

Using Pattern Position Distribution for Software
Failure Detection*

Chunping Li, Ziniu Chen, Hao Du
Tsinghua National Laboratory for Information Science and Technology

School of Software, Tsinghua University
Beijing 100084, China

E-mail: {cli, czn09@tsinghua.edu.cn, duhao228@gmail.com}

Hui Wang, George Wilkie, Juan C. Augusto, Jun Liu
Faculty of Computing and Engineering, University of Ulster

Jordanstown, Northern Ireland, BT37 0QB, UK
E-mail: {H.Wang, FG.Wilkie, JC.Augusto, J.Liu @ulster.ac.uk}

Abstract

We present a novel approach for using the pattern position distribution as features to detect software failure. In this
approach, we divide an execution sequence into several sections and compute the pattern distribution in each
section. The distribution of all patterns is then used as features to train a classifier. This approach outperforms
conventional frequency based methods by more effectively identifying software failures occurring through misused
software patterns. Comparative experiments show the effectiveness of our approach.

Keywords: Sequential Patterns, Classification Algorithm, Software Failure, Anomaly Detection.

*
The work of this joint research project was facilitated through grant funding from the Natural Science Foundation in China and the Royal Society in

UK.

1. Introduction

As time goes by, computer software is playing an
increasingly important role in our daily life. However, it
is difficult to validate the correctness of software. When
bugs occur in practice, costs can be tremendous. Bugs
can cause huge financial losses each year, in addition to
privacy and security threats. According to the US
NIST’s (National Institute of Standards and Technology)
report, software bugs cost the US economy $59.5 billion
annually3.

To reduce the harm caused by software failure,
hidden defects must be found as soon as possible before

they cause damage. Unfortunately, traditional manual
code review or software testing methods are time
consuming, labor intensive and imprecise. These
methods are difficult to apply to large-scale or market-
sensitive software systems. As a result, many
researchers and industries devote much effort to
developing automatic software failure detection
techniques. The pattern-based software failure detection
approach is one of the most important topics in this area.

Patterns which are found in software usually
correspond to programming rules or usage patterns1. In
software sizing activities, it is common to look for often
required logic such as for ‘Adding’, ‘Deleting’,

International Journal of Computational Intelligence Systems, Vol. 6, No. 2 (March, 2013), 234-243

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 234

Administrateur
Texte tapé à la machine
Received 9 April 2012

Administrateur
Texte tapé à la machine
Accepted 12 September 2012

Administrateur
Texte tapé à la machine

Administrateur
Texte tapé à la machine

C. Li, et al

‘Amending’, ‘Searching’ and ‘Listing’ data from a data
store. There will be consequent patterns associated with
these functions. These patterns are intuitive and
commonly found in software documentation, such as the
Resource Locking Protocol: <lock, unlock> or the Java
Transaction Architecture (JTA) Protocol 5:
<TxManager.begin, TxManager.commit>, <TxManger.
begin, TxManger.rollback>, etc. Software Patterns have
also been used as part of reuse strategies when
developing software systems. The seminal work in Ref.
27 introduces many software patterns including the
‘Singleton’, ‘Observer’ and ‘Façade’ patterns which
have been widely adopted by industry.

These patterns, which reflect interesting program
behavior, can be identified (or mined) by analyzing a set
of program traces. Traces are an ordered list of events4,
where an event can correspond to the invocation of a
method, or the execution of a program statement, etc.
From the data mining viewpoint, each trace can be
considered as a sequence. A pattern (e.g., <lock,
unlock>) can appear multiple times within a sequence.
Each pattern may be divided by an arbitrary number of
unrelated intervening events (e.g., lock -> resource use
-> … -> unlock) 1.

Pattern mining is found in a wide variety of
application domains such as intrusion detection, failure
detection, program comprehension, bioinformatics,
weather prediction, and system health management6.
Various pattern mining methods are proposed such as
frequent item set mining10, sequential pattern mining11,
closed pattern mining22, 23, episode mining12, iterative
pattern mining2 and closed unique pattern mining1,etc.
Recently there has been interest in developing
discriminative pattern-based classifiers. In Ref. 7,
Cheng et al. mine frequent item sets for classifying
transaction data. In Refs. 8 and 9, frequent connected
sub-graphs are mined for classifying graph data. On a
related front, Lo et al. propose a novel method to extract
closed unique patterns for software failure detection1.

Pattern-based software failure detection is inspired
by the emerging area of dynamic analysis where
program traces are analyzed in order to infer or mine
temporal program properties or patterns of behavior2. In
the dynamic analysis point of view, software can be
viewed as a series of program execution traces which
demonstrate a program‘s behaviors. When a program
executes, it produces the massive amount of execution

traces corresponding to its various behaviors. Some
behaviors are desirable, while some others are not.
These undesirable behaviors are often referred to as
failures. A set of execution traces can be collected to
construct a sequence database which is the basis of our
analysis.

Generally speaking, pattern-based software failure
detection employs a three-step framework1, first, mine a
set of patterns from program execution traces; secondly,
perform feature selection to extract discriminative
patterns for the purpose of classification. These selected
patterns are treated as features and their occurrence
frequencies are treated as corresponding feature values.
Thirdly, these features are used to train a classifier to
detect failures. More specifically, pattern-based
software failure detection is a kind of pattern frequency-
based method.

Existing research on pattern frequency based
methods has produced promising results. Refs. 1 and 7
demonstrated that this approach is much more
discriminative than single event approaches. But it has a
natural weakness in that the research neglects the
pattern’s position within the sequence. For example,
consider the login pattern P1=<login, passwd> and the
set of user command sequences S0-S4 as shown in Table
1. Sequences S0-S3 represent normal daily profiles of a
user while the sequence S4 is anomalous - one can never
do any other operations before logging into the system.
Although S4 indicates an obvious failure, we are unable
to distinguish S0-S3 from S4 when using the pattern
frequency based method because the pattern P0 = <login,
passwd> does occur once in each of S0-S4. It is very
clear that pattern frequency based methods loose their
discriminating power in this case.

 Table 1. Sequences of user commands

S0 login, passwd, mail, ssh, …, mail, web, logout

S1 login, passwd, mail, web, …, web, web, web, logout

S2 login, passwd, mail, ssh, …, mail, web, web, logout

S3 login, passwd, web, mail, ssh, …, web, mail, logout

S4 mail, ssh, web, …, web, mail, login, passwd, logout

From this example, we see how a number of

software failures could occur through misused software
patterns and merely using the pattern’s frequency as
feature cannot detect such kinds of failures. Notice that

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 235

 Software Failure Detection

the login pattern P0 occurred in the tail of S4, but
occurred in the head of S0-S3. So, patterns occurring in
the different positions of a trace are likely to represent
different meanings. A pattern’s position may imply
some important semantic information or design
constraints. In the example, before we do any other
operations, we must login into the system. By using the
pattern position information, we can easily identify
abnormal sequences which contain misused patterns. So
it is appropriate to consider using positional information
to enhance the discriminating power of patterns.

In this paper, we propose a novel approach for using
the pattern position distribution to detect software
failure instead of occurrence frequency, which is used in
traditional approaches. We present experiments using
both synthetic and real-world datasets to show that the
classification performance is improved significantly
compared with existing research. Our approach, with
the scheme of position distribution, can be combined
with various pattern mining algorithms, which makes it
very flexible.

The organization of this paper is as follows. Section 2
introduces the concept definitions related to the pattern
position distribution. Section 3 describes our failure
detection method based on the pattern position
distribution. In Section 4, we provide our experimental
results and comparative study with existing published
research work. Section 5 then contains our concluding
remarks and ideas for future work.

2. Basic Concepts

This section provides the definitions for the following
four concepts:

(i) Pattern Instance;
(ii) Section;
(iii) Instance Position;
(iv) Pattern Position Distribution.

In pattern mining, we denote a software execution
sequence S as it corresponds to a path which a program
takes when executing from its start to the end point
when it terminates1. Where each is an event, an event in
turn corresponds to a unit behavior of interest. This can
correspond to the execution of a statement, a method
call, etc. The set of traces or sequence database is

denoted by TDB (traces database). An example TDB is
shown in Table 2.

In order to obtain a pattern’s position information,
we need to define what we mean by a ‘pattern instance’.
This definition is given in DEFINITION 1 to follow.
The pattern instance definition can be expressed as a
Quantified Regular Expression (QRE). QRE is similar
to the standard regular expression but with a semicolon
denoting the concatenation operator, ‘[-]’ denoting the
exclusion operator (e.g., [-P, S] means any event except
P and S), and ‘*’ denoting 0 or more.

Table 2. Traces database

Identifier Sequence
S0 <D, B, C, F, B, A, F, B, C, E>

S1

 <D, B, C, D, B, A, E, B, B, E, D,

C, E, C, D, E, F, D, B, A>

Definition 1. Pattern Instance Given a pattern P<e0,
e1,…,en-1>, a substring f(f0,f1,...,fm-1) in a sequence S in
TDB (traces database) is an instance of P iff it is of the
following QRE expression

0 0 1 1 0 1 1; [, . . . ,]* ; ; .. .; [, . . . ,]* ; .n n ne e e e e e e   

 An instance is denoted by a triplet (seq-id, start-pos,
end-pos), where seq-id refers to the ID of a sequence S
in the database while start-pos and end-pos refer to the
starting point and ending point of a substring in S. All
indices start from 0.

The starting point and ending point can indicate the
absolute position of an instance but cannot represent the
whole position information on their own because the
length of sequences in TDB may not be equal. For
example, consider a pattern P = <A, B> and two
sequences S0 and S1 shown in Table 2. There are two
instances I(0, 5, 7) and J(1, 5, 7) of pattern P. The
length of S0 is 10 and the length of S1 is 20. Although I
and J have the same absolute position, I appears in the
second half of S0 while J appears in the first half of S1.
So, the same absolute position may indicate different
position information. To avoid the weakness of the
absolute position, we use the relative position to
represent the position information. In order to use
relative position, we divide all sequences into N
‘sections’ separately, and then determine what a section

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 236

C. Li, et al

or sections an instance belongs to. In this way, we can
position an instance.

Definition 2. Section Divide a sequence Sseq-id <e0, e1,
e2,…,en-1> into N parts s.t. 1

0

N

i
i

part





= <e0, e1, e2,…,en-

1> and 1

0
i

N

i

part





, this partition divide

seq idS 
 into N

sections iff , . 0 , 1,i j i j N    s.t. |parti|-

|partj| 1  ,where parti denotes the i-th part of the
sequence and |parti| denotes the number of the event in
parti.

After dividing a sequence into N sections, a
sequence can be denoted by (section0, section1,…,
sectionN-1), and then we can determine the ‘instance
position’ which is given in the following definition.

Definition 3. Instance Position Given an instance
I(seq-id, start-pos, end-pos), a sequence divides into N
sections Sseq-id(section0, section1,…, sectionN-1) that
contains I. The position of I is represented as (seq-id,
start-section, end-section), where ‘start-section’ refers
to the ID of the section s.t.

sec secID IDtion I tionstart pos start pos end pos     and

end-section refers to the ID of the section s.t.

sec secID IDtion I tionstart pos end pos end pos     , where

Istart pos and
Iend pos refer to the starting point

and ending point of I,
sec IDtionstart pos and

sec IDtionend pos refer to the starting point and ending

point of sectionID.
When we have obtained all instance positions of

pattern P, we can compute P’s position distribution.

Definition 4. Pattern Position Distribution Pattern
P’s position distribution in sequence S is denoted by
PDP,S=(count1, count2, …, countN-1) where PDP,S means
pattern P’s position distribution in sequence S, N refers
to the number of sections, and counti refers to the
number of P’s instances in the sectioni. Instance I
appeared in the sectionk means:

sec sec. s.t. start-pos j
k kI I tion tionj start pos j end pos end pos        .

A part of Instance I in the sectionk means

sec sec. s.t. start-pos j
k kI I tion tionj start pos j end pos end pos       

.

As an example, consider a pattern P = <A, B> and
the TDB shown in Table 3, the set of instances of P
denoted by Inst(P) are represented as: Inst(P) {(0,2,4),

(0,5,7), (1,2,4), (1,7,8)}. Then we divide all sequences
into four sections separately. For S0, section0 =<D, B,
A>, section1 =<F, B>, section2 =<A, F, B> and
section3=<C, E>. For S1, section0=<D, B, A>,
section1=<D, B>, section2=<B, B> and section3=<A, B>.
Instance position for all instances belonging to Inst(P)
will be represented as (0, 0, 1), (0, 2, 2), (1, 0, 1) and (1,
3, 3) separately. Pattern P’s position distribution in
sequence S0 is denoted by

0,P SPD = (1, 1, 1, 0) and P’s

position distribution in sequence S1 is denoted by
1,P SPD =

(1, 1, 0, 1).

Table 3. Traces database

Identifier Sequence
S0 <D, B, A, F, B, A, F, B, C, E>

S1 <D, B,A, D, B, B, B, A, B>

3. Pattern Position Distribution based Software
Failure Detection

In this section, we present a four-step approach for the
software failure detection based on pattern position
distribution. First, we extract a set of patterns from
traces database (TDB). Secondly, pattern selection is
performed to select discriminative patterns. Thirdly, we
compute the position distribution for each selected
pattern. The distribution will be used as features.
Finally, features are used to train a classifier to detect
software failure.

3.1. Pattern mining

Creating a pattern mining algorithm is an essential
component to building the pattern-based classifier. Our
position distribution based approach can be combined
with various pattern mining algorithms. We use two
different pattern mining algorithms separately. The first
algorithm is the state of art closed unique iterative
pattern mining algorithm1 proposed by David Lo et al.
This algorithm performs a depth-first traversal of the
search space to grow patterns. It first computes frequent
single events in the traces database (TDB). The frequent
events are then grown in a depth-first fashion. Unique
pattern detection1 and InfixScan pruning strategies2 are
performed to cut the search space of non-closed patterns
to get a compact set of patterns. The second algorithm is
the classical FP-growth algorithm26 proposed by J. Han
et al. The FP-growth algorithm represents the

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 237

 Software Failure Detection

transaction database as a prefix tree which is enhanced
with links that organize the nodes into lists referring to
the same item. The search is carried out by projecting
the prefix tree, working recursively on the result, and
pruning the original tree.

3.2. Pattern selection

A large set of patterns will be mined from the set of
failing and normal traces. Some of these patterns may
be indiscriminative. To reduce the number of patterns
and eliminate those that are indiscriminative, pattern
selection is performed.

We employ the popularly used statistical
measurement, e.g., Fisher score14, which is defined as
follows.

2

1

2

1

()
k

i ii
k

i ii

n u u
F r

n 





 



 (1)

where ni is the number of data samples in class ci, and ui

is the average pattern value in class ci. We treat a
pattern’s instance number in a sequence S as the
corresponding pattern value. u is the average pattern
value in the whole dataset.

i is the standard deviation

of the pattern values in class ci. k is the number of
classes. Assumed that xij is the pattern value for the jth
instance in class ci, then u, ui and

i are defined

respectively as follows.

= ,
iji j

ii

x

n

 


= ,
ijj

i
i

x

n


 2(x -)
=

ij ij
i

in




 ,

 According to the formula (1), if a pattern has very
similar values within the same class and very different
values across different classes, the Fisher score becomes
large, which means this pattern is very discriminative to
differentiate instances from different classes. Otherwise,
it is not discriminative.

A pattern selection algorithm is proposed in Ref. 1.
The algorithm ranks the patterns according to their
Fisher score and then select patterns in descending order
until all data instances covered by at least  times have
been processed.

Algorithm 1: pattern selection
Inputs: pattern set P , trace database TDB, coverage
threshold  .
Output: a selected pattern set Ps

1: for each pattern
iPat P

2: compute Fisher score of
iPat

3: sort P in decreasing order of Fisher score;
4: for each pattern

iPat P

5: if
iPat covers at least one sequence in TDB

6: add
iPat into

sP

7: remove
iPat from P

8: if a sequence S in TDB is covered  times
9: remove S from TDB;
10: if all sequence are covered  times or P  ;
11: break;
12: return Ps

3.3. Position distribution based features

The conventional feature representation approach
simply uses pattern’s occurrence frequency as the
feature value. This method is straightforward but
imperfect. If a pattern’s frequency is the same in two
different sequences, no matter what position the pattern
instance appears in, in the viewpoint of this method, the
two sequences are exactly the same. However, patterns
occurring in different positions of a trace are likely to
represent different meanings. For example, initialization
patterns usually appear in the head of a normal sequence,
and data process patterns mainly in the middle and tail
of a normal sequence, etc. Patterns which do not appear
in the “right” place usually indicate areas of potential
software failure. Simple use of frequency as the feature
would lose a lot of information and thereby reduce the
discriminative power.

As discussed in Section 2, we use relative position
to build position information. For this, a program trace
will be divided into N sections. That is, a sequence is
partitioned into N nearly equal parts. There may be
several ways to divide a sequence into N sections. As an
example, for a sequence S<D, B, A, F, B, A, F, B, C, E>,
there are six ways to divide S into four sections. All of
six solutions are shown in Table 4. If each sequence in
TDB randomly chooses its partition strategy, then
different pattern position distributions may be deduced
in repeated experiments and this would lead to unstable
results. In order to unify partition strategies for each
sequence, we use the following partition method to
allocate every event into a corresponding section: for
event e at the position i in sequence Sseq-id, we allocate
e into sectioni where

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 238

C. Li, et al

 (2)

N denotes the number of sections, Seqlen(seq-idi)

denotes that the total number of events of the sequences
whose ID is seq-idi. Using the above strategy, for the jth
instance of pattern Pi, we denote it by Inst(Pi)j = (seq-dj,
start-posj, end-posj), the corresponding start-section is

 (3)

Similarity, the corresponding end-section is

(4)

 As Inst(Pi)j across multiple sections from
start-sectionj to end-sectionj, the value between
countstart-sectionj

and countend-sectionj all plus 1.

Table 4. All solutions to divide S into four sections

Solutions Section partition

Solution 1 <D, B, A, |F, B,| A, F, B,| C, E>

Solution 2 <D, B, A,| F, B, A,| F, B,| C, E>

Solution 3 <D, B, A,| F, B,| A, F,| B, C, E>

Solution 4 <D, B,| A, F, B,| A, F,| B, C, E>

Solution 5 <D, B, |A, F, B,| A, F, B,| C, E>

Solution 6 <D, B,| A, F,| B, A, F,| B, C, E>

In this way, we can determine the distribution of

each pattern in the sequence, but we cannot use it
directly as a feature vector. For instance, consider
pattern P and its distribution in sequence

00 ,: (5, 10, 5, 10)P SS PD  and its distribution in

sequence . It is easy to
determine that these two distributions are very similar
except for their baseline. For similarity analysis of
distributions, we need to consider differences in the
baseline and scale (or amplitude). A straightforward
approach for solving the baseline and scale problem is
to apply a normalization transformation15. For example,
a distribution (count0, count1,…,countN-1) can be
replaced by a normalized distribution (count’0,
count’1,…, count’N-1) using the following formula.

' i i
i

i

count
count





 (5)

where

is the mean value of the distribution (count0,

count1, …, countN-1)

and is the standard deviation of

(count0, count1, …, countN-1). We use normalized pattern
distribution as features. Each pattern’s position
distribution will be connected to generate the whole
feature vector.

Algorithm 2: feature representation
Inputs: A selected set of patterns Ps, number of sections
N , trace database TDB
Outputs: Feature vector FV
1: for each pattern

i sPat P

2: Let ()iInst Pat = all instances of
iPat ;

3: for each instance () ()i j iInst Pat Inst Pat

4: Let

sec
()j j

j

N
start tion start pos

seqlen seq id

 
    

   ;

5: Let

sec
()j j

j

N
end tion end pos

seqlen seq id

 
    

   ;

6: for k = sec jstart tion to sec jend tion

7: Let [][]jFV seq id i N k    
;

8: normalization
([][sec]j jFV seq id i N start tion    to

[][sec]j jFV seq id i N end tion   );

9: return FV ;

As an example, consider the login pattern
P0=<login, passwd> and the traces database shown in
Table 1. We divide each sequence into two sections, and
then count pattern P0 position distribution. In this
situation, S0-S3 will be represented as

0 , (1, 1) (0 3)
iP SPD i to   and S4 will be represented

as
0 3, (1, 1) P SP D   . In this way, the differences

between S0-S3 and S4 are significant and the wrong
sequence can be easily identified. From the example in
Section 1, the frequency based method loses the
discriminating power in this case, it is clear that
pattern’s position distribution is more discriminating
than frequency.

Algorithm 2 presents the pseudo code for position
distribution based feature representation.

)(idseqseqlen

Nij




)(
sec

idseqseqlen

N
j

posstartjtionstart




)(
sec

idseqseqlen

N
i

posenditionend




i
i

11 ,: (5 5 , 6 0 , 5 5 , 6 0)P SS P D 

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 239

 Software Failure Detection

It is also noteworthy that when N=1, the pattern
distribution based method is exactly the same as the
pattern frequency based method. This shows that pattern
position based method is more general than pattern
frequency based one.

After generating the feature vectors, these features
are used to train a classifier to detect software failure.
When the classifier is built, suspicious program traces
are processed in the same way, and then the feature
vectors are put into the classifier, to test whether they
contain failures or not. For the sake of comparison with
a previous study, we use LIBSVM16 as the classifier.

4. Experiment and Analysis

The experiment is carried out in two parts. Firstly, we
compare our method with the state of art closed unique
Iterative pattern’s frequency based method1. To make
the experimental results more persuasive, for the
datasets, all arguments of pattern mining, pattern
selection and classifier are completely the same.
Detailed arguments can be reviewed in Ref. 13.
Secondly, to further illustrate the strength and
universality of our method, we compared our method
with Frequent Pattern’s frequency base method.
Frequent patterns are mined using the FP-growth
algorithm26. We perform 5-fold cross validation for each
dataset.

In the first experiment, the datasets are a mixture of
synthetic datasets and real-life datasets. The datasets
correspond to traces databases (TDB). The synthetic
datasets include CVS Application and X11 Windowing
Protocol. Synthetic datasets are generated using the
simulator QUARK24. Given a software component
model in the form of a probabilistic finite state
automaton as input, QUARK can generate traces that
represent the model following some coverage criteria.
QUARK is also able to inject errors into the synthetic
traces. In this experiment, three types of errors are
injected into the traces, i.e., addition bugs, omission
bugs and ordering bugs. Table 5 explains the meaning
of each type of bug. The correct execution traces are
labeled as 0 and failing execution traces are labeled as 1.

Table 5. Three Types of Errors

Error Types Explanation
Omission bugs Missing method calls.
Addition bugs Injection of additional events resulting

in failures
Ordering bugs The order of events occurring is wrong

Almost all of the real existing bugs belong to these

three types, so the synthetic dataset can well simulate
the real-life conditions. For the comparison experiments,
argument N (number of sections) is the only adjustable
argument. Increasing N means divided program traces
into more equal sections, and this would improve the
veracity of the pattern’s position distribution but also
generates more feature dimensions. As a compromise,
we set N to 4, which means dividing the program traces
into four equal sections. Comparative experimental
results of synthetic datasets are shown in Table 6.
Datasets “X11” and “CVS Omission” contain only
‘addition’ and ‘omission’ bugs respectively, “CVS
Ordering” contains ordering bugs and “CVS Mix”
contains a mixture of all three types of bugs. The
number of correct and error traces is also shown in
Table 6. We denote the closed unique iterative pattern’s
frequency based method as CUP-Pat-Fre and our closed
unique iterative pattern’s position distribution based
method as CUP-Pos-Dist. “Add” refers to addition bugs,
“Omis” refers to omission bugs, and “Order” refers to
ordering bugs. Classification accuracy, defined as the
percentage of test cases correctly classified, is used as
the performance metric.

From Table 6, our proposed position distribution
method is better than the frequency-based method in all
four synthetic datasets, which proves that additional
position distribution information can help for software
failure classification in different failure types.

We continue the first experiment by analyzing real-
world datasets from the Siemens Test Suite17 and a data
race concurrency bug from MYSQL19. The Siemens
Test Suite is originally used in testing coverage
adequacy and error localization25. The test suite contains
several programs. Each program contains several
different versions where each version has one bug. To
simulate the real-life situation where probably there are
many bugs occurring in one program, three bugs and
three additional simulated ordering bugs are injected
into each program execution trace. We select three

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 240

C. Li, et al

largest programs in the test suite. They are referred to as
schedule, print tokens and replace. A data race
concurrency bug from MYSQL is also analyzed. This
bug causes the wrong ordering of statement executions
and can result in inconsistency of the database. The
maintainers of MYSQL rate this bug as serious in their
bug database. More information about the test suite and
data race bug is available in Refs. 1,17 and 18. The
comparative experimental results from the real-life
datasets are shown in Table 7.

The results show that the position distribution based
method outperforms the frequency-based method in all
real-life data sets, and the standard deviation is also
smaller than for the Pat-Fre method. The results further
illustrate that the pattern position distribution based
method is more discriminative and stable than the
pattern frequency based method.

In the second experiment, we test a real-life dataset
tot_info which comes from the Siemens Test Suite.
Detailed information on the dataset is shown in Table 8.

We use the FP-growth algorithm to generate
frequent patterns and LIBSVM as the classification
model. The support threshold is set at 0.88 and 119
patterns were mined. Sixty two patterns were selected.
We perform 5-fold cross validation in this dataset.
Comparison results in each fold and summarized results
are shown in Table 9. “FP-Fre” refers to frequent
pattern’s frequency based method, and “FP-Pos-Dist”
refers to frequent pattern position distribution based
method.

From Table 9, our method outperforms the
frequency based method both in accuracy and standard
deviation. It further confirms the strength of our method.
It also demonstrates that our pattern position
distribution method can be connected to other pattern
mining algorithms, which makes it flexible.

The results from both synthetic and real-life datasets,
indicate that our proposed position distribution based
method can better distinguish normal and failing
program traces than the pattern frequency based method

Table 6. Experiments 1: comparison results on synthetic datasets

Dataset

Correct(|traces|)

Error(|traces) Accuracy with standard deviation

Add/Omis Order CUP-Fre CUP-Pos-Dist

X11 125 125 0 97.20 3.35
 100 0

CVS Omission 170 170 0 100 0 100 0
CVS Ordering 180 0 180 85.28 2.71 86.95 2.22
CVS Mix 180 90 90 93.89 5.94 96.39 4.72

Table 7. Experiments 1: results on real-life datasets

Dataset

Correct(|traces|)

Error(|traces|) Accuracy with standard deviation

Add/Omis Order CUP-Fre CUP-Pos-Dist

schedule 2140 289 1851 86.26 14.90 88.67 10.79

print_tokens 3108 187 187 99.94 0.06 100 0
replace 1259 269 269 90.84 2.54 93.24 2.21
MySQL 51 0 51 100 0 100 0

Table 8. Experiments 2: detailed information about tot_info dataset

Dataset Correct(|traces|) Error(|traces|)
Add/Omis Order

tot_info 302 208 94

Table 9. Experiments 2: comparison results on tot_info dataset

5-flod cross validation Accuracy with standard deviation

FP-Fre FP-Pos-Dist

fold-1 70.83% 93.33%

flod-2 68.3% 72.5%

fold-3 95.83% 91.67%

fold-4 80.83% 87.5%

fold-5 63.33% 74.17%

summarized result 75.83 12.87 83.83 9.84

 Software Failure Detection

by catching the position information of patterns. This
information implies that getting the semantics/
constraints between statement sets enables us to obtain a
more complete description of the software being
analyzed, which helps improve the performance of
software failure detection. Considering the data are
collected under both synthetic and real-world conditions,
we can conclude that our method will be generally
applicable to the detection of software failures.

5. Conclusions

In this paper, we present a novel method to use the
pattern position distribution as features to detect
software failure occurring through misused software
patterns. This method can catch the semantics
/constraints information between statement sets while
the traditional pattern frequency based method cannot.
This method allows us to extract more complete
information from program sequences and then to
generalize more discriminative models. Comparative
experiments show that our method outperforms the state
of art pattern frequency based method. Our method can
also be easily connected to any pattern mining
algorithms, which makes it very flexible.

In future work, we are going to develop a new
pattern presentation method and further apply to other
domains such as malware detection, etc. and attempt to
utilize multi-classifiers to leverage classification
performance.

References

1. D. Lo, H. Cheng, J. Han, S-C. Khoo, and C. Sun,
Classification of software behaviors for failure detection:
a discriminative pattern mining approach, in Proc. KDD
(2009) pp. 557-566.

2. D. Lo, S-C. Khoo, and C. Liu, Efficient mining of
iterative patterns for software specification discovery, in
Proc. KDD (2007) pp. 460-469.

3. G. Tassey, The economic impacts of inadequate
infrastructure for software testing, Planning Report
(National Institute of Standards and Technology, USA,
2002).

4. Z. Xing, A brief survey on sequence classification, J.
ACM SIGKDD Explorations Newsletter 12(1) (2010) 40-
48.

5. Java Trans. API Spec. http://java.sun.com/products/jta.
6. V. Chandola, A. Banerjee, and V. Kumar, Anomaly

detection for discrete sequences: a survey, IEEE

Transactions on Knowledge and Data Engineering
99(2010) 1-19.

7. H. Cheng, X. Yan, J. Han, and C.Hsu, Discriminative
frequent pattern analysis for effective classification, in
Proc. ICDE (2007) pp.716-725.

8. M. Deshpande, M. Kuramochi, N.Wale, and G. Karypis,
Frequent substructure-based approaches for classifying
chemical compounds, IEEE Transactions on Knowledge
and Data Engineering 17(8) (2005) 1036-1050.

9. X. Yan, H. Cheng, J. Han, and P-S. Yu, Mining
significant graph patterns by scalable leap search, in Proc.
SIGMOD (2008) pp. 433-444.

10. R. Agrawal and R. Srikant, Fast algorithms for mining
association rules, in Proc. VLDB (1994) pp. 487-499.

11. R. Agrawal and R. Srikant, Mining sequential patterns, in
Proc. ICDE (1995) pp. 3-14.

12. H. Mannila, H. Toivonen, and A.I. Verkamo, Discovery
of frequent episodes in event sequences, J. Data Mining
and Knowledge Discovery (1) (1997) 259-289.

13. Software failure detection: experimental dataset,
http://www.mysmu.edu/faculty/davidlo/kdd09.htm, 2009

14. R. Duda, P. Hart, and D. Stork, Pattern Classification 2nd
Edition (Wiley Interscience, 2000)

15. J. Han, M. Kamber, Data Mining: Concepts and
Techniques, 2nd Edition (Elsevier, 2006).

16. C. Chang and C. Lin, LIBSVM: a library for support
vector machines, 2001(Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm).

17. M. Hutchins, H. Foster, T. Goradia, and T. Ostrand,
Experiments on the effectiveness of dataflow- and
control-flow-based test adequacy criteria. in Proc. of Int.
Conf. on Software Engineering (1994) pp. 191 -200.

18. C. Liu, X. Yan, H.Yu, J. Han, and P.S. Yu, Mining
behavior graphs for “backtrace” of noncrashing bugs, in
Proc. SDM (2005).

19. MYSQL atomicity violation, http://bugs.mysql.com
20. W. Dickinson, D. Leon, and A. Podguriski, Finding

failures by cluster analysis of execution profiles, in Proc.
of Int. Conf. on Software Engineering (2001) pp. 339-
348.

21. J.F. Bowring, J.M. Rehg, and M.J. Harrold, Active
learning for automatic classification of software behavior
in Proc. of Int. Symp. on Software Testing and Analysis
(2004) pp. 195-205.

22. J. Wang and J. Han, BIDE: mining of frequent closed
sequences, in Proc. ICDE (2004) pp. 79-90.

23. X. Yan, J. Han, and R. Afhar, CloSpan: mining closed
sequential patterns in large datasets, in Proc. SDM (2003)
pp. 166-177.

24. D. Lo and S. Khoo, QUARK: Empirical assessment of
automaton-based specification miners, in Proc. of
Working Conf. on Reverse Engineering (2006) pp. 51-60.

25. C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff, SOBER:
statistical model-based bug localization, in Proc.
SIGSOFT ESEC-FSE (2005) pp. 286-295.

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 242

C. Li, et al

26. J. Han, H. Pei, and Y. Yin, Mining frequent patterns
without candidate generation, in Proc. SIGMOD (2000)
pp. 1- 12.

27. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software
(Addison-Wesley, 1995)

Co-published by Atlantis Press and Taylor & Francis
 Copyright: the authors
 243

