
 

 

Using Pattern Position Distribution for Software 
Failure Detection* 

Chunping Li, Ziniu Chen, Hao Du 
Tsinghua National Laboratory for Information Science and Technology  

School of Software, Tsinghua University  
Beijing 100084, China 

E-mail: {cli, czn09@tsinghua.edu.cn, duhao228@gmail.com} 

Hui Wang, George Wilkie, Juan C. Augusto, Jun Liu 
Faculty of Computing and Engineering, University of Ulster 

Jordanstown, Northern Ireland, BT37 0QB, UK 
E-mail: {H.Wang, FG.Wilkie, JC.Augusto, J.Liu @ulster.ac.uk} 

 

 

 

Abstract 

We present a novel approach for using the pattern position distribution as features to detect software failure. In this 
approach, we divide an execution sequence into several sections and compute the pattern distribution in each 
section. The distribution of all patterns is then used as features to train a classifier. This approach outperforms 
conventional frequency based methods by more effectively identifying software failures occurring through misused 
software patterns. Comparative experiments show the effectiveness of our approach. 
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1. Introduction 

As time goes by, computer software is playing an 
increasingly important role in our daily life. However, it 
is difficult to validate the correctness of software. When 
bugs occur in practice, costs can be tremendous. Bugs 
can cause huge financial losses each year, in addition to 
privacy and security threats. According to the US 
NIST’s (National Institute of Standards and Technology) 
report, software bugs cost the US economy $59.5 billion 
annually3. 

To reduce the harm caused by software failure, 
hidden defects must be found as soon as possible before 

they cause damage. Unfortunately, traditional manual 
code review or software testing methods are time 
consuming, labor intensive and imprecise. These 
methods are difficult to apply to large-scale or market-
sensitive software systems. As a result, many 
researchers and industries devote much effort to 
developing automatic software failure detection 
techniques. The pattern-based software failure detection 
approach is one of the most important topics in this area.  

Patterns which are found in software usually 
correspond to programming rules or usage patterns1. In 
software sizing activities, it is common to look for often 
required logic such as for ‘Adding’, ‘Deleting’, 
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‘Amending’, ‘Searching’ and ‘Listing’ data from a data 
store. There will be consequent patterns associated with 
these functions. These patterns are intuitive and 
commonly found in software documentation, such as the 
Resource Locking Protocol: <lock, unlock> or the Java 
Transaction Architecture (JTA) Protocol 5: 
<TxManager.begin, TxManager.commit>, <TxManger. 
begin, TxManger.rollback>, etc. Software Patterns have 
also been used as part of reuse strategies when 
developing software systems. The seminal work in Ref. 
27 introduces many software patterns including the 
‘Singleton’, ‘Observer’ and ‘Façade’ patterns which 
have been widely adopted by industry. 

These patterns, which reflect interesting program 
behavior, can be identified (or mined) by analyzing a set 
of program traces. Traces are an ordered list of events4, 
where an event can correspond to the invocation of a 
method, or the execution of a program statement, etc. 
From the data mining viewpoint, each trace can be 
considered as a sequence. A pattern (e.g., <lock, 
unlock>) can appear multiple times within a sequence. 
Each pattern may be divided by an arbitrary number of 
unrelated intervening events (e.g., lock -> resource use 
-> … -> unlock) 1. 

Pattern mining is found in a wide variety of 
application domains such as intrusion detection, failure 
detection, program comprehension, bioinformatics, 
weather prediction, and system health management6. 
Various pattern mining methods are proposed such as 
frequent item set mining10, sequential pattern mining11, 
closed pattern mining22, 23, episode mining12, iterative 
pattern mining2 and closed unique pattern mining1,etc. 
Recently there has been interest in developing 
discriminative pattern-based classifiers. In Ref. 7, 
Cheng et al. mine frequent item sets for classifying 
transaction data. In Refs. 8 and 9, frequent connected 
sub-graphs are mined for classifying graph data. On a 
related front, Lo et al. propose a novel method to extract 
closed unique patterns for software failure detection1.  

Pattern-based software failure detection is inspired 
by the emerging area of dynamic analysis where 
program traces are analyzed in order to infer or mine 
temporal program properties or patterns of behavior2. In 
the dynamic analysis point of view, software can be 
viewed as a series of program execution traces which 
demonstrate a program‘s behaviors. When a program 
executes, it produces the massive amount of execution 

traces corresponding to its various behaviors. Some 
behaviors are desirable, while some others are not. 
These undesirable behaviors are often referred to as 
failures. A set of execution traces can be collected to 
construct a sequence database which is the basis of our 
analysis. 

Generally speaking, pattern-based software failure 
detection employs a three-step framework1, first, mine a 
set of patterns from program execution traces; secondly, 
perform feature selection to extract discriminative 
patterns for the purpose of classification. These selected 
patterns are treated as features and their occurrence 
frequencies are treated as corresponding feature values. 
Thirdly, these features are used to train a classifier to 
detect failures. More specifically, pattern-based 
software failure detection is a kind of pattern frequency-
based method.  

Existing research on pattern frequency based 
methods has produced promising results. Refs. 1 and 7 
demonstrated that this approach is much more 
discriminative than single event approaches. But it has a 
natural weakness in that the research neglects the 
pattern’s position within the sequence. For example, 
consider the login pattern P1=<login, passwd> and the 
set of user command sequences S0-S4 as shown in Table 
1. Sequences S0-S3 represent normal daily profiles of a 
user while the sequence S4 is anomalous - one can never 
do any other operations before logging into the system. 
Although S4 indicates an obvious failure, we are unable 
to distinguish S0-S3 from S4 when using the pattern 
frequency based method because the pattern P0 = <login, 
passwd> does occur once in each of S0-S4. It is very 
clear that pattern frequency based methods loose their 
discriminating power in this case. 

                 Table 1. Sequences of user commands  

S0 login, passwd, mail, ssh, …, mail, web, logout 

S1 login, passwd, mail, web, …, web, web, web, logout 

S2 login, passwd, mail, ssh, …, mail, web, web, logout 

S3 login, passwd, web, mail, ssh, …, web, mail, logout 

S4 mail, ssh, web, …, web, mail, login, passwd, logout 

 
From this example, we see how a number of 

software failures could occur through misused software 
patterns and merely using the pattern’s frequency as 
feature cannot detect such kinds of failures. Notice that 
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the login pattern P0 occurred in the tail of S4, but 
occurred in the head of S0-S3. So, patterns occurring in 
the different positions of a trace are likely to represent 
different meanings. A pattern’s position may imply 
some important semantic information or design 
constraints. In the example, before we do any other 
operations, we must login into the system. By using the 
pattern position information, we can easily identify 
abnormal sequences which contain misused patterns. So 
it is appropriate to consider using positional information 
to enhance the discriminating power of patterns. 

In this paper, we propose a novel approach for using 
the pattern position distribution to detect software 
failure instead of occurrence frequency, which is used in 
traditional approaches. We present experiments using 
both synthetic and real-world datasets to show that the 
classification performance is improved significantly 
compared with existing research. Our approach, with 
the scheme of position distribution, can be combined 
with various pattern mining algorithms, which makes it 
very flexible. 

The organization of this paper is as follows. Section 2 
introduces the concept definitions related to the pattern 
position distribution. Section 3 describes our failure 
detection method based on the pattern position 
distribution. In Section 4, we provide our experimental 
results and comparative study with existing published 
research work. Section 5 then contains our concluding 
remarks and ideas for future work. 

2. Basic Concepts 

This section provides the definitions for the following 
four concepts:  
 
(i) Pattern Instance;  
(ii) Section;  
(iii) Instance Position;  
(iv) Pattern Position Distribution. 
 

In pattern mining, we denote a software execution 
sequence S as it corresponds to a path which a program 
takes when executing from its start to the end point 
when it terminates1. Where each is an event, an event in 
turn corresponds to a unit behavior of interest. This can 
correspond to the execution of a statement, a method 
call, etc. The set of traces or sequence database is 

denoted by TDB (traces database). An example TDB is 
shown in Table 2.  

In order to obtain a pattern’s position information, 
we need to define what we mean by a ‘pattern instance’. 
This definition is given in DEFINITION 1 to follow. 
The pattern instance definition can be expressed as a 
Quantified Regular Expression (QRE). QRE is similar 
to the standard regular expression but with a semicolon 
denoting the concatenation operator, ‘[-]’ denoting the 
exclusion operator (e.g., [-P, S] means any event except 
P and S), and ‘*’ denoting 0 or more. 

 
Table 2. Traces database 

Identifier Sequence 
S0 <D, B, C, F, B, A, F, B, C, E> 
 
 
S1

 <D, B, C, D, B, A, E, B, B, E, D, 

C, E, C, D, E, F, D, B, A> 

 
Definition 1. Pattern Instance Given a pattern P<e0, 
e1,…,en-1>, a substring f(f0,f1,...,fm-1) in a sequence S in 
TDB (traces database) is an instance of P iff it is of the 
following QRE expression 

 
0 0 1 1 0 1 1; [ , . . . , ]* ; ; .. .; [ , . . . , ]* ; .n n ne e e e e e e     

 
     An instance is denoted by a triplet (seq-id, start-pos, 
end-pos), where seq-id refers to the ID of a sequence S 
in the database while start-pos and end-pos refer to the 
starting point and ending point of a substring in S. All 
indices start from 0.  

The starting point and ending point can indicate the 
absolute position of an instance but cannot represent the 
whole position information on their own because the 
length of sequences in TDB may not be equal. For 
example, consider a pattern P = <A, B> and two 
sequences S0 and S1 shown in Table 2. There are two 
instances I(0, 5, 7) and J(1, 5, 7) of pattern P. The 
length of S0  is 10 and the length of S1 is 20. Although I 
and J have the same absolute position, I appears in the 
second half of S0 while J appears in the first half of S1. 
So, the same absolute position may indicate different 
position information. To avoid the weakness of the 
absolute position, we use the relative position to 
represent the position information. In order to use 
relative position, we divide all sequences into N 
‘sections’ separately, and then determine what a section 
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or sections an instance belongs to. In this way, we can 
position an instance.  

 
Definition 2. Section  Divide a sequence Sseq-id <e0, e1, 
e2,…,en-1> into N parts  s.t.  1

0

N

i
i

part





= <e0, e1, e2,…,en-

1> and 1

0
i

N

i

part





, this partition divide 

seq idS 
 into N 

sections iff , . 0 , 1,i j i j N     s.t. |parti|-

|partj| 1  ,where parti denotes the i-th part of the 
sequence and |parti| denotes the number of the event in 
parti. 

After dividing a sequence into N sections, a 
sequence can be denoted by (section0, section1,…, 
sectionN-1 ), and then we can determine the ‘instance 
position’ which is given in the following definition. 

Definition 3. Instance Position Given an instance 
I(seq-id, start-pos, end-pos), a sequence divides into N 
sections Sseq-id(section0, section1,…, sectionN-1) that 
contains I. The position of I is represented as (seq-id, 
start-section, end-section), where ‘start-section’ refers 
to the ID of the section s.t. 

sec secID IDtion I tionstart pos start pos end pos      and 

end-section refers to the ID of the section s.t. 

sec secID IDtion I tionstart pos end pos end pos     , where 

Istart pos  and 
Iend pos  refer to the starting point 

and ending point of I, 
sec IDtionstart pos  and 

sec IDtionend pos  refer to the starting point and ending 

point of sectionID. 
When we have obtained all instance positions of 

pattern P, we can compute P’s position distribution.  

Definition 4. Pattern Position Distribution Pattern 
P’s position distribution in sequence S is denoted by 
PDP,S=(count1, count2, …, countN-1) where PDP,S means 
pattern P’s position distribution in sequence S, N refers 
to the number of sections, and counti refers to the 
number of P’s instances in the sectioni. Instance I 
appeared in the sectionk  means: 

sec sec.  s.t. start-pos j
k kI I tion tionj start pos j end pos end pos        .

A part of Instance I in the sectionk  means 

sec sec.  s.t. start-pos j
k kI I tion tionj start pos j end pos end pos       

. 

As an example, consider a pattern P = <A, B> and 
the TDB shown in Table 3, the set of instances of P 
denoted by Inst(P) are represented as: Inst(P) {(0,2,4), 

(0,5,7), (1,2,4), (1,7,8)}. Then we divide all sequences 
into four sections separately. For S0, section0 =<D, B, 
A>, section1 =<F, B>, section2 =<A, F, B> and 
section3=<C, E>.  For S1, section0=<D, B, A>, 
section1=<D, B>, section2=<B, B> and section3=<A, B>. 
Instance position for all instances belonging to Inst(P) 
will be represented as (0, 0, 1), (0, 2, 2), (1, 0, 1) and (1, 
3, 3) separately. Pattern P’s position distribution in 
sequence S0 is denoted by 

0,P SPD = (1, 1, 1, 0) and P’s 

position distribution in sequence S1 is denoted by 
1,P SPD = 

(1, 1, 0, 1). 

Table 3. Traces database 

Identifier Sequence 
S0 <D, B, A, F, B, A, F, B, C, E> 

S1 <D, B,A, D, B, B, B, A, B> 

 

3. Pattern Position Distribution based Software 
Failure Detection 

In this section, we present a four-step approach for the 
software failure detection based on pattern position 
distribution. First, we extract a set of patterns from 
traces database (TDB). Secondly, pattern selection is 
performed to select discriminative patterns. Thirdly, we 
compute the position distribution for each selected 
pattern. The distribution will be used as features. 
Finally, features are used to train a classifier to detect 
software failure. 

3.1.  Pattern mining 

Creating a pattern mining algorithm is an essential 
component to building the pattern-based classifier. Our 
position distribution based approach can be combined 
with various pattern mining algorithms. We use two 
different pattern mining algorithms separately. The first 
algorithm is the state of art closed unique iterative 
pattern mining algorithm1 proposed by David Lo et al. 
This algorithm performs a depth-first traversal of the 
search space to grow patterns. It first computes frequent 
single events in the traces database (TDB). The frequent 
events are then grown in a depth-first fashion. Unique 
pattern detection1 and InfixScan pruning strategies2 are 
performed to cut the search space of non-closed patterns 
to get a compact set of patterns. The second algorithm is 
the classical FP-growth algorithm26 proposed by J. Han 
et al. The FP-growth algorithm represents the 
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transaction database as a prefix tree which is enhanced 
with links that organize the nodes into lists referring to 
the same item. The search is carried out by projecting 
the prefix tree, working recursively on the result, and 
pruning the original tree. 

3.2. Pattern selection 

A large set of patterns will be mined from the set of 
failing and normal traces. Some of these patterns may 
be indiscriminative. To reduce the number of patterns 
and eliminate those that are indiscriminative, pattern 
selection is performed. 

We employ the popularly used statistical 
measurement, e.g., Fisher score14, which is defined as 
follows. 
 

2

1

2

1

( )
k

i ii
k

i ii

n u u
F r

n 





 

        

              (1) 

   
where ni is the number of data samples in class ci, and ui 

is the average pattern value in class ci. We treat a 
pattern’s instance number in a sequence S as the 
corresponding pattern value. u is the average pattern 
value in the whole dataset. 

i  is the standard deviation 

of the pattern values in class ci.  k is the number of 
classes. Assumed that xij is the pattern value for the jth  
instance in class ci, then u, ui and 

i  are defined 

respectively as follows. 
  

= ,
iji j

ii

x

n

 
   

= ,
ijj

i
i

x

n


 2(x - )
=

ij ij
i

in




 , 

 
     According to the formula (1), if a pattern has very 
similar values within the same class and very different 
values across different classes, the Fisher score becomes 
large, which means this pattern is very discriminative to 
differentiate instances from different classes. Otherwise, 
it is not discriminative. 

A pattern selection algorithm is proposed in Ref. 1. 
The algorithm ranks the patterns according to their 
Fisher score and then select patterns in descending order 
until all data instances covered by at least   times have 
been processed. 
 
Algorithm 1:  pattern selection 
Inputs:  pattern set P , trace database TDB, coverage 
threshold  . 
Output: a selected pattern set Ps  

1:   for each pattern 
iPat P  

2:     compute Fisher score of 
iPat  

3:    sort P  in decreasing order of Fisher score; 
4:    for each pattern 

iPat P  

5:      if 
iPat  covers at least one sequence in TDB 

6:           add 
iPat  into 

sP  

7:           remove
iPat   from P  

8:     if a sequence S in TDB is covered   times 
9:         remove S from TDB; 
10:    if all sequence are covered   times or P  ; 
11:       break; 
12:   return  Ps

 

3.3. Position distribution based features 

The conventional feature representation approach 
simply uses pattern’s occurrence frequency as the 
feature value. This method is straightforward but 
imperfect. If a pattern’s frequency is the same in two 
different sequences, no matter what position the pattern 
instance appears in, in the viewpoint of this method, the 
two sequences are exactly the same. However, patterns 
occurring in different positions of a trace are likely to 
represent different meanings. For example, initialization 
patterns usually appear in the head of a normal sequence, 
and data process patterns mainly in the middle and tail 
of a normal sequence, etc. Patterns which do not appear 
in the “right” place usually indicate areas of potential 
software failure. Simple use of frequency as the feature 
would lose a lot of information and thereby reduce the 
discriminative power. 

As discussed in Section 2, we use relative position 
to build position information. For this, a program trace 
will be divided into N sections. That is, a sequence is 
partitioned into N nearly equal parts. There may be 
several ways to divide a sequence into N sections. As an 
example, for a sequence S<D, B, A, F, B, A, F, B, C, E>, 
there are six ways to divide S into four sections. All of 
six solutions are shown in Table 4. If each sequence in 
TDB randomly chooses its partition strategy, then 
different pattern position distributions may be deduced 
in repeated experiments and this would lead to unstable 
results. In order to unify partition strategies for each 
sequence, we use the following partition method to 
allocate every event into a corresponding section: for 
event  e at the position i in sequence Sseq-id, we allocate  
e into sectioni  where  
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                                                                          (2) 

                                            
N denotes the number of sections, Seqlen(seq-idi) 

denotes that the total number of events of the sequences 
whose ID is seq-idi. Using the above strategy, for the jth   
instance of pattern Pi, we denote it by Inst(Pi)j = (seq-dj, 
start-posj, end-posj), the corresponding start-section is 
                                                                                  

  (3) 
 
 

Similarity, the corresponding end-section is  
    
(4) 

 

 As Inst(Pi)j   across  multiple   sections    from    
start-sectionj to end-sectionj,  the  value  between  
countstart-sectionj

 
and countend-sectionj  all plus 1.  

 
Table 4. All solutions to divide S into four sections 

Solutions Section partition 

Solution 1 <D, B, A, |F, B,| A, F, B,| C, E> 

Solution 2 <D, B, A,| F, B, A,| F, B,| C, E> 

Solution 3 <D, B, A,| F, B,| A, F,| B, C, E> 

Solution 4 <D, B,| A, F, B,| A, F,| B, C, E> 

Solution 5 <D, B, |A, F, B,| A, F, B,| C, E> 

Solution 6 <D, B,| A, F,| B, A, F,| B, C, E> 

 
In this way, we can determine the distribution of 

each pattern in the sequence, but we cannot use it 
directly as a feature vector. For instance, consider 
pattern P and its distribution in sequence 

00 ,:  (5,  10,  5,  10)P SS PD   and its distribution in 

sequence                                       . It is easy to 
determine that these two distributions are very similar 
except for their baseline. For similarity analysis of 
distributions, we need to consider differences in the 
baseline and scale (or amplitude). A straightforward 
approach for solving the baseline and scale problem is 
to apply a normalization transformation15. For example, 
a distribution (count0, count1,…,countN-1) can be 
replaced by a normalized distribution (count’0, 
count’1,…, count’N-1) using the following formula. 
 

' i i
i

i

count
count





                    (5) 

 
where  

 
is the mean value of the distribution (count0, 

count1, …, countN-1)
 
and     is the standard deviation of 

(count0, count1, …, countN-1). We use normalized pattern 
distribution as features. Each pattern’s position 
distribution will be connected to generate the whole 
feature vector. 
 
Algorithm 2: feature representation 
Inputs: A selected set of patterns Ps, number of sections 
N , trace database TDB 
Outputs: Feature vector FV 
1:  for each pattern 

i sPat P  

2:     Let ( )iInst Pat  = all instances of 
iPat ;

 

3:     for each instance ( ) ( )i j iInst Pat Inst Pat  

4:         Let 

sec
( )j j

j

N
start tion start pos

seqlen seq id

 
    

   ;

 

5:         Let 

sec
( )j j

j

N
end tion end pos

seqlen seq id

 
    

   ;

 

6:         for k = sec jstart tion  to sec jend tion  

7:             Let [ ][ ]jFV seq id i N k    
;
 

8:     normalization 
( [ ][ sec ]j jFV seq id i N start tion     to 

[ ][ sec ]j jFV seq id i N end tion    ); 

9: return FV ; 
 

As an example, consider the login pattern 
P0=<login, passwd> and the traces database shown in 
Table 1. We divide each sequence into two sections, and 
then count pattern P0 position distribution. In this 
situation, S0-S3 will be represented as 

0 , (1,  1)  ( 0   3)
iP SPD i to    and S4 will be represented 

as 
0 3, ( 1,  1)  P SP D   . In this way, the differences 

between S0-S3 and S4 are significant and the wrong 
sequence can be easily identified. From the example in 
Section 1, the frequency based method loses the 
discriminating power in this case, it is clear that 
pattern’s position distribution is more discriminating 
than frequency. 

Algorithm 2 presents the pseudo code for position 
distribution based feature representation.

 

)( idseqseqlen

Nij




)(
sec

idseqseqlen

N
j

posstartjtionstart




)(
sec

idseqseqlen

N
i

posenditionend




i
i

11 ,:  (5 5 ,  6 0 ,  5 5 ,  6 0 )P SS P D 
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It is also noteworthy that when N=1, the pattern 
distribution based method is exactly the same as the 
pattern frequency based method. This shows that pattern 
position based method is more general than pattern 
frequency based one. 

After generating the feature vectors, these features 
are used to train a classifier to detect software failure. 
When the classifier is built, suspicious program traces 
are processed in the same way, and then the feature 
vectors are put into the classifier, to test whether they 
contain failures or not. For the sake of comparison with 
a previous study, we use LIBSVM16 as the classifier. 

4. Experiment and Analysis 

The experiment is carried out in two parts. Firstly, we 
compare our method with the state of art closed unique 
Iterative pattern’s frequency based method1. To make 
the experimental results more persuasive, for the 
datasets, all arguments of pattern mining, pattern 
selection and classifier are completely the same. 
Detailed arguments can be reviewed in Ref. 13. 
Secondly, to further illustrate the strength and 
universality of our method, we compared our method 
with Frequent Pattern’s frequency base method. 
Frequent patterns are mined using the FP-growth 
algorithm26. We perform 5-fold cross validation for each 
dataset. 

In the first experiment, the datasets are a mixture of 
synthetic datasets and real-life datasets. The datasets 
correspond to traces databases (TDB). The synthetic 
datasets include CVS Application and X11 Windowing 
Protocol. Synthetic datasets are generated using the 
simulator QUARK24. Given a software component 
model in the form of a probabilistic finite state 
automaton as input, QUARK can generate traces that 
represent the model following some coverage criteria. 
QUARK is also able to inject errors into the synthetic 
traces. In this experiment, three types of errors are 
injected into the traces, i.e., addition bugs, omission 
bugs and ordering bugs. Table 5 explains the meaning 
of each type of bug. The correct execution traces are 
labeled as 0 and failing execution traces are labeled as 1. 
 
 
 

 

Table 5. Three Types of Errors 

Error Types Explanation 
Omission bugs Missing method calls. 
Addition bugs Injection of additional events resulting 

in failures 
Ordering bugs The order of events occurring is wrong 

  
Almost all of the real existing bugs belong to these 

three types, so the synthetic dataset can well simulate 
the real-life conditions. For the comparison experiments, 
argument N (number of sections) is the only adjustable 
argument. Increasing N means divided program traces 
into more equal sections, and this would improve the 
veracity of the pattern’s position distribution but also 
generates more feature dimensions. As a compromise, 
we set N to 4, which means dividing the program traces 
into four equal sections. Comparative experimental 
results of synthetic datasets are shown in Table 6. 
Datasets “X11” and “CVS Omission” contain only 
‘addition’ and ‘omission’ bugs respectively, “CVS 
Ordering” contains ordering bugs and “CVS Mix” 
contains a mixture of all three types of bugs. The 
number of correct and error traces is also shown in 
Table 6. We denote the closed unique iterative pattern’s 
frequency based method as CUP-Pat-Fre and our closed 
unique iterative pattern’s position distribution based 
method as CUP-Pos-Dist. “Add” refers to addition bugs, 
“Omis” refers to omission bugs, and “Order” refers to 
ordering bugs. Classification accuracy, defined as the 
percentage of test cases correctly classified, is used as 
the performance metric. 

From Table 6, our proposed position distribution 
method is better than the frequency-based method in all 
four synthetic datasets, which proves that additional 
position distribution information can help for software 
failure classification in different failure types. 

We continue the first experiment by analyzing real-
world datasets from the Siemens Test Suite17 and a data 
race concurrency bug from MYSQL19. The Siemens 
Test Suite is originally used in testing coverage 
adequacy and error localization25. The test suite contains 
several programs. Each program contains several 
different versions where each version has one bug. To 
simulate the real-life situation where probably there are 
many bugs occurring in one program, three bugs and 
three additional simulated ordering bugs are injected 
into each program execution trace. We select three 
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largest programs in the test suite. They are referred to as 
schedule, print tokens and replace. A data race 
concurrency bug from MYSQL is also analyzed. This 
bug causes the wrong ordering of statement executions 
and can result in inconsistency of the database. The 
maintainers of MYSQL rate this bug as serious in their 
bug database. More information about the test suite and 
data race bug is available in Refs. 1,17 and 18. The 
comparative experimental results from the real-life 
datasets are shown in Table 7. 

The results show that the position distribution based 
method outperforms the frequency-based method in all 
real-life data sets, and the standard deviation is also 
smaller than for the Pat-Fre method. The results further 
illustrate that the pattern position distribution based 
method is more discriminative and stable than the 
pattern frequency based method.  

In the second experiment, we test a real-life dataset 
tot_info which comes from the Siemens Test Suite. 
Detailed information on the dataset is shown in Table 8.  

We use the FP-growth algorithm to generate 
frequent patterns and LIBSVM as the classification 
model. The support threshold is set at 0.88 and 119 
patterns were mined. Sixty two patterns were selected. 
We perform 5-fold cross validation in this dataset. 
Comparison results in each fold and summarized results 
are shown in Table 9. “FP-Fre” refers to frequent 
pattern’s frequency based method, and “FP-Pos-Dist” 
refers to frequent pattern position distribution based 
method. 

From Table 9, our method outperforms the 
frequency based method both in accuracy and standard 
deviation. It further confirms the strength of our method. 
It also demonstrates that our pattern position 
distribution method can be connected to other pattern 
mining algorithms, which makes it flexible. 

The results from both synthetic and real-life datasets, 
indicate that our proposed position distribution based 
method can better distinguish normal and failing 
program traces than the pattern frequency based method 

 

Table 6.  Experiments 1: comparison results on synthetic datasets 

 
Dataset 

 
Correct(|traces|) 

Error(|traces) Accuracy with standard deviation 

Add/Omis Order CUP-Fre CUP-Pos-Dist 

X11 125 125 0 97.20 3.35 
 100 0 

CVS Omission 170 170 0 100 0 100 0 
CVS Ordering 180 0 180 85.28 2.71 86.95 2.22 
CVS Mix 180 90 90 93.89 5.94 96.39 4.72 

  
Table 7. Experiments 1: results on real-life datasets 

 
Dataset 

 
Correct(|traces|) 

Error(|traces|) Accuracy with standard deviation 

Add/Omis Order CUP-Fre CUP-Pos-Dist 

schedule 2140 289 1851 86.26 14.90 88.67 10.79 

print_tokens 3108 187 187 99.94 0.06 100 0 
replace 1259 269 269 90.84 2.54 93.24 2.21 
MySQL 51 0 51 100 0 100 0 

 
Table 8. Experiments 2: detailed information about tot_info dataset 

Dataset Correct(|traces|) Error(|traces|) 
Add/Omis Order 

tot_info 302 208 94 

 
Table 9.  Experiments 2: comparison results on tot_info dataset 

5-flod cross validation Accuracy with standard deviation 

FP-Fre FP-Pos-Dist 

fold-1 70.83% 93.33% 

flod-2 68.3% 72.5% 

fold-3 95.83% 91.67% 

fold-4 80.83% 87.5% 

fold-5 63.33% 74.17% 

summarized result 75.83 12.87 83.83 9.84 
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by catching the position information of patterns. This 
information implies that getting the semantics/ 
constraints between statement sets enables us to obtain a 
more complete description of the software being 
analyzed, which helps improve the performance of 
software failure detection. Considering the data are 
collected under both synthetic and real-world conditions, 
we can conclude that our method will be generally 
applicable to the detection of software failures. 

5. Conclusions 

In this paper, we present a novel method to use the 
pattern position distribution as features to detect 
software failure occurring through misused software 
patterns. This method can catch the semantics 
/constraints information between statement sets while 
the traditional pattern frequency based method cannot. 
This method allows us to extract more complete 
information from program sequences and then to 
generalize more discriminative models. Comparative 
experiments show that our method outperforms the state 
of art pattern frequency based method. Our method can 
also be easily connected to any pattern mining 
algorithms, which makes it very flexible. 

In future work, we are going to develop a new 
pattern presentation method and further apply to other 
domains such as malware detection, etc. and attempt to 
utilize multi-classifiers to leverage classification 
performance. 
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