprob

1
/ ,                                    (12)   

Where fitnessi is the fitness value of the solution i which 
is proportional to the nectar amount of the food source in 
the position i. Subsequently, an onlooker bee also 
produces a candidate solution and applies the greedy 
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selection mechanism to select a better one as the new 
food source between old and new food sources. In ABC 
algorithm, the employed bee or onlooker bee uses Eq. (13) 
to produce a candidate solution from the old one. 

)( kjijijijij xxxv −+= φ ,                                               (13)   

where j is a random integer in the range [1, D] and k∈ (1, 
2, …, SN) is a randomly chosen index that is different 
from i. ijφ is a uniformly distributed real random number 
in the range [−1, 1]. It controls the production of a 
neighbor food source position around xij and the 
modification represents the comparison of the neighbor 
food position visually by the bee. If a food source cannot 
be further improved through the predetermined number 
of trails “limit”, then the food source is assumed to be 
abandoned and replaced with a new food source by a 
scout. If the abandoned source is xij, j∈ (1, 2, …, D) then 
the scout discovers a new food source xij using Eq. (14). 

)()1,0( minmaxmin
jjjij xxrandxx −⋅+= ,                  (14)   

where xj
min and xj

max are the lower and upper bounds for 
the dimension j respectively. 

The above standard ABC algorithm was initially 
developed for continuous optimization problems and 
cannot be suitable for the discrete scheduling problem. 
Although, some researchers have attempted to improve 
the standard ABC algorithm for solving some typical 
combinational optimization problems33-36, these improved 
algorithms do not reserve the classical search 
characteristics. Therefore, in this paper, the search 
equation of generating a new solution, that is similar to a 
discrete particle swarm optimization algorithm for 
scheduling optimization problem37, 38, is redefined based 
on integral number encoding scheme in this paper. In 
addition, the information of the found best food source is 
embedded in the local search procedure for accelerating 
the convergence rate of the proposed algorithm. The 
details of the proposed algorithm designed for the GCSP 
are elaborated as follows: 

4.1. Representation of food sources and 
initialization of the population 

In order to solve the GCSP by the DABC algorithm, the 
first step is to represent a solution of a problem as a food 
source. Generally, the most known encoding scheme 
adapted for scheduling problem is a permutation of all 

tasks as a food source. The order of the tasks in the 
permutation denotes the handling order of the tasks by 
the GCs. Fig. 3 shows the encoding scheme of a sequence 
of 8 tasks. 

It is common to randomly produce the initial 
population in swarm intelligent optimization algorithms. 
Nevertheless, this method does not obtain a good 
population. In this paper, an initialization procedure 
based on sorting order is proposed. Firstly, a population 
of 2×SN food sources is formed, where each food source 
is a sequence of n tasks generated randomly. Then, all 
food sources are evaluated and sorted according to the 
ascending order of their objective function value .The 
first SN food sources are selected as the initial population. 

 

Fig. 3. Illustration of the food source representation 

4.2. Construction of crane schedule and evaluation 
of fitness value 

Once a sequence of all tasks is given, a GC schedule can 
be obtained by assigning tasks to GCs using the decoding 
procedure in Fig. 4. For each sequence of tasks 
represented by the food source, two GCs are added at the 
dummy location 0 and the other dummy location n+1 for 
ensuring the operation position of every task located 
between any two GCs, respectively. The earliest available 
times of the additional cranes are set to infinity, and the 
others are equal to their individual starting times. The two 
available GCs are chosen based on the current location of 
each GC. The unassigned task in the food source is 
assigned to the gantry crane, which is selected based on 
the comparison of the earliest available time of the two 
available GCs, the distance between this task and these 
two available GCs, or the number of the GCs. 

The gantry crane schedule obtained from the 
proposed decoding scheme does not violate the non-
crossing constraints (9), but it may violate the safety 
constraints (10). Therefore, every gantry crane schedule 
must be checked whether it satisfies the safety distance as 
follows. Based on the gantry crane schedule obtained 
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from the proposed procedure, the completion time of all 
tasks is determined by mathematical calculation. 
According to constraints (7) and (8), yij (∀1≤i, j≤n, i≠j) 
can be obtained and then the gantry crane schedule will 
be checked whether it ensures a given safety distance 
between two adjacent cranes. If it satisfies constraints 
(10), the fitness value of its corresponding solution is set 
to the reciprocal of its objective value, as shown in 
Eq.(15); otherwise, the fitness value of its corresponding 
solution is set to zero. 

fitness = 1/Cmax                                                    (15)  
Fig. 5. The feasible schedule based on the proposed decoding 

procedure 

 

Fig. 4. The proposed decoding procedure 
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Furthermore, an illustrative example is provided 
according to the given task sequence in Fig. 3. There are 
two cranes and 8 tasks. The initial positions of gantry 
crane 1 and 2 are on task 1 and task 3, respectively. The 
initial earliest available times of all gantry cranes are 0. A 
feasible schedule is constructed based on the above 
procedure. As shown in Fig. 5, the maximum completion 
time among all tasks calculated by the procedure is 130. 

4.3. Employed bee phase 

The employed bees generate new candidate solutions in 
the neighborhood of their current positions according to 
the local search process. However, the convergence rate 
of the standard ABC algorithm is poor. Inspired by 
particle swarm optimization (PSO)39, the found best 
solution is incorporated into the local search equation for 
accelerating the convergence of ABC algorithm. The 
process of producing a new solution is modified by the 
following equations for a given solution xi: 

if rand(0, 1) < 0.5 

))()(( 1 kiii xxcxv −×+= φ ,                                     (16.a)   

else if rand(0, 1) > 0.5 

))()1(( 1 giii xxcxv −×−+= φ ,                                (16.b)   

where )( 1cφ and )1( 1c−φ  are 1-by-n arrays consists of 0 
or 1 elements, that are produced by a Bernoulli 
distribution in which the mathematic expectation of 
getting 1 is c1 and 1−c1, respectively. xk is the other 
solution selected randomly from the population that is 
different from xi, and xg is the global best solution found 
so far. The redefinitions of the operators, used in the Eq. 
(16) are depicted as follows. 

4.3.1. The subtract operator (−) 
The subtract operator is identified with a 2-point order 
crossover operator of genetic algorithm. According to the 
crossover, the partial information of the neighboring 
solution or the found best solution is reserved. For 
crossover operator, a substring is selected from the 
second solution randomly, and a new chain is produced 
by copying the substring into its corresponding positions. 
These tasks which are not already in the substring from 
the first solution are selected, and placed into the unfixed 
positions of the new chain from left to right. The new 
chain is then the result of subtract operator. Fig. 6 that 

presents an example of producing a new chain illustrates 
the subtract operator. 

 
Fig. 6. Illustration of the redefined subtract operator (−) 

4.3.2 The multiply operator (×) 

By this operator, the exploration ability of DABC 
algorithm can be improved. The random binary vector is 
generated using Bernoulli distribution, and is multiplied 
by a task sequence produced by the redefined subtract 
operator. Carrying out the multiplication process, the 
solution space is explored by the neighboring solution or 
the found best solution. The multiply operator is 
equivalent to Hadamard product. The Hadamard product 
of two 1-by-n arrays A and B is defined by (A·B)i=aibi. 
The redefined operation rule is illustrated in Fig. 7. 

 

Fig. 7. Illustration of the redefined multiply operator (×) 

4.3.3 The plus operator (+) 
The plus operator is also similar to the crossover operator 
of genetic algorithm, but it only interchanges the nonzero 
elements of the second vector with these corresponding 
elements of the first vector. Fig. 8 illustrates an example 
of the plus operator. Using this operator, the new solution 
can absorb the good segment from these chains of the 
multiply operator at a certain probability. 

 
Fig. 8. Illustration of the redefined plus operator (+) 

From these operators, it can be seen that the 
modified equations reserve all major search 
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characteristics of the ABC algorithm shown in solving 
the continuous optimization problems. After finishing 
local search processes, the employed bee obtains a new 
solution. Subsequently, the new solution will be 
evaluated and compared with the old one. The suitable 
solution will be retained in the population according to 
the following selection procedure. 

if fitness(vi) ≥ fitness(xi) or rand(0, 1) < c×(1 − iter)/itermax 
        solution vi replaces the old solution xi 

else 
        solution xi is retained in the population 

end 
where c is the given value that ranges from 0 to 1. iter 
represents the current iteration times, and itermax is the 
maximum iteration times. 

4.4. Onlooker bee phase 

In the standard ABC algorithm, each onlooker bee selects 
a solution based on its probability value associated with 
the food source. However, the selection approach 
consumes more computational time to obtain these 
promising solutions. A tournament selection with size of 
three is proposed in the algorithm. In the tournament 
selection strategy, three food sources are picked 
randomly from the population, and then the solution with 
highest fitness value will be chosen by the onlooker bee. 
Afterwards, each onlooker bee also implements the same 
local search operation with the employed bee for 
updating the food source. The suitable solution between 
the old one and the new one will be kept in the population 
by using the same selection procedure mentioned in the 
employed bee phase. 

4.5. Scout bee phase 

If a particular solution cannot be improved through the 
predetermined number of trails, a scout bee regenerates a 
food source randomly in the predefined solution space. 
Using the random search process can increase the 
population diversity, but this will lower the search 
efficiency. After the employed bee phase and the 
onlooker bee phase, the current best solution of the whole 
population has found. The best solution often takes better 
information of food source than others during the 
optimization process. Therefore, in the DABC algorithm, 
the scout bee firstly generates a solution randomly, and 
then carries out the local search operation with using the 
found best solution, as shown in Eq. (17). 

))()(( 2 grandrandnew xxcxx −×+= φ ,                            (17)   

where )( 2cφ  is 1-by-n arrays consist of 0 or 1 elements, 
that are also generated by a Bernoulli distribution where 
the mathematic expectation of getting 1 is c2. xrand is a 
randomly generated solution. 

4.6. Parameter tuning of the algorithm 

The appropriate Parameters are critical to the DABC 
performance. DABC has three key parameters: c1, c2 and 
c. In this paper, the parameter selection method of Ruiz 
and Stutzle40 which consists of design of experiments 
(DOE) and multi-factor analysis of variance (ANOVA) is 
used to tune the parameters of the proposed algorithm. 
First of all, the specified levels of all parameters were 
listed, as follows: 
● c1: seven levels (0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) 
● c2: four levels (0.1, 0.2, 0.3 and 0.4) 
● c: four levels (0.6, 0.7, 0.8 and 0.9) 

Table 1. ANOVA table for the experiment on tuning the parameters of DABC 

Source Sum of Squares Df Mean Square F-Ratio p-Value 
Main effects      

c1 3.379 6 0.563 25.318 0.000 
c2 1.430 3 0.477 21.430 0.000 
c 0.011 3 0.004 0.161 0.922 

Interactions      
c1 * c2 0.940 18 0.052 2.347 0.008 
c1 * c 0.688 18 0.038 1.720 0.064 
c2 * c 0.420 9 0.047 2.097 0.046 
Error 1.201 54 0.022   
Total 315.409 112    

Corrected Total 8.069 111    
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The above list yields a total of 7×4×4=112 different 
combinations when one carried out for a full factorial 
experimental design. The algorithm is tested with a set of 
randomly generated problem instances. More specifically, 
9 different combinations of n and m, with n∈{20, 30, 40} 
and m∈{2, 3, 4}, and the original processing times are 
distributed uniformly in the interval (30, 180). For every 
combination of n and m, the initial locations of cranes are 
varied in [1, n]. The 9 instances are tackled by 112 
different tests with a limited iterations time fixed to 
6×n×m. The response variable is calculated by the 
following equation: 
Relative Percentage Deviation 
(RPD)=100×(Algsol−Bestsol)/Bestsol,                          (18)   
where Algsol is the objective function value obtained by a 
combination of factors for a given instance and Bestsol is 
the best solution yielded by all combinations of factors 
for the same instance. 

 
Fig. 9. Means plot and LSD intervals for parameter c1 

 
Fig. 10. Means plot and LSD intervals for parameter c2 

The experiment was analyzed by means of ANOVA. 
In order to apply ANOVA, there is the need to check the 
three main hypotheses of ANOVA. The ANOVA results 
are shown in Table 1. The analysis indicates that 
parameters c1 and c2 are very significant. However, the 
different levels of c do not yield statistically significant in 
the response variable RPD. This suggests that the 
proposed DABC algorithm is rather robust with respect to 
the reserve strategy of new solutions in the employed bee 
phase. But, the interaction between c2 and c is statistically 
significant due to its low p-value. This indicates that the 
combination of the two parameters is still critical for the 
performance of DABC. As the only parameter of scout 
bee phase, c2 directly influences the population diversity, 
especially in the evolutionary latter stages. The larger the 
factor c, the better the population diversity. Maintaining 
the population diversity is very important to the 
performance of the algorithm. Therefore, c should not be 
ignored. Thus, all three parameters are further analyzed 
by multi-compare method. The means plot with Least 
Significant Difference (LSD) intervals at 95% confidence 
level for the three parameters are shown in Fig. 9-11. 
From the Fig. 9, it seems that a setting of c1=0.8 gives a 
best RPD, although it is not statistically significantly 
different from 0.7 or 0.9 at a 95% confidence level. As 
shown in Fig. 10, a setting of c2=0.1 provide better results 
among all levels. Though different levels of c does not 
yield statistically significant different in the result, a 
setting of 0.7 gives a better RPD than the other three 
levels. The means plot for the parameter c shown in Fig. 
11. 

 
Fig. 11. Means plot and LSD intervals for parameter c 

As a result from the experimental analysis, the best 
parameters are set as follows: c1= 0.8, c2= 0.1 and c= 0.7. 
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5. Computational experiments 

In this section, the performance of the developed DABC 
is evaluated by three different sets of problems. The 
generation of these instances is described in the next 
subsection. Afterward, computational experiments are 
conducted to make a comparison with CPLEX. Owing to 
the existence of some similarity between GCSP and 
QCSP, genetic algorithm (GA) proposed by Lee et al.19 is 
also employed as a comparison. After reporting the 
results, the comprehensive statistical analyses are carried 
out to test the significance of the reported results. 

In order to assess the performance of solutions 
delivered by DABC, attempts are made to solve the 
small-sized instances using CPLEX 12.4 software which 
solves mixed integer programming problems based on the 
branch and cut algorithm. Since the problem under study 
is NP-complete, it is impossible to obtain optimal 
solutions by some polynomial time algorithms. For the 
medium-sized and large-sized instances, the solutions 
given by CPLEX with a time limit of 10 minutes are 
compared with the results from GA and DABC. To 
evaluate the quality of DABC solutions, a lower bound is 
calculated using CPLEX by ignoring the interference 
constraints and the travel time. For a particular instance, 
let Cmax(Alg) denote the train handling time for the 
solution obtained by a given algorithm. Then the 
effectiveness of the corresponding solution approach can 
be measured by the following equation: 

GAP=100%×(Cmax(Alg)−LB)/LB                            (19) 
Clearly, lower values of GAP are preferable. 

CPLEX is deterministic and only one run is 
necessary. However, the GA and DABC are stochastic 

and some replicates are needed to run for better evaluate 
the results. The two algorithms are run for five times on 
each instance, with the following setting: the maximum 
iteration times itermax=6×n×m, the population size 
PS=3×n. For GA, the crossover rate Pc and the mutation 
rate Pm are set to 0.25 and 0.2. For DABC, the 
predetermined number of no improvements limit is set to 
2×n. The listed objective value and computational time 
are the mean of the five reported results. 

The algorithms are implemented in MATLAB. All 
tests are completed on a Personal Computer including a 
Pentium Dual-Core 2.6 GHz Processor and 2GB RAM. 

5.1.  Benchmark of instances 

Three sets of instances are generated randomly, 
representing freight trains of small, medium and large 
size, respectively. For the small-sized instances, the 
original processing times of all tasks are randomly 
obtained from an integer uniform distribution on U(20, 
150). For the medium-sized and the large-sized instances, 
their original processing times are randomly picked from 
a uniform distribution of U(30, 180). For the three sets of 
instances, the initial locations of gantry cranes are varied 
in [1, n]. The dwelling position dependent factor β is set 
to 0.2. The safety margin s is set to 1 and the travel time 
of crane t0 is set to one time unit. Then, all combinations 
of n={6, 7, 8, 9, 10, 11, 12} and m={2, 3} as the small-
sized problems are tested. For medium-sized problems, 
the number of tasks is chosen from {15, 16, 17, 18, 19, 20} 
and the number of cranes is chosen from {2, 3, 4}. For 
large-sized problems, the combinations of n={30, 40, 50, 
60, 70} and m={3, 4, 5} are considered. The data set 
consists of 47 instances as outlined in Table 2. 

Table 2. Parameters for Instance Generation 

Set Number of instances n m Original processing 
times of tasks 

Initial locations 
of cranes 

Small-sized instances 14 6, 7, 8, 9, 10, 11, 12 2, 3 U(20, 150) [1, n] 
Medium-sized instances 18 15, 16, 17, 18, 19, 20 2, 3, 4 U(30, 180) [1, n] 

Large-sized instances 15 30, 40, 50, 60, 70 3, 4, 5 U(30, 180) [1, n] 

5.2. Experimental results 

Table 3 reports computational results achieved for the 
small-sized instances. These instances are solved 
optimally by CPLEX software in a reasonable time. 
When the number of the tasks is less than 10, CPLEX 
consumes very short time in solving the GCSP. Once the 

number of the tasks exceeds 10, the computational times 
of CPLEX increase rapidly as the instance becomes 
larger. Compared with the instances with two cranes, 
CPLEX needs shorter time to solve the instances with 
three cranes. It is largely because these instances with 
three cranes produce fewer nodes in the calculation 
process. Moreover, the proposed DABC algorithm can 
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obtain the optimal solution in a very short time. None of 
the instances requires more than 2 seconds to be solved. 
However, only eight out of the 14 instances are solved to 
optimality by GA. Nevertheless, the runtime of GA is 
less than DABC.  

Considering the results of medium-sized problems, 
Table 4 summarizes the LB, the objective value, the 
average computational time and GAP for each solution 
method. From Table 4, it is found that CPLEX hardly 
terminates within the runtime limit for medium-sized 
instances. As expected, the average runtime grows 
significantly when turning to instances of medium size. 
The runtime limit is completely exhausted for most 
instances in the set leading to an average runtime of 
535.85s. Interestingly, three instances with four cranes 
among 18 instances are solved optimally by CPLEX. 
This confirms that the instances with more cranes are 
relatively easy to solve by CPLEX. In addition, DABC 
and GA give some competitive solutions. The average 
GAP observed for the solutions of DABC is merely 

3.51% that is just 0.3% weaker than the result achieved 
by CPLEX. Especially the DABC gives a best known 
solution for seven out of the 18 medium-sized instances. 
However, the average GAP given by the GA is as many 
as 5.08%. DABC strikingly outperforms GA. Since the 
travel times between any two cranes are ignored in LB, 
The GAP given by all three methods fails to get value 0. 
The average runtime of DABC which is longer than GA 
is 5.51s. Furthermore, the performance of DABC is 
affected by the number of cranes, as shown in Fig. 12. 
DABC delivers solutions of very good quality for 
instances with m=2 cranes. For m=4, noticeable gaps of 
up to 11.02% are observed. It is chiefly because when the 
number of cranes is more, the interference constraints 
between cranes are easier to be met during the searching 
process of the DABC algorithm. The algorithm needs 
more runtime to avoid falling into local optimal solution. 
Fortunately, the relationship between the algorithm and 
the number of cranes is no longer significant with the 
number of tasks increasing. 

Table 3. Results of random instances with small sizes 

CPLEX GA DABC 
Instance no. Size(n×m) 

Value CPU(s) Value CPU(s) Value CPU(s) 

1 6×2 257  0.05  259 0.06  257 0.23  

2 6×3 240  0.06  240 0.08  240 0.31  

3 7×2 332  0.05  332 0.08  332 0.31  

4 7×3 245  0.03  245 0.13  245 0.46  

5 8×2 360  0.47  360 0.12  360 0.43  

6 8×3 287  0.11  287 0.18  287 0.65  

7 9×2 420  2.63  421 0.17  420 0.58  

8 9×3 269  0.14  277 0.25  269 0.86  

9 10×2 427  5.08  428 0.23  427 0.76  

10 10×3 323  0.14  323 0.35  323 1.14  

11 11×2 532  8.86  534 0.30  532 0.98  

12 11×3 326  1.20  326 0.46  326 1.46  

13 12×2 645  240.05  647 0.38  645 1.22  

14 12×3 370  2.16  370 0.59  370 1.87  

Average 359.50  18.65  360.64  0.24  359.50  0.80  

Table 5 shows computational results of large-sized 
instances. Owing to the intractability of the GCSP, 
CPLEX usually cannot give an optimal solution in a 
reasonable time for large-sized instances. In particular, 

CPLEX fails to generate any solution within 10 minutes 
for experiments 10 to 15. As observed in Table 5, DABC 
clearly outperforms GA and CPLEX within the limited 
runtime. There is a remaining average GAP of 4.70% 
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which is only slightly worse solution quality compared to 
the medium-sized instances. But the runtime of the 
proposed algorithm is more than the runtime of GA. The 

average runtime of DABC is 232.29s and it is acceptable 
in a practical application. 

Table 4. Results of random instances with medium sizes 

CPLEX GA DABC 
Instance no. Size(n×m) LB 

Value GAP(%) CPU(s) Value GAP(%) CPU(s) Value GAP(%) CPU(s)

1 15×2 711 723  1.69  600.00 732  2.95  0.75  724  1.83  2.33  

2 15×3 518 538  3.86  600.00 544  5.02  1.14  538  3.86  3.46  

3 15×4 477 516* 8.18  222.34 536  12.37  1.53  516  8.18  4.65  

4 16×2 972 992  2.06  600.00 994  2.26  0.91  988  1.65  2.71  

5 16×3 535 551  2.99  600.00 552  3.18  1.39  552  3.18  4.13  

6 16×4 381 406* 6.56  30.73  426  11.81  1.86  423  11.02  5.56  

7 17×2 807 819  1.49  600.00 832  3.10  1.09  819  1.49  3.21  

8 17×3 536 549  2.43  600.00 565  5.41  1.67  552  2.99  4.88  

9 17×4 451 469* 3.99  392.31 483  7.10  2.25  473  4.88  6.58  

10 18×2 1017 1038  2.06  600.00 1046 2.85  1.30  1034  1.67  3.84  

11 18×3 571 585  2.45  600.00 601  5.25  1.99  590  3.33  5.82  

12 18×4 477 488  2.31  600.00 507  6.29  2.68  499  4.61  7.79  

13 19×2 978 1002  2.45  600.00 1003 2.56  1.53  991  1.33  4.44  

14 19×3 665 685  3.01  600.00 691  3.91  2.33  681  2.41  6.74  

15 19×4 524 542  3.44  600.00 552  5.34  3.17  544  3.82  9.17  

16 20×2 1016 1046  2.95  600.00 1054 3.74  1.79  1036  1.97  5.20  

17 20×3 699 716  2.43  600.00 725  3.72  2.75  715  2.29  7.93  

18 20×4 530 548  3.40  600.00 554  4.53  3.72  544  2.64  10.67  

Average 659.17 678.50  3.21  535.85 688.72 5.08  1.88  678.83  3.51  5.51  

* the optimal solution given by CPLEX 

 
Fig. 12. Comparison of GAP between different numbers of 

cranes 

According to the computational experiments with 
small, medium and large sizes, the proposed DABC has 
been well tested to be a competitive algorithm for solving 
the practical gantry crane scheduling problem in railway 
container terminals. 

The experimental results have demonstrated some 
significant features of DABC when it is applied to GCSP, 
as follows. 

(1) The performance of DABC algorithm is affected by 
the number of cranes, as shown in Fig. 12. The effect of 
the number of cranes on the solution quality achieved by 
DABC is no longer apparent with the increasing of the 
number of tasks. 

(2) Since the fitness value of the solution that violates 
the safety constrain is set to zero, the excellent searching 
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performance of DABC method may be limited. 
Compared with GA, the proposed method still gives the 
better solutions for the problem under study. 

(3) The neighborhood search method is used to 
generate the new solution in the employed bee phase and 

the onlooker bee phase. So the computational time of 
DABC is longer than GA when the two algorithms have 
the same population size and the same iteration times. 

Table 5. Results of random instances with large sizes 

CPLEX GA DABC 
Instance no. Size(n×m) LB 

Value GAP(%) CPU(s) Value GAP(%) CPU(s) Value GAP(%) CPU(s)

1 30×3 970 1042  7.42  600.00 1015 4.64  9.76  991 2.16  26.75 

2 30×4 775 819  5.68  600.00 809 4.39  13.24 801 3.35  35.88 

3 30×5 654 718  9.79  600.00 701 7.19  16.89 672 2.75  45.34 

4 40×3 1350 1463  8.37  600.00 1429 5.85  24.86 1394 3.26  64.43 

5 40×4 1042 1144  9.79  600.00 1095 5.09  33.64 1078 3.45  87.23 

6 40×5 876 952  8.68  600.00 922 5.25  42.86 916 4.57  110.38 

7 50×3 1801 2217  23.10  600.00 1935 7.44  52.09 1874 4.05  131.45 

8 50×4 1300 1608  23.69  600.00 1384 6.46  71.12 1358 4.46  175.09 

9 50×5 1018 1201  17.98  600.00 1092 7.27  88.98 1069 5.01  223.68 

10 60×3 2016 N/A* N/A 600.00 2189 8.58  96.08 2142 6.25  239.88 

11 60×4 1435 N/A N/A 600.00 1554 8.29  130.01  1496 4.25  322.71 

12 60×5 1268 N/A N/A 600.00 1353 6.70  164.38  1340 5.68  407.37 

13 70×3 2404 N/A N/A 600.00 2645 10.02  162.97  2577 7.20  399.12 

14 70×4 1590 N/A N/A 600.00 1738 9.31  219.29  1712 7.67  536.10 

15 70×5 1449 N/A N/A 600.00 1564 7.94  277.26  1542 6.42  676.67 

Average 1329.87 1240.44  12.72  600.00 1428.33 6.96  93.56 1397.47  4.70  232.14 
*CPLEX fails to generate any feasible solutions within 10 minutes 

6. Conclusion 

The paper contributes to recent research in a railway 
container terminal operations schedule by providing a 
mathematical model for the gantry crane scheduling 
problem (GCSP) based on the quay crane scheduling 
problem in seaport container terminals. The effect of 
dwelling position dependent processing times is 
incorporated into the GCSP. In addition, the non-crossing 
requirement and the safety margin as interference 
constraints have been modeled from practical aspects of 
cranes in operations. The completion time of tasks 
calculated in the model contains the travel time of crane 
from one position to another one. Owing to the studied 
problem being NP-complete, a novel discrete artificial 
bee colony algorithm (DABC) has been presented to 
obtain the near optimal solution. According to redefining 

the classical plus, subtract and multiply operators, the 
algorithm reserves the analogous search characteristic of 
the classical ABC equations. Moreover, a well-designed 
decoding scheme has been employed to obtain the GC 
schedule. Finally, computational comparisons have been 
performed to evaluate the performance of the proposed 
algorithm. The results show that the proposed DABC 
algorithm obtains near optimal solutions within 
reasonable runtime. The standard solver CPLEX is 
competitive if the instances are of small size, whereas the 
DABC algorithm is capable of delivering fairly good 
solutions even for the large-sized instances. Moreover, 
the solutions given by the DABC algorithm is 
significantly better than the solutions delivered by GA for 
the investigated instances. Therefore, the proposed 
DABC algorithm is a competitive approach to solve the 
GCSP in the container terminal.  
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Furthermore, related scheduling problems, such as 
truck scheduling and storage allocation that are highly 
interdependent with gantry crane scheduling, need to 
appropriately integrate into the GCSP, which is another 
challenging topic for further research. 
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